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Non-canonical metabolic pathways in the malaria
parasite detected by isotope-tracing metabolomics
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Abstract

The malaria parasite, Plasmodium falciparum, proliferates rapidly in
human erythrocytes by actively scavenging multiple carbon sources
and essential nutrients from its host cell. However, a global overview
of the metabolic capacity of intraerythrocytic stages is missing.
Using multiplex 13C-labelling coupled with untargeted mass spec-
trometry and unsupervised isotopologue grouping, we have gener-
ated a draft metabolome of P. falciparum and its host erythrocyte
consisting of 911 and 577 metabolites, respectively, corresponding
to 41% of metabolites and over 70% of the metabolic reaction
predicted from the parasite genome. An additional 89 metabolites
and 92 reactions were identified that were not predicted from
genomic reconstructions, with the largest group being associated
with metabolite damage-repair systems. Validation of the draft
metabolome revealed four previously uncharacterised enzymes
which impact isoprenoid biosynthesis, lipid homeostasis and mito-
chondrial metabolism and are necessary for parasite development
and proliferation. This study defines the metabolic fate of multiple
carbon sources in P. falciparum, and highlights the activity of
metabolite repair pathways in these rapidly growing parasite stages,
opening new avenues for drug discovery.
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Introduction

Considerable progress has been made in reducing the incidence of

malaria over the last decade, although the decline in malaria cases

has stalled in recent years and resistance to frontline antimalarials is

on the rise (WHO, 2019). Identifying new antimalarials with novel

targets therefore remains a priority, and significant investment has

been made in expanding the drug development pipeline with novel

classes of antimalarials (Antonova-Koch et al, 2018; Hooft van

Huijsduijnen & Wells, 2018). Metabolic enzymes and metabolite

transporters are direct or indirect targets of most of the existing anti-

malarials and current lead compounds (Cowell et al, 2018; Ross &

Fidock, 2019). However, the total number of enzymes/transporters

that have been rigorously validated as drug targets remains small. A

detailed understanding of the metabolism of the different develop-

mental stages of the malaria parasite, Plasmodium falciparum, and

the host cells within which they live is therefore necessary for

informing the development of new antimalarial therapies.

Plasmodium falciparum progresses through a number of different

developmental stages during its life cycle in the Anopheles mosquito

and its human host. Infection in humans is initiated by infective

sporozoites that develop asymptomatically in the liver, resulting in

the release of thousands of merozoites that initiate repeated cycles

of infection and asexual replication in erythrocytes (i.e. red blood

cells (RBCs)) that cause the clinical symptoms associated with

malaria. The P. falciparum intraerythrocytic developmental cycle

(IDC) takes approximately 48 h and involves the development of

the metabolically-active trophozoite and schizont stages, followed

by cell division of individual parasites into 16–32 new merozoites.

The massive expansion of parasite biomass during development is

fuelled by the uptake and catabolism of glucose, as well as a

number of other essential nutrients (e.g. amino acids, purines and

vitamins) that are either directly scavenged from the RBC or derived

from breakdown of RBC haemoglobin and other proteins (Roth,

1990; Atamna et al, 1994; Liu et al, 2006; Olszewski et al, 2009).

Considerable progress has been made in delineating key salvage

and metabolic pathways involved in P. falciparum asexual develop-

ment, which has formed the basis for genome-scale models of para-

site metabolism (Fatumo et al, 2009; Plata et al, 2010; Bazzani et al,

2012; Tymoshenko et al, 2013). Despite these advances, > 40% of

the protein-encoding genome remains unannotated and a significant

fraction of annotated metabolic genes have yet to be assigned to

specific metabolic pathways or reactions. In the phylum Apicom-

plexa, many genes have also been repurposed to fulfil non-canonical
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functions, impeding genomic reconstructions and a systematic

understanding of the total metabolic capacity of the pathogen

(Oppenheim et al, 2014; Ke et al, 2015). Finally, enzyme promiscu-

ity and side reactions can result in the production of unanticipated

and novel metabolites that can have important roles in regulating

cellular metabolism (Linster et al, 2013; Bommer et al, 2019;

Dumont et al, 2019), further complicating predictions of enzyme

function based on gene homology.

Defining the observable metabolic capacity of key developmental

stages of P. falciparum and its host cell is required to verify the

accuracy of genomic reconstructions and to identify unexpected

metabolic pathways and gene functions. A number of approaches

have been used to undertake a global analysis of the metabolic

capacity of other organisms. For example, a system-wide reverse

genetics approach was used to identify the metabolic function or

indirect metabolic impact of each gene within E. coli (Fuhrer et al,

2017). The emergence of genome-wide disruption libraries in

P. falciparum and P. berghei makes this approach theoretically

possible (Bushell et al, 2017; Zhang et al, 2018). However, these

studies have highlighted the essentiality of many metabolic enzymes

in Plasmodium spp., limiting the effectiveness of this approach.

Even viable but slow-growing mutants generated through such

approaches are likely to be difficult to compare directly to parental

parasites at a metabolic level. The converse approach – acquiring

untargeted mass spectrometry data and verifying the “observed”

metabolome – has not yet been fully exploited because of the lack of

well-established pipelines for data filtering and metabolite identifi-

cation. Current liquid chromatography–mass spectrometry platforms

allow detection of > 10,000 mass-to-charge (m/z) features, yet a

significant majority (> 90%) of these features correspond to back-

ground noise or degeneracy (Creek et al, 2011; Mahieu & Patti,

2017; Wang et al, 2019). The absence of autonomous methods for

controlling the false discovery rate has hampered the compilation of

an accurate metabolome for most organisms to date.

Here we use stable-isotope resolved metabolomics to prioritise

m/z features corresponding to metabolites actively synthesised by P.

falciparum or the host RBC (Huang et al, 2014; Sevin et al, 2017).

Previous work has demonstrated the ability of this approach

to define the extent of active 13C-glucose metabolism in RBCs

(Srivastava et al, 2017), and here we expand this approach to ten

biologically relevant 13C-substrates in P. falciparum-infected RBCs.

Filtering for actively-labelled metabolites enabled > 95% of m/z

features to be removed, and the remaining m/z features were then

identified and the active metabolome defined. This approach led to

the identification of 577 metabolites in uninfected human RBCs and

911 metabolites in P. falciparum-infected RBCs corresponding to

41% coverage across the predicted metabolome of P. falciparum

(the summation of all expected metabolites from all known path-

ways inferred from a genomic reconstruction irrespective of enzyme

gaps). The pattern of stable-isotope labelling for each metabolite

allowed us to further infer metabolic reactions corresponding to

70.5% coverage across predicted reactions in P. falciparum, with

the mis-match between metabolite and reaction coverage largely

due to a subset of metabolites participating in many reactions.

Defining the “observed” metabolome without constraining the

results to the expected composition inferred from genomic recon-

structions revealed 89 metabolites and 92 reactions not predicted

from genomic reconstructions. These studies have highlighted

unanticipated complexity in P. falciparum metabolism, including

the presence of active metabolite damage and repair systems in

rapidly dividing parasite stages.

Results

Global stable‐isotope labelling filters for metabolites actively
synthesised in uninfected and P. falciparum‐infected human
erythrocytes

Plasmodium falciparum trophozoite-infected red blood cells (iRBCs)

or uninfected RBCs (uRBCs) were metabolically labelled for 5 h in

parallel cultures containing different 13C-labelled compounds. Metabo-

lites were extracted and analysed in parallel by GC-MS, LC-MS polar

and LC-MS apolar analytical platforms to maximise coverage of dif-

ferent metabolites classes. All mass-to-charge (m/z) features were

extracted and untargeted isotopologue grouping performed to identify

m/z features that correspond to metabolites that were differentially

labelled between iRBCs and uRBCs (Fig 1A). Metabolites were provi-

sionally identified based on METLIN database matching and their

identities subsequently confirmed based on comparison with authen-

tic standards, MS/MS matching, stable-isotope incorporation pattern

and exact mass. The resulting list of metabolites and their respective

labelling patterns were compiled into the “observed” metabolome of

P. falciparum at the trophozoite stage (Dataset EV1).

As an example of the workflow, polar LC-MS analysis of 13C-

glucose labelled iRBC extracts revealed that 859 of the original

33,691 m/z features detected in unlabelled iRBCs exhibited

decreased intensity following 13C-glucose labelling (Fig 1B), indicat-

ing that they likely correspond to mono-isotopic masses (i.e. the

unlabelled species) that decrease as metabolites become enriched

for 13C atoms. These m/z features were then ranked by fractional

enrichment and the exact mass of the unlabelled feature queried

against the METLIN metabolite database (Fig 1C). Of the 859 m/z

features, 410 returned putative matches within a 10 ppm tolerance

for M-H precursors and are annotated as “presumptive” features.

Presumptive features exhibited a broad range of fractional enrich-

ments, ranging from 0.01 to 0.999, indicating no significant bias in

annotating putatively labelled metabolites via stable-isotope enrich-

ment. Highlighted is the presumptive feature m/z 275.0167 and its

isotopologue group (Fig 1D), matching to three possible metabolites

(2-carboxyarabinitol 5-phosphate, 2-carboxyarabinitol 1-phosphate

and 6-phosphogluconate; all D2 ppm). MS/MS spectral matching,

together with the predominance of +6 mass isotopomer in 13C-

glucose labelled cells, confirmed the identity of this metabolite to

be 6-phosphogluconate (Fig 1E). This procedure resulted in the

identification of 232 polar metabolites that were significantly

labelled with 13C-glucose and was repeated for all labelled

substrates and MS platforms.

The observed metabolome of uninfected and
P. falciparum-infected human erythrocytes

The consolidated list of all 13C-labelled metabolites detected on the

three MS platforms was then incorporated into the observable meta-

bolome for uRBC and iRBC (Fig 2A). To capture additional metabolites

that were not labelled with any of the 13C-substrates tested, all m/z
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features from unlabelled uRBC and iRBC extracts were compared with

the expected exact mass of all metabolites in the predicted P. falci-

parum and RBC metabolomes (Huthmacher et al, 2010). Putative

matches were then verified as described above. The metabolic network

reconstruction reported by Huthmacher and colleagues contains

predictions of both host and parasite metabolic activity, incorporates

literature and manual curation for higher accuracy predictions, and is

structured for matching enzyme classification reactions and PlasmoDB

IDs. The reconstruction contains 566 metabolites and 349 reactions in

human erythrocytes and 1,622 metabolites and 998 reactions in

P. falciparum (Fig 2A).

Following manual curation and verification, we compiled an

“observable” metabolome of iRBCs and uRBCs, which comprised

911 and 577 metabolites, respectively. All metabolites were

collapsed into unique KEGG IDs and compared to the predicted

metabolome of each cell type (396 and 299 metabolites for iRBC and

uRBC, respectively). 255 observed metabolites (with unique KEGG

IDs) matched to the predicted metabolome of iRBCs, corresponding

to 41% coverage of the predicted metabolome, whereas 152

observed metabolites matched the predicted metabolome of uRBCs

(36.3% coverage). Core metabolic pathways were statistically over-

represented in the observable metabolomes of both iRBC and uRBC

(Fig 2B), with consistently higher metabolite coverage across each

pathway for iRBC (Dataset EV2).

Metabolites predicted from genome annotations but not observed

in iRBC samples could reflect: (i) incorrect annotation of the genome

(e.g. the annotated branched-chain amino acid degradation pathway

is likely missing and the sole annotated enzyme in the pathway,

BCKDH, is known to fulfil an alternative function; Oppenheim et al,

2014), (ii) down-regulation of the metabolic pathway during tropho-

zoite development (e.g. de novo fatty acid biosynthesis is known to

be down-regulated in the presence of exogenous fatty acids in the

intraerythrocytic stages; Yu et al, 2008) or (iii) technical issues such

as low metabolite abundance, sequestration by host/parasite

proteins or incompatibility with the applied extraction or MS meth-

ods for detection (e.g. haem and ubiquinone biosynthesis). Pathway

enrichment analysis of predicted metabolites that were not observed

yielded no statistically-enriched pathways (Dataset EV2).

We were interested in defining which metabolites were uniquely

detected in iRBCs or uRBCs. iRBCs contained 102 unique KEGG IDs

corresponding to 339 metabolites that were not observed in uRBCs,

with phospholipid and CoA biosynthetic pathways most enriched

(unadjusted P = 0.017 and 0.033, respectively). These pathways are

not active in human RBCs, but are required for the rapid growth of

P. falciparum asexual stages (Fig 2B). Interestingly, five metabolites

were only detected in uRBCs. These included N-acetylman-

nosamine, sucrose, 5-formyl-tetrahydrofolate, glucosamine and pyri-

doxine-5-P. Pyridoxine-5-P is an essential vitamin/cofactor required

for the activity of multiple enzymes in both cell types. The absence

of detectable pyridoxine-5-P in iRBCs may reflect the sequestration

of this cofactor by parasite enzymes (Fig 2C).

A significant number of observed metabolites did not match to

the predicted metabolomes of iRBCs and uRBCs (141 and 147,

respectively). These unpredicted metabolites did not statistically

over-represent any conventional metabolic pathways (Dataset EV2).

For example, 13C-glucose incorporation was observed into the non-

canonical glycolytic metabolites, glycero-P-glycerol and acetyl-P in

iRBC, along with incorporation into canonical glycolytic and pentose

phosphate pathway (PPP) intermediates (Appendix Fig S1). The

identification of 13C-incorporation into unpredicted metabolites

highlighted the presence of unanticipated enzyme activities. Strik-

ingly, many of the observed metabolites not predicted from genomic

reconstructions corresponded to non-canonical metabolites gener-

ated by enzyme side reactions or “damaged” metabolites generated

by non-enzymatic processes (i.e. oxidation of methionine to

methionine sulphoxide; Dataset EV2). Examples of the former

include P-lactate and 4-P-erythronate that are formed when

enzymes consume their non-preferred substrate (Dumont et al,

2019). Glycero-P-glycerol is another non-canonical metabolite that

is formed during lipid biosynthesis (Fig 2D) and correlates with high

glycolytic flux (Hutschenreuther et al, 2013).

We sought to explore in more detail how parasite infection leads

to changes in host cell metabolism by comparing the metabolite

pool sizes between each cell type (Fig 2E). Metabolites associated

with nucleotide biosynthesis, arginine metabolism and phospholipid

production were all significantly elevated in iRBCs compared to

uRBCs (Dataset EV3), consistent with high rates of synthesis of

these metabolites and the need to accumulate biomass during para-

site development. However, amino acids and purines are main-

tained at comparable levels in both cell types, while intermediates

in both glycolysis and PPP intermediates were significantly reduced

in iRBC (Appendix Fig S3). Glycolytic and PPP flux is increased up

◀ Figure 1. Strategy for defining the metabolic capacity of P. falciparum-infected red blood cells (iRBCs) and uninfected red blood cells (uRBCs) using
untargeted stable-isotope labelling.

A Purified trophozoite-stage iRBCs and matched uRBCs were labelled with one of ten 13C-substrates (listed in purple). All mass-to-charge (m/z) features identified by
LC-MS were extracted and isotopologues grouped. 13C-labelled and 12C-labelled isotopologue groups were compared to identify m/z features in each cell type and
that were differentially labelled between iRBC and uRBC. Putative metabolite identities were then confirmed with authentic standards, MS/MS spectral matching,
13C-labelling profile and exact mass. The observed metabolic network of each cell type was then constructed using the draft metabolome and 13C-labelling
information and compared to the predicted P. falciparum metabolome reported by Huthmacher et al, (2010).

B All m/z features detected from iRBC extracts plotted as the log2 ratio of their abundance detected in 13C-glucose versus 12C-glucose conditions. 859 m/z features (from
a total 33,691 m/z features identified) were significantly altered in 13C versus 12C samples of iRBC. Highlighted in black is a single m/z feature (m/z 275.0167).

C The 859 significant m/z features (x-axis; putative M0 species) were ranked by their fractional enrichment (y-axis) and the observed mass queried against the METLIN
metabolite database. m/z features that returned a hit were classified as presumptive features (blue) and retained for validation. Presumptive m/z features displayed a
wide range of fractional enrichments, indicating no systematic bias.

D Changes in the isotopologue group distribution in 12C-glucose and 13C-glucose labelled samples of m/z 275.0167. Data are presented as the mean 13C-fractional
enrichment � SEM from six biological replicates.

E MS/MS fragmentation of m/z 275.0167 matched the reference spectrum of 6-phosphogluconate, consistent with the exact mass and labelling pattern, confirming the
metabolite identity. This approach was repeated for all presumptive m/z features.

4 of 20 Molecular Systems Biology 17: e10023 | 2021 ª 2021 The Authors

Molecular Systems Biology Simon A Cobbold et al



to 100-fold and 78-fold, respectively, in trophozoite stage-infected

RBCs (Roth, 1990; Atamna et al, 1994), highlighting the lack of

correlation between metabolite abundance and corresponding

metabolic fluxes. The reduced pool size of glycolytic/PPP intermedi-

ates in iRBC may increase the sensitivity of parasite pathways to

subtle changes in exogenous glucose levels by aligning substrate
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Figure 2. The observable metabolome of human uninfected RBCs and RBCs infected with P. falciparum.

A The total observed and predicted metabolome of uRBC and iRBC. The total number of metabolites and those with a unique KEGG identification number are reported.
Numbers in parentheses refer to unmatched metabolites that were predicted from the genomic reconstruction but not observed or observed metabolites that were not
predicted. The total number of metabolites common to both predicted and observed lists (percentage in parentheses) is referred to as “matched”. An UpSet plot summarising
the overlap of metabolites present in the predicted and observable metabolomes across uRBCs and iRBCs, with the inset depicting the metabolite size of each cell type.

B Metabolic pathway enrichment analysis for the observed metabolome of uRBCs and iRBCs. Unique KEGG ID metabolites were queried against the Small Molecular
Pathway Database with �log10 (Holm P) reported for the number of metabolite hits reported for each pathway.

C Extracted ion chromatogram of pyridoxine-P, one of five metabolites detected exclusively in uRBCs. X-axis corresponds to retention time (RT), and y-axis corresponds
to arbitrary ion intensity of the extracted peak. The inset indicates the integrated peak area for each biological replicate. ND indicates “not detected”.

D Extracted ion chromatogram of glycero-P-glycerol, an observed metabolite that was not predicted from genomic reconstructions and is significantly elevated in iRBC
compared to uRBC. X-axis corresponds to retention time (RT), and y-axis corresponds to arbitrary ion intensity of the extracted peak. Inset indicates the integrated
peak area across each cell type and biological replicate.

E The abundance of all detected polar metabolites was compared between iRBCs and uRBCs and presented as the log2 fold change (iRBC/uRBC) with respect to the
�log10P. Significance cut-off was set with �log10 (0.05) + c/(x � x0). Each data point represents a single metabolite, and the insets depict the extracted ion
chromatograms for two metabolites that were either elevated (acetyl-CoA) or decreased (fructose-1,6-bisphosphate) in iRBC relative to uRBC.
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levels more closely to the respective km’s of rate-controlling

enzymes (Bennett et al, 2009; Park et al, 2019).

The metabolic activity network of P. falciparum reveals a
plethora of metabolic damage-repair systems

To further define the unpredicted metabolic activity of P. falciparum

and the host RBC, all metabolites labelled with the different
13C-substrates were mapped to pathways to identify all observable

reactions from both iRBC and uRBC. In all cases, the number of

metabolites labelled with each tracer was higher in iRBCs compared

to uRBCs, as was the complexity of the corresponding sub-networks

(Fig 3A). Strikingly, the majority of the detectable metabolome of

uRBCs was unlabelled, consistent with the loss of many enzymes

and metabolic pathways in mature erythrocytes (Srivastava et al,

2017). In contrast, most metabolites detected in iRBC were labelled

with one or more 13C-substrates (Dataset EV1), indicating a high

level of redundancy and metabolic complexity in these intracellular

parasite stages. Metabolites in iRBC that did not label with any
13C-substrate tested (183 compounds) mainly consisted of vitamins

(e.g. pyridoxine and riboflavin), purines and specific lipid classes

(e.g. sphingomyelins) for which the parasite is known to be auxo-

trophic and dependent on salvage from the host cell or media in the

case of ex vivo culture.

We then matched labelled substrates to predicted reactions from

the genomic reconstruction. Either the substrate and/or the product

of 87.4% of metabolic reactions predicted from the reconstructions

was labelled with one or more 13C-tracers in iRBC (Fig 3B). The

discordance between metabolite and reaction coverage (42.6% and

87.6% for iRBC, respectively) is partly due to a small minority of

metabolites participating in a large number of reactions (Fig 3C).

Removing the top ten detectable metabolites (ATP through to

NADPH) from the analysis still gave 70.5% coverage across the

theoretical reaction landscape of iRBCs. 104 reactions had no

substrate/product detection and corresponded to metabolites that

were incompatible with MS detection (low abundance or poorly

ionised), such as intermediates of haem biosynthesis, superoxide

metabolism and dolichol production (Dataset EV2).

We reconstructed the 13C-label tracing through the predicted

metabolic network and incorporated additional reactions to accom-

modate labelled metabolites not predicted from the genome recon-

struction (Appendix Figs S2–S6). These additional steps were based

on the closest conversion from known metabolites and consistency

of the 13C/12C fraction label observed between putative substrate/

product pairs. The 13C-glutamine reconstruction indicated operation

of canonical pathways, such as the TCA cycle, pyrimidine biosyn-

thesis and glutathione metabolism, but also 13C-labelling into unpre-

dicted metabolites, indicating the presence of unannotated reactions

(Fig 3D; highlighted in green). These unexpected reactions did not

correspond to complete biosynthetic pathways, but were either

additional steps to predicted pathways (e.g. conversion of y-

aminobutyric acid into succinate semialdehyde) or potential meta-

bolic side reactions leading to the production of non-canonical

metabolites, such as 2-hydroxyglutarate, that need to be excreted or

catabolised to prevent metabolic dysregulation (Lu et al, 2012; Intle-

kofer et al, 2017; Dumont et al, 2019).

Metabolic side products constituted the largest group of new and

unanticipated metabolites detected in the 13C-network reconstructions.

Of the 92 reactions that were not predicted, 36 corresponding to

metabolic side or repair reactions. Using the network reconstructions,

we refined the observed metabolites that were unpredicted to 89,

corresponding to the highest confidence assignments (consistency

with reaction network) (Dataset EV4). These “damaged” metabolites

included methionine sulphoxide (which can be a marker of oxidative

stress; Mashima et al, 2003), unconventional glutathione adducts

(e.g. methyl- and succinyl-glutathione) and pipecolate which arises

via lysine degradation.

The 13C-bicarbonate labelling network was generally in agree-

ment with the predicted reactions (Appendix Fig S4) with the excep-

tion of labelling into the unconventional metabolite orotidine.

Orotidine was also labelled with 13C-glucose and 13C-glutamine,

consistent with synthesis via a side reaction of pyrimidine biosyn-

thesis. No reaction has been reported for this metabolite, but it is

possibly an overflow metabolite, generated via dephosphorylation

of orotidine monophosphate. A number of non-phosphorylated

intermediates of central carbon metabolism (mannose, galactose)

were also labelled in 13C-glucose-fed iRBC, indicating synthesis and

subsequent dephosphorylation of the cognate sugar phosphates

(Dataset EV4). These data suggest that unanticipated metabolites

can be generated by specific or promiscuous phosphatases. Candi-

date enzymes include members of the haloacid dehalogenase (HAD)

family of enzymes that have been shown to regulate metabolic

fluxes in vivo (Guggisberg et al, 2014; Guggisberg et al, 2018;

Dumont et al, 2019).

Haloacid phosphatases regulate parasite metabolic flux

We wanted to explore the role of two uncharacterised HAD

phosphatases given the important role this protein family plays

in regulating metabolic flux and metabolite repair. We targeted

PF3D7_1118400 (annotated as HAD4) and PF3D7_0303200 (anno-

tated as a member of the HAD superfamily, hereon referred to as

Lipin) for inducible disruption. Both endogenous loci were targeted

via Cas9-mediated double-stranded break towards the centre of each

gene and the 3’-half replaced with a recodonised sequence flanked

by two loxP sites (Wilde et al, 2019). The 3’-end was also HA-tagged

and a glmS ribozyme introduced in the 3’-UTR. Transfection of this

construct into a 3D7 parasite line expressing an integrated copy of

the dimerisable cre-recombinase then enabled inducible excision of

the gene upon rapamycin addition or transcript degradation when

glucosamine was added. Transfections were performed with line-

arised rescue DNA template and integration confirmed by PCR

(Appendix Fig S7). HA-tagged proteins of the expected size were

detected and were efficiently depleted following the addition of

100 nM rapamycin and 2.5 mM glucosamine (Fig 4A). A transgenic

line with lactate dehydrogenase 1 (LDH1) under inducible disrup-

tion was used as a positive control. Disruption of Lipin significantly

impaired parasite growth, whereas loss of HAD4 had no effect

(Fig 4B). Loss of LDH1 led to specific metabolic changes, with

increased abundance of pyruvate (the enzyme’s substrate) and

reduced abundance of lactate (Fig 4C), demonstrating the validity of

the approach for inferring enzyme function.

Loss of Lipin was associated with elevated levels of ceramides

and lyso-phosphatidic acid (LPA) lipid species in iRBC (Fig 4D and

Dataset EV5). Sphingosine-1-P and sphinganine-1-P were also

elevated, suggesting that this enzyme dephosphorylates diverse lipid
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Figure 3. Reconstruction of the active metabolic networks in P. falciparum trophozoite stages.

A The sum of metabolites labelled with each 13C-substrate in iRBCs and uRBCs. Dark grey indicates metabolites that were 13C-labelled in both cell types, whereas light
grey represents metabolites 13C-labelled in either iRBCs or uRBCs.

B The number of predicted metabolic reactions in each cell type, the number of reactions with an observed substrate, an observed product, and the number of
predicted reactions with no observed substrate or product (unobserved). The same analysis is reproduced following removal of the top ten cofactors present in the
observed metabolome.

C Predicted reactions were deconstructed into individual metabolites and were ranked according to their frequency across all predicted reactions. A small subset of
metabolites participate in a large number of reactions. The inset includes ranked metabolites with a frequency (y-axis) ≥ 20 from all predicted reactions. Black
indicates metabolites present in the observed metabolome.

D Reconstruction of the 13C-glutamine observed metabolic network. Green metabolites correspond to observed metabolites that are not predicted from the genomic
reconstruction. Black arrows indicate where the 13C-incorporation is consistent with predicted reactions. Green arrows indicate where the observed labelling pattern
is inconsistent with predicted reactions, and proposed reactions are annotated in Dataset EV4.
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substrates in vivo. This phenotype is consistent with the function of

Lipin domain-containing proteins in other eukaryotes, in regulating

intracellular pools of phosphatidic acid and diacylgycerols, and flux

of these lipids into other pathways of bulk lipid synthesis (phospho-

lipid, triacylglycerol). Interestingly, infection with wild-type P. falci-

parum leads to a depletion of phosphatidic acid and accumulation

of diacylglycerol in iRBC (Gulati et al, 2015). This likely reflects the

need for increased phospholipid biosynthesis in rapidly growing

intraerythrocytic stages, the sequestration of host lipids as triacyl-

glycerols (TAGs) within the parasite, and the pivotal role of phos-

phatidic acid/DAG signalling in microneme secretion and invasion

(Bullen et al, 2016). The pleiotropic role of Lipin in these different

pathways likely accounts for the severe growth defect observed

when Lipin expression was inducibly reduced in this study.

HAD4 disruption led to an accumulation of several nucleotides

and glycolytic intermediates which feed into lipid metabolism

A

C

E

F

H

G

B

D

Figure 4.
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(Fig 4E). In order to gain further insights into the potential function

of HAD4, we recombinantly expressed and purified HAD4 for analy-

sis of in vitro activity (Fig EV1). Phosphatase activity was confirmed

(Fig 4F) and inhibited by free phosphate (Fig 4G). HAD4 appeared

to dephosphorylate a wide range of nucleotide substrates with a

preference for nucleotide monophosphates (Fig 4H). HAD4 may

therefore function as a nucleotide monophosphate phosphatase,

consistent with accumulation of monophosphates following deple-

tion, including the elevation of orotidine-P and reduced levels of the

dephosphorylated orotidine following HAD4 depletion (Fig 4E). The

preference of HAD4 towards the monophosphates versus diphos-

phates (up to sixfold) is similar to the HAD nucleotide monophos-

phates YrfG present in E. coli (Kuznetsova et al, 2006). This

preference is likely an underestimate as diphosphate nucleotide

substrates will produce monophosphate nucleotides in the assay

leading to further hydrolysis and higher activity measurements.

Perturbation to nucleotide turnover upon HAD4 loss could indi-

rectly lead to disruption of glycolysis leading to a redirection of flux

into lipid precursors. Interestingly, it was previously shown that

P. falciparum HAD1 also has a direct role in regulating glycolysis

(Guggisberg et al, 2014), suggesting that this poorly defined family

of proteins may have multiple roles in regulating parasite central

carbon metabolism.

AMR1 is necessary for apicoplast function and
isoprenoid biosynthesis

AMR1 is an apicoplast-targeted protein which contains a TIM barrel

domain with an unknown function and is crucial for apicoplast

biogenesis (Apicoplast Minus Rescue 1; PF3D7_1363700) (Tang et

al, 2019). TIM barrel domain-containing proteins carry out a diverse

range of enzymatic reactions and are present in approximately 10%

of all enzymes (Goldman et al, 2016). The closet sequence similarity

is to anthranilate synthase, which is involved in tryptophan biosyn-

thesis. As Plasmodium spp. is auxotrophic for tryptophan, we further

investigated the role of AMR1. Inducible disruption of AMR1, with

concomitant loss of protein expression (Fig 5A), coincided with

impaired proliferation of asexual RBC stages (Fig 5B). AMR1 loss

was associated with disruption to isoprenoid biosynthesis and a

secondary disruption to haemoglobin catabolism in the digestive

vacuole (Fig 5C). This is consistent with a recent study reporting the

essentiality of AMR1 for apicoplast biogenesis (Tang et al, 2019) and

the requirement of IPP for protein prenylation and digestive vacuole

formation (Kennedy et al, 2019). Curiously, the intermediates

formed during the initial steps of the non-mevalonate pathway

(DOXP and MEP) are elevated, which is inconsistent with the reduc-

tion observed when the apicoplast fails to replicate (Kennedy et al,

2019). One interpretation of this phenotype is that AMR1 supplies or

regulates the additional cofactors required for these steps. MEP to

MEcPP conversion involves three enzymatic steps mediated by IspD,

IspE and IspF, which sequentially require CTP consumption, ATP to

ADP conversion and CMP release. TIM barrel-containing proteins

have a broad function and some members of the family have con-

firmed roles in nucleotide metabolism (Goldman et al, 2016). Recent

work demonstrates how the nucleotide pool within the plastid is

regulated via pyruvate kinase II (Swift et al, 2020) and AMR1 may

contribute to maintaining the nucleotide balance necessary for an

efficient isoprenoid biosynthetic pathway. Alternatively, AMR1 may

have a fundamental role in apicoplast biogenesis and the metabolic

phenotype observed is an indirect consequence of impaired apico-

plast biogeneis and loss of IPP biosynthetic capacity.

Mitochondrial serine hydroxymethyltransferase is necessary for
normal mitochondrial function

The metabolic network defined by 13C-serine tracing was the fourth

largest sub-network detected in iRBC with 85 metabolites labelled

(Fig 6A). The observed 13C-serine tracing network matched the

predicted activity network, including operation of the serine-decar-

boxylase-phosphoethanolamine methyltransferase pathway which

◀ Figure 4. Inducible disruption of haloacid dehalogenase 4 and a putative Lipin.

A Anti-HA Western blots for each protein targeted for disruption with a detectable band corresponding to the expected product size. 100 nM rapamycin and 2.5 mM
glucosamine were added to induce protein depletion for either one cycle (LDH1) or three cycles (Lipin and HAD4). Anti-PfBiP was used as the loading control.

B Growth of DiCre-3D7 transgenic lines following LDH1, HAD4 and Lipin depletion with 100 nM rapamycin and 2.5 mM glucosamine was assessed relative to
uninduced parasite cultures. The untransfected DiCre-3D7 parasite line was used as a negative control. Data are presented as the mean � standard error of the
mean (SEM) from three independent replicates.

C Untargeted LC-MS analysis of LDH1 depletion (one cycle of rapamycin and glucosamine treatment) indicated minimal but selective metabolic changes. m/z feature
intensities are plotted as the log2 ratio of treated/untreated and the Benjamini–Hochberg-corrected P values across six biological replicates plotted as –log10(P).
Below, LDH1 substrate and product (pyruvate and lactate, respectively) abundance plotted as the ratio of treated/untreated from biological replicates (mean � SEM)
and the parental DiCre line presented as the negative control.

D Loss of Lipin (PF3D7_0303200) leads to accumulation of various lipid species (three cycles of rapamycin and glucosamine treatment). Data are presented as the mean
log2 fold change Lipin-depleted (treated) enriched trophozoite-stage iRBCs to untreated controls from three to six biological replicates (� SD). The schematic depicts
the proposed lipid phosphatase activity of Lipin.

E Loss of HAD4 leads to increases in intracellular levels of several nucleotides and intermediates in lower glycolysis. Data are represented as the mean log2 fold change
of enriched trophozoite-stage iRBCs treated for three cycles compared to untreated controls from three/four biological replicates. Three nucleotide–nucleoside pairs
are depicted in the top inset panels, and HAD4 disruption leads to accumulation of the nucleotide monophosphate and depletion of the nucleoside. The schematic
depicts lower glycolysis and triose-phosphate interconversion, with the corresponding metabolite levels following HAD4 disruption depicted in the lower right inset.

F Phosphatase activity against the generic substrate pNPP of wild-type HAD4, catalytically inactive HAD4D29A and a no-enzyme (No Enz.) control, presented as the
mean � SEM (three biological replicates).

G Inhibition of HAD4 phosphatase activity by inorganic phosphate. Phosphatase activity against the generic substrate pNPP as the mean � SEM from three
independent experiments. The inorganic phosphate IC50 of HAD4 is 2.1 � 0.21 mM.

H Substrate specificity of HAD4. Substrates are divided into nucleotide phosphates (black) and other metabolites such as sugar phosphates and vitamins (white).
Presented is the enzyme activity from three independent experiments mean � SEM). Substrate abbreviations are listed in methods.
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generates precursors for de novo biosynthesis of the major phospho-

lipid species (phosphoethanolamine and phosphocholine; Witola et

al, 2008). However, 13C-serine labelling suggested that ethanola-

mine-P may also be directly converted to glycerol-ethanolamine-P

rather than being generated via the canonical pathway of PS and PE

lipid breakdown (Fig 6A). The identity of the serine phosphate

decarboxylase involved in synthesis of ethanolamine-P or the

enzyme involved in generating glycerol-ethanolamine-P remains to

be discovered (Rontein et al, 2003; Liu et al, 2018).

The 13C-serine tracing network also included intermediates in

one-carbon folate metabolism. Entry of serine into these pathways

is mediated by the enzyme, serine hydroxymethyltransferase

(SHMT), which converts serine to glycine with the transfer of

one-carbon to tetrahydrofolate. P. falciparum encodes two SHMT

isoforms: a well-characterised cytosolic isoform (SHMT-C) and a

mitochondrial isoform (18% identity to SHMT-C; Maenpuen et al,

2009; Pang et al, 2009; Read et al, 2010). SHMT-C participates

in general one-carbon folate metabolism, necessary for dTTP

production for DNA synthesis and formylation reactions (Fig 6B).

P. falciparum lacks the mitochondrial enzymes involved in folate

metabolism found in other eukaryotes and no in vitro activity could

be detected for SHMT-M (Pang et al, 2009), leaving the role of the

SHMT-M isoform undefined.

To investigate the function of SHMT-M (PF3D7_1456100) and

mitochondrial one-carbon metabolism in more detail, we confirmed

the localisation of HA-tagged SHMT-M to the mitochondrion

(Fig 6C) (Read et al, 2010; Pornthanakasem et al, 2012). Conditional

disruption of SHMT-M in asexual parasite stages was associated

with changes in intracellular levels of many metabolites (Fig 6D and

E), in sharp contrast to the limited metabolic changes observed

when the essential enzyme LDH1 was depleted (Fig 4C). In particu-

lar, loss of SHMT-M was associated with significant changes in

intermediates in glycolysis, the pentose phosphate pathway and

nucleotide metabolism (Fig 6F; Dataset EV6), suggesting that

SHMT-M is fundamental for central carbon metabolism. To differen-

tiate between the possibility that these changes were directly

connected to SHMT-M function versus a generalised death pheno-

type, protein turnover rates were assessed using a recently devel-

oped pulse-SILAC method in SHMT-M-depleted parasites (Yang

et al, 2019). Parasites were labelled with 13C15N-isoleucine for 5 h

and the turnover of parasite proteins assessed by measuring the ratio

of labelled (newly synthesised) and unlabelled peptides (nascent) in

corresponding tryptic peptides (Fig 7A). Similar rates of protein turn-

over (R2 = 0.92) were observed before or after knock-down of SHMT-

M (Fig 7B; Dataset EV7), indicating that parasite protein homeostasis

was unperturbed when SHMT-M is disrupted and that the metabolic

phenotype is unlikely to be caused by decreased cell viability. Signifi-

cantly, nuclear-encoded mitochondrial proteins and one of the three

mitochondrially encoded proteins (cytochrome b) also exhibited simi-

lar rates of turnover before and after SHMT-M knock-down, suggest-

ing that the metabolic phenotype does not reflect marked changes in

mitochondrial protein import or translation. This finding indicates

A C

B

Figure 5. AMR1 depletion leads to impaired isoprenoid biosynthesis, haemoglobin catabolism and growth.

A Anti-HA detection of AMR1 3’-HA tagged in the presence or absence of 100 nM rapamycin and 2.5 mM glucosamine for three cycles. Anti-PfBiP was used as a loading
control.

B Relative parasitaemia was assessed for the untransfected DiCre 3D7 parental line and transfectant parasite lines with AMR1 under inducible disruption. Rapamycin/
glucosamine treatment began on cycle zero and parasitaemia determined by flow cytometry and compared to identical lines that were left untreated. Data represent
the mean relative parasitaemia � SEM from three biological replicates (y-axis) across seven replication cycles (x-axis).

C Metabolite profile following three cycles of rapamycin and glucosamine treatment. The abundance of isoprenoid biosynthetic intermediates (1-deoxy-xylulose-5-P
(DOXP), methyl-erithritol-4-P (MEP), methyl-erithritol-cyclo-2,4-PP (MEcPP) and isopentyl-PP) and haemoglobin-like peptides is presented as the mean log2 fold
change from four biological replicates (� SD).
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Figure 6. The architecture and function of the serine metabolic network.

A 13C-serine tracing into the metabolic network of iRBC. Black arrows indicate reactions predicted from genomic reconstruction, whereas green arrows indicate
reactions that are not predicted but best match the stable-isotope labelling pattern observed. Proposed reactions are annotated below. Metabolites in grey were not
observed via mass spectrometry, and green indicates a metabolite observed but not predicted. Highlighted in orange is the glycine cleavage system, which is
predicted to be active but has not been verified.

B One-carbon folate metabolism in P. falciparum. The parasite encodes all the enzymes necessary for a complete cytosolic pathway but only appears to possess a single
enzyme – serine hydroxymethyltransferase – in the mitochondrion. Highlighted in white are the conventional enzymes and reactions of one-carbon metabolism in
the mitochondria of other eukaryotes.

C HA-tagged SHMT-M detection via immunofluorescence microscopy. DAPI was used to visualise the nucleus, and MitoTracker CMXros used to illuminate the
mitochondrion. Anti-HA signal partially colocalises with the mitochondrion.

D Addition of 100 nM rapamycin and 2.5 mM glucosamine for three growth cycles (+) leads to depletion of the HA-tagged SHMT-M.
E Depletion of SHMT-M leads to significant changes in intracellular levels of many metabolites in iRBC. m/z features are plotted as the log2 ratio of treated/untreated

intensities and the Benjamini–Hochberg-corrected P values across six biological replicates plotted as �log10(P).
F Pathway enrichment analysis of the m/z features identified as significantly different when SHMT-M is depleted. Depicted are the Gene Set Enrichment Analysis

(GSEA) P values and Mummichog P values generated via Metaboanalyst 3.0, with the combined P value from each pathway enrichment approach represented by
colour.
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A
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Figure 7. SHMT-M is required for mitochondrial function, mETC maintenance and asexual growth.

A P. falciparum-infected cultures were incubated for 5 h with 13C15N-isoleucine (heavy). Following protein extraction and trypsin digestion, each isoleucine-containing
peptide exists as a heavy (H) and light (L) form, corresponding to newly translated and nascent pools, respectively.

B The log2 H/L ratio reflects the turnover (summation of synthesis and degradation) for each protein detected between the control (untreated) and SHMT-M-depleted
conditions (thee growth cycles of rapamycin and glucosamine treatment). Data represent the mean log2 H/L ratio across three biological repeats.

C One-carbon folate intermediates are plotted as the log2 ratio of their abundance detected in treated (100 nM rapamycin/2.5 mM glucosamine treatment for three
growth cycles) compared to untreated in the DiCre parental line (C) and SHMT-M (SM) (mean � SEM).

D Pyrimidine biosynthetic intermediates accumulate when SHMT-M is disrupted compared to the DiCre parental line (C) following rapamycin/glucosamine treatment
(mean � SEM). Pyrimidine biosynthetic disruption is linked to dihydroorotate dehydrogenase (DHODH) inhibition and blockage of the mitochondrial electron
transport chain (mETC). Ubiquinone (Q) is the necessary electron carrier for the mETC.

E Asexual growth when SHMT-M is depleted. Parasitaemia was determined across seven replication cycles (x-axis) via flow cytometry and presented as the
mean � SEM from three independent experiments. Decylubiquinone (Dub) was added at 10 µM to determine if the growth defect observed was due to impaired
ubiquinone synthesis or recycling.
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SHMT-M is not necessary for mitochondrial genome replication (via

dTTP synthesis) or tRNA formylation (Fig 6B), in contrast to the

function of SHMT2 in mammalian cells (Ducker et al, 2016; Minton

et al, 2018; Morscher et al, 2018).

Significantly, knock-down of SHMT-M was associated with

changes in one-carbon folate intermediates (Fig 7C), indicating a

direct function in one-carbon metabolism. Significant changes were

also observed in intracellular levels of pyrimidine biosynthetic inter-

mediates (Fig 7D) which mimicked the metabolic phenotype

observed following inhibition of the mitochondrial electron transport

chain (mETC) (Ke et al, 2015; Cobbold et al, 2016). Loss of SHMT-M

could lead to loss of ubiquinone – which requires a source of one-

carbon units – and is crucial for mETC function. However, attempts

to rescue the growth defect of SHMT-M-deficient parasites by supple-

mentation with the ubiquinone analogue, decylubiquinone (Ke et al,

2011), were unsuccessful (Fig 7E), suggesting that impaired ubiqui-

none synthesis is not the primary cause of the growth defect.

We further investigated whether SHMT-M might be in involved in

generating one-carbon intermediates for cytoplasmic pathways by

labelling iRBC with 2,3,3-D-serine and quantitating the amount of

label exported into the cytosol for dTTP synthesis. Negligible amounts

of dTTP + 1 isotopomer were detected after 2,3,3-D-serine labelling,

indicating minimal export of one-carbon units from the mitochondrion

into the cytosol (Appendix Fig S8A), consistent with a lack of a

formate transporter at the mitochondrial membrane. SHMT-M is also

likely not required for the mitochondrial glycine cleavage system, as
13C-glycine labelling contributes < 0.1% of the total dTTP pool

(Appendix Fig S8B). Taken together, these data suggest that P. falci-

parum SHMT-M may be required to fuel down-stream fluxes, such

as the conversion of 5,10-methyl-THF to 10-formyl-THF which can

be a major source of NADPH production in eukaryotic cells (Fan et

al, 2014). A key role in maintaining mitochondrial redox balance

would account for the impact of SHMT-M loss on mETC activity,

pyrimidine biosynthesis and parasite viability.

Discussion

We have developed a new approach for measuring de novo synthe-

sised and salvaged metabolites in asexual stages of P. falciparum,

achieving over 70% coverage of all metabolic reactions predicted

from P. falciparum genome-wide metabolic reconstructions (after

exclusion of the top 10 most promiscuous metabolites). We show

that asexual parasite stages constitutively salvage a wide range of

different carbon sources and nutrients from the host which are

assimilated by overlapping anabolic and catabolic pathways, likely

contributing to the robustness of parasite metabolism in the RBC.

These analyses allowed the detection of over 80 additional reactions

and metabolites that are not predicted from gene annotations. Many

of these new reactions correspond to additional steps in predicted

pathways, or apparent promiscuous-enzyme activity and damage-

repair pathways. It is increasingly clear that damaged metabolites

have an impact on normal metabolic function – via competitive inhi-

bition or allosteric regulation of key enzymes in central carbon meta-

bolism – and organisms require effective means to detoxify or repair

them (Linster et al, 2013; Bommer et al, 2019; Dumont et al, 2019).

Exploring the function and impact of the 89 unpredicted metabolites

identified in this study will likely reveal an increasingly complex

metabolic arrangement and damage-repair enzymes necessary to

maintain parasite metabolism. For example, the 13C-lysine network

included pipecolate which is normally produced during lysine degra-

dation (Appendix Fig S2). P. falciparum lacks the genes for a

complete lysine degradation pathway but does possess a putative

saccharopine dehydrogenase. The subsequent intermediate, aminoad-

ipate semialdehyde, spontaneously cyclises to piperideine-6-carboxy-

late which competes for pyrroline-5-carboxylate reductase (Fujii et al,

2002; Struys & Jakobs, 2010; Linster et al, 2013). A pyrroline-5-

carboxylate reductase is encoded in the genome of P. falciparum and

we observed conversion of 13C-arginine into 13C-proline consistent

with its activity. Curiously, the pyrroline-5-carboxylate reductase

itself appears to be essential in P. falciparum (Zhang et al, 2018), but

essentiality of arginine/proline interconversion seems questionable

given the excess of each amino acid liberated during haemoglobin

catabolism. It is plausible that detoxification of piperideine-6-carboxy-

late is a necessary function for maintaining parasite metabolism and

a primary function of the enzyme (Linster et al, 2013).

This dataset comprehensively defines the observable metabo-

lome of uninfected and P. falciparum-infected erythrocytes and by

using multiple isotopic substrates, enabling the activity of over 70%

of predicted reactions to be monitored. We selected the trophozoite

stage of asexual development, primarily to capture the greatest

number of active reactions at a single stage of development. Investi-

gating other asexual stages may yield additional reactions as well as

the process of host metabolome reorganisation. Here we identified

five unique metabolites present in uninfected human erythrocytes.

Whether these metabolites are actively depleted by the parasite in

iRBC remains unclear. Moreover, this work provides a baseline for

understanding how environmental factors alter parasite metabolism.

For example, phosphate levels in human plasma vary during the

day (Lederer, 2014), fluctuate with diet (Goretti Penido & Alon,

2012), and disease severity (Lewis, 1987; Davis et al, 1991; Suen et

al, 2020). Future studies investigating how parasite metabolism

responds to fluctuations in plasma phosphate will be of great inter-

est. In addition, the growing evidence that lipid metabolism influ-

ences gametocyte commitment necessitates a deeper understanding

of how plasma lipids fluctuate during disease progression and how

the parasite responds to these triggers and initiates gametocyte

commitment (Brancucci et al, 2017).

Our attempt to validate the draft metabolome – and the associ-

ated reaction network captured via stable-isotope labelling – led us

to target several uncharacterised enzymes for inducible disruption.

Each of the disrupted genes/proteins contained predicted enzymatic

domains, are not part of complete pathways, or are predicted to be

essential from genome-wide disruption studies (Bushell et al, 2017;

Zhang et al, 2018). Serine hydroxymethyltransferase is a key

enzyme in folate recycling, and the cytosolic version has been well

characterised (Maenpuen et al, 2009; Pang et al, 2009; Read et al,

2010). In contrast, the function of the mitochondrion-targeted SHMT

has not been defined (Pang et al, 2009), and Plasmodium spp. lack

many of the accessory enzymes needed for mitochondrial folate

metabolism. In other eukaryotes, SHMT-M and mitochondrial folate

metabolism is important for providing methyl-groups for tRNA

modification and effective mitochondrial protein translation and

also for providing the precursors for mitochondrial DNA replication

(Anderson et al, 2011; Morscher et al, 2018). Here we demonstrate

that mitochondrial protein turnover is unaffected when SHMT-M is
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depleted, consistent with earlier studies suggesting that mitochon-

drial tRNAs are modified in the cytosol prior to import to the mito-

chondrion (Pino et al, 2010). We also show that ubiquinone does

not require methyl-group donation via SHMT-M. It remains unclear

how dNTPs are sourced for mitochondrial DNA replication, or how

methyl-groups are generated and maintained within the mitochon-

drion for ubiquinone biosynthesis. While metabolite profiling of

knock-down parasites confirmed that SHMT-M has a direct role in

mitochondrial folate metabolism, significant changes in the levels of

many other metabolites from unrelated pathways were also

detected. These results strongly suggest that Plasmodium SHMT-M

has gained additional functions that are necessary for mETC activity

and mitochondrial function.

We also performed a preliminary characterisation on two putative

haloacid dehalogenases. Lipin was shown to dephosphorylate a subset

of lipid species and to be necessary for normal parasite growth. The P.

berghei ortholog is also predicted to be essential (Bushell et al, 2017)

but no data are available at other lifecycle stages. It will be of interest to

determine the precise lipid substrate specificity of this phosphatase and

determine whether the enzyme is necessary for bulk lipid regulation or

is necessary for specialise lipid signalling (Gulati et al, 2015; Bullen et

al, 2016). In contrast, HAD4 appears to dephosphorylate a range of

nucleotides, with a preference for nucleotide monophosphates. Despite

the lack of a growth defect in asexual RBC stages and the dispensability

of this protein in P. berghei liver stage development (Stanway et al,

2019), HAD4 may contribute to optimal metabolic flux and nucleotide

homeostasis by repressing monophosphate accumulation. In particular,

loss of HAD4 led to an accumulation of orotidine phosphate and a recip-

rocal decrease in the non-canonical orotidine (Fig 4E), suggesting

HAD4 may regulate pyrimidine biosynthetic flux via dephosphorylation

of a key intermediate. Lastly, AMR1 appears to be necessary for isopre-

noid biosynthesis in agreement with previous work demonstrating its

importance to apicoplast biogenesis (Tang et al, 2019). Defining the

temporal profile of apicoplast impairment will aid in identifying the

precise role of AMR1 and the function of other essential proteins

involved in apicoplast biogenesis. Collectively, these data show that

comprehensive metabolite profiling coupled with multiplex 13C-label-

ling can be used to detect subtle, as well as major perturbations in dif-

ferent metabolic mutants and is a powerful tool for functionally

defining the large number of poorly annotated genes in these protists.

Materials and Methods

Cultivation and stable-isotope labelling

Plasmodium falciparum-infected RBCs were cultivated in RPMI 1640

GlutaMAX supplemented with 500 µM hypoxanthine, 22 µg/ml

gentamicin, 0.2% (w/v) D-glucose, 25 mM HEPES and albumax II

(0.5% w/v). Cultures were routinely synchronised with 5% sorbitol

(w/v) to maintain a 12-hour developmental range. Transfectant

parasite cultures were maintained with 5% human serum and

0.25% (w/v) albumax II. Uninfected RBCs from the same donor

were maintained under identical conditions for 48 h prior to experi-

mentation. Trophozoite-stage P. falciparum-infected RBCs were

magnetically enriched to > 95% parasitaemia (Colebrook Bioscience)

and cell density determined using a Neubauer Haemocytometer.

Following a one-hour recovery in fresh RPMI 1640 at 37°C, 1 × 108

cells were centrifuged and the media replaced with 5 ml of RPMI

containing unlabelled substrates or 11 mM 13C6-glucose, 2 mM 13C5

glutamine, 1.1 mM 13C6 arginine, 1 mM 13C3 serine, 1 mM 13C5

proline, 5 mM 13C2 acetate, 23 mM 13C1 bicarbonate, 1 mM 13C6 lysine,

10 mM 13C3 glycerol or 13C-amino acid mix at 1 mg/ml (and a 12C-

amino acid mix 1mg/ml used as a control). iRBC and matched uRBC

samples were incubated for 5 h under standard culturing conditions.

Metabolite extraction

An aliquot of culture (1 × 108 cells/sample) was transferred to a

microcentrifuge tube and centrifuged at 14,000 g for 30 s. The

medium was aspirated, and the cell pellet was resuspended in ice-

cold PBS (1 ml) to quench cell metabolism and transferred equally

into two microcentrifuge tubes. Following centrifugation (14,000 g,

30 s), the PBS was aspirated and 200 µl of 80% acetonitrile (con-

taining 1 µM 13C5
15N1 aspartate or 5 µM 13C5 valine as the internal

standard) was added and rapidly mixed for polar LC-MS analysis.

Samples were centrifuged to remove precipitated protein (14,000 g,

5 min) and the supernatant transferred to a glass mass spectrometry

vial (containing an insert) and stored at �80°C until LC-MS analysis.

For GC-MS and LC-MS lipid analysis, the quenched cell pellet was

suspended in 100 µl chloroform and vortex-mixed, prior to addition

of 400 µl of methanol:H2O (3:1 v/v) with further vigorous mixing.

Samples were centrifuged for 5 min at 14,000 g and the supernatant

transferred to a fresh microcentrifuge tube. H2O (200 µl) was added

to generate a biphasic mixture which was vortex-mixed and then

centrifuged for 1 min at 14,000 g, and the top aqueous layer was

collected for derivatisation and GC-MS analysis. The lower organic

phase was collected for lipid analysis.

For GC-MS analysis, samples were dried by vacuum centrifuga-

tion, then resuspended in 90% methanol (100 µl) and transferred to

a glass mass spectrometry insert. Samples were dried by vacuum

centrifugation, washed with 100 µl methanol and dried. Samples

were resuspended in 20 µl of methoxyamine (20 mg/ml) prepared

in pyridine, sealed and incubated overnight with shaking at ambient

temperature. The next day, 20 µl of BSTFA was added to each

sample and incubated for 1 h prior to GC-MS analysis.

Lipid analysis was carried out on the remaining lower organic

phase. The organic layer was transferred to a fresh microfuge tube

and dried down under nitrogen flow. Dried samples were stored at

�80°C until ready for lipid LC-MS analysis.

LC-MS acquisition

Polar metabolite detection was performed on an Agilent 6550

Q-TOF mass spectrometer operating in negative mode. Metabo-

lites were separated on a SeQuant ZIC-pHILIC column (5 µM,

150 × 4.6 mm, Millipore) using a binary gradient with a 1200 series

HPLC system across a 45-min method using 20 mM ammonium

carbonate (pH 9) and acetonitrile as outlined in Cobbold et al,

(2016). Two independent replicates of the metabolite profiling

following AMR1 and Lipin depletion were performed using the same

ZIC-pHILIC chromatography on a Thermo Q-Exactive operating in

both positive and negative mode (rapid switching) as described

previously (Creek et al, 2016). Lipid extracts were analysed on an

Agilent 6550 Q-TOF using the reverse phase chromatography

outlined by Bird et al (2011).
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GC-MS analysis was performed using methods previously

described (Saunders et al, 2011). Metabolites were separated using

a BD5 capillary column (J&W Scientific, 30 m × 250 µM × 0.25 µM)

on a Hewlett Packard 6890 system (5973 EI-quadrupole MS detector).

The oven temperature gradient was 70 °C (1 min); 70°C to 295°C at

12.5°C/min, 295°C to 320°C at 25°C/min; 320°C for 2 min. MS data

were acquired using scan mode with a m/z range of 50–550, thresh-

old 150 and scan rate of 2.91 scans/second. GC retention time and

mass spectra were compared with authentic standards analysed in

the same batch for metabolite identification.

Draft metabolome compilation

Raw Agilent.d files were converted to mzXML with MSconvert and

analysed using the X13CMS R package (Huang et al, 2014). XCMS

centWave peak detection was performed with a 10 ppm mass toler-

ance, following obiwarp retention time correction. The getIsoLabel-

Report function was performed with P < 0.01 (Welch’s t-test), to

identify features that significantly labelled under each 13C-labelling

condition in both iRBC and uRBC cell types (isotope mass toler-

ance = 15 ppm). The getIsoDiffReport function then compared the

significantly labelled features between iRBC and uRBC using

P < 0.01 (Welch’s t-test). IsoDiffReport m/z features were removed

if > 1,200 m/z, and the putative M0 species queried to the METLIN

database with a 10 ppm mass tolerance, excluding all toxicants and

adducts, except M-H, from the search. Only m/z features with a

putative METLIN match were retained for further analysis. m/z

features were further curated to remove mis-annotated in-source

fragments and isotopologues, and where 13C-enrichment was < 1%.

m/z features with a retention time of < 250 s were removed from

the polar metabolite analysis (assuming these lipid-like species were

also detected in the lipid C18 LC-MS analysis). This processing was

performed for all 13C-labelling conditions across both C18 lipid and

pHILIC polar LC-MS data and a single metabolite list complied.

Metabolite identification was performed either with retention

time matching to authentic standards (approximately 150 in-house

metabolite standards or the HMDB compound library), or MS/MS

matching. Polar MS/MS data were collected with an auto preferred

MS/MS method at a collision energy of 10V, 20V and 40V at a

threshold of 10,000 on an Agilent 6545 Q-TOF using the same chro-

matography outlined above. MS/MS spectra were searched against

the METLIN PCDL database via the Agilent Qualitative software

package and manually curated. MS/MS spectra without a match

were reacquired in positive and negative mode and manually

searched against the online METLIN database. Lipid MS/MS data

were collected as above and converted to (ABFconverter) and anal-

ysed with the MSDial software package (Tsugawa et al, 2015).

Polar GC-MS data were analysed using the DeXsi software pack-

age (Dagley & McConville, 2018) and metabolite identifications con-

firmed using an in-house metabolite standards library and merged

with the LC-MS datasets.

A first iteration of the observable metabolome of P. falciparum

was compiled, and unique KEGG IDs (acquired from MetaboAnalyst

3.0 (Xia & Wishart, 2016)) were used to compare to the predicted

metabolome of P. falciparum reported by Huthmacher et al (2010).

Under the conditions tested, we could not confidently assign

stereoisomers or precise structures (e.g. D-glucose) and assigned

KEGG IDs to be consistent with the level of evidence present in the

literature and with the format used by Huthmacher et al (2010).

uRBC and iRBC datasets were then re-extracted for expected m/z of

metabolites predicted from Huthmacher et al (2010), to assess the

rate of false negatives but also because certain classes of metabolites

were not expected to label under any of the conditions tested (e.g.

vitamins and some cofactors). Putative matches were then verified

using authentic standards and MS/MS matching. This iteration of

the observable metabolome of iRBC and uRBC cell types was then

grouped according to the level of identification: (i) match to authen-

tic standard and MS/MS match, (ii) match to authentic standard or

MS/MS match, (iii) 13C-labelling data consistent with known meta-

bolic pathway and (iv) exact mass match (≤ 10 ppm). To capture

additional metabolites that were unlabelled across all 13C-substrates,

all m/z features from unlabelled uRBC and iRBC extracts were

compared with the expected exact mass of all metabolites in the

predicted P. falciparum and RBC metabolomes. Putative hits were

confirmed via pure standards or MS/MS matching where possible.

Pathway reconstruction

Metabolite enrichment analysis was performed with Metaboanalyst

3.0, and pathway reconstruction was performed for each stable-

isotope condition. Observed metabolites that were labelled under a

given condition were compared to the theoretical reactions for both

iRBC and uRBC (Huthmacher et al, 2010). A matched reaction was

defined as having a labelled metabolite corresponding to either an

expected product or substrate. Unpredicted reactions were reported

when an identified metabolite was labelled under a given 13C-

substrate but did not match to a predicted reaction. A putative reac-

tion was proposed based on the nearest proximity to an identified

metabolite with consistency in the labelling pattern.

Generation of transgenic parasites for inducible
protein disruption

For each gene of interest, a PAM site was selected at the centre or

towards the start of the gene which ranked the highest via CHOP-

CHOP v2 (Labun et al, 2016). Guide oligos were synthesised for

cloning into the BtgZI site of pUF-Cas9g using the In-Fusion cloning

kit (Takara). The gene was modified using a rescue template

containing a 5’-homology arm immediately upstream of the PAM

site, an artificial intron containing a loxP site, a recodonised version

of the down-stream gene sequence, a 3xHA tag, which was synthe-

sised by GeneArt. The rescue template was cloned into the pGlmS

plasmid using the BglII and SpeI (Prommana et al, 2013). The 3’-

homology arm was generated via PCR of P. falciparum genomic

DNA and cloned into the pGlmS plasmid with EcoRI and KasI.

Following verification of the correct DNA sequence, both pUF-Cas9g

and pGlmS plasmids were purified with a midi-prep kit (Macherey-

Nagel). pGlmS plasmid was linearised overnight using BglI, BglII

and PvuI. 75–150 µg of pUF-Cas9g and linearised pGlmS were trans-

formed into 3D7 ring-stage parasites with dimerisable Cre-recombi-

nase integrated into its genome (Wilde et al, 2019). Cultures were

maintained on WR99210 and Blasticidin and complete integration

was confirmed on recovered parasites via PCR.

Inducible disruption of each targeted protein was performed

cultivating transfected parasites under standard conditions in

the presence or absence of 100 nM rapamycin and 2.5 mM
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glucosamine. Initial tests were performed to determine length of

treatment required to deplete the target protein and effectiveness of

the DiCre-loxP and GlmS ribozyme system independently.

Western blotting

Plasmodium falciparum trophozoites were treated with saponin

(0.05% w/v) and washed with ice-cold PBS, and centrifuged for

1 min (14,000 g) three times. Pellets were then extracted with RIPA

buffer and protein concentration determined with a BCA assay.

10 µg of protein per sample was loaded onto a Bis-TRIS Any kDa

(Bio-Rad) pre-cast gel and the Precision Plus dual-colour protein

ladder as a reference. Protein was transferred onto nitrocellulose

membranes using the iBlot2 transfer system and blocked overnight

at 4°C with 5% milk powder in TBS-T. Membranes were exposed to

an anti-HA antibody (Roche; 1:1,000) overnight at 4°C (in 3% milk

powder TBS-T), washed in TBS-T and then incubated with an anti-

rat HRP-conjugated secondary antibody (1:5,000; 3% milk in TBS-

T) for 1 h. Membranes were then analysed with ECL-reagent (GE

Healthcare) with a Bio-Rad imager. Anti-PfBiP was used as the load-

ing control (1:5,000; mouse) and prepared as described above.

Flow cytometry

Tightly synchronised cultures (final 0.2% Ht and 1–2% Pt) were

added to a 96-well plate and incubated at 37�C for 3 h, before wash-

ing four times with 200 µl complete RPMI. All conditions were

performed as technical duplicates. Parasite viabilities were assessed

by each cycle using SYTO 61. For ubiquinone rescue experiments,

10 µM decylubiquinone (Sigma) was added at time zero (when

rapamycin and glucosamine were added to half the cultures) and

maintained throughout the growth assay.

Immunofluorescence microscopy

For mitochondrial staining, infected RBCs were stained with 10 nM

MitoTracker CMXRos (Invitrogen; M7512) for 30 min at 37°C. Cells

immobilised in PHA-E-coated coverslips were then fixed with 2%

(v/v) paraformaldehyde/ 0.008% (v/v) glutaraldehyde for 15 min,

washed with PBS followed by permeabilisation with 0.1% TX-100 in

PBS for 10 min and washed (adapted from (Tonkin et al, 2004)).

Cells were probed with rat anti-HA (Roche; 3F10) and mouse anti-

BiP (Bridgford et al, 2018) at 1:1,000 in 3% BSA/PBS. Secondary

antibodies used were anti-rat Alexa 647 (Invitrogen; A21247) and

anti-mouse Alexa 488 (Invitrogen; A11029) at 1:300 in 3% BSA/

PBS. Nuclear staining was performed with 2 µg/ml DAPI and

washed prior to mounting. Images were taken using the DeltaVisio-

nElite (GE Lifesciences) and processed using ImageJ.

Pulse-SILAC proteomics for quantifying protein turnover

SHMT-M 3D7-DiCre parasites were grown � rapamycin and gluco-

samine (100 nM and 2.5 mM, respectively) for three cycles. At

trophozoite stage, infected erythrocytes were magnetically enriched

and incubated for 5 h in RPMI containing 13C6
15N1 isoleucine.

Following protein extraction with RIPA buffer (containing protease

inhibitors), samples were processed and analysed as outlined previ-

ously (Yang et al, 2019).

Recombinant protein expression

PfHAD4 (PlasmoDB ID 3D7_1118400) was amplified from P. falci-

parum genomic DNA using the following primers:

5’-CTCACCACCACCACCACCATATGAAAGATGAACAAATATCATGT

TATTATC �3’

5’- ATCCTATCTTACTCACTTATGCAAGTATACTATCTAGATCTCG �3’

The PCR product was cloned by ligation-independent cloning

into vector BG1861 (Alexandrov et al, 2004), which introduces an

N-terminal 6X-His tag. The catalytic mutant HAD4D29A was gener-

ated by PCR amplification with the above primers in addition to the

following primers:

5’- AATTGATAACGTTCGCCCTTGACCATACGATATG �3’

5’- ATCGTATGGTCAAGGGCGAACGTTATCAATTTTA �3’

These primers were used to introduce an A?C point mutation in

the coding sequence. The HAD4D29A construct was cloned by liga-

tion-independent cloning into a modified BG1861 vector that also

includes a KFS motif in front of the 6xHis tag to increase protein

expression (Verma et al, 2019). Constructs were verified by Sanger

sequencing.

Constructs were transformed into BL21 (DE3) pLysS Escherichia

coli (Life Technologies). Cells were grown at 37˚C and induced with

1mM isopropyl-b-D-thiogalactoside (IPTG). Cells were harvested by

centrifugation and resuspended in lysis buffer containing 10mM

Tris–HCL (pH 7.5), 20 mM imidazole, 1 mM MgCl2, 200 mM NaCl,

1 mg/ml lysozyme, 1mM dithiothreitol (DTT) and cOmplete Mini

EDTA-free Protease Inhibitor tablets (Roche), and sonicated. Soluble

protein was bound to nickel agarose beads (Gold Biotechnology),

eluted in 20 mM Tris–HCl pH 7.5, 150 mM NaCl and 300 mM imida-

zole, and further purified by size exclusion chromatography using a

HiLoad 16/600 Superdex 200 pg column (GE Healthcare) equili-

brated with 25 mM Tris–HCl (pH 7.5), 250 mM NaCl and 1 mM

MgCl2 buffer. Fractions containing HAD4 were pooled, concentrated

with a centrifugal filter, flash-frozen and stored at �80°C.

HAD4 enzymatic assays

All assays were performed in clear 96-well half-area plates using

a FLUOstar Omega microplate reader (BMG Labtech) at 37°C. Reac-

tion rates were determined using GraphPad Prism software. All reac-

tion rates represent the mean and standard error of at least three

experiments, each with technical replicates. Substrates were

purchased from Sigma-Aldrich, except for GTP, dGTP, dATP, dCTP,

dTTP, dUTP (Roche), dTMP (BioBasic Canada), DOXP (Echelon

Biosciences) and fructose 1-phosphate (Santa Cruz Biotechnology).

Other substrates tested that had activity < 0.1 µmol/min/mg

were as follows: cytosine triphosphate; adenosine triphosphate;

uridine diphosphate; deoxyuridine triphosphate; deoxycytosine

triphosphate; deoxythymidine triphosphate; inosine triphosphate; deox-

yadenosine triphosphate; D/L-glyceraldehyde-3-phosphate; sorbitol-6-

phosphate; sodium pyrophosphate; deoxyxylulose-5-phosphate; galac-

tose-1-phosphate, sucrose-6-phosphate; 2-deoxy-ribose-5-phosphate;

glucose-6-phosphate; glycerol-2-phosphate; mannose-6-phosphate; thia-

mine monophosphate; fructose-6-phosphate; thiamine pyrophosphate;
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sedoheptulose-7-phosphate; racemic glycerol-1-phosphate; 2-phospho-

glyceric acid; 2,3-diphosphoglycerate; myo-inositol-2-phosphate;

mannose-1-phosphate; trehalose-6-phosphate; glucose-1-phosphate;

phosphoenol pyruvate; and dihydroxyacetone phosphate.

Phosphatase activity and phosphate inhibition were measured using

the substrate para-nitrophenyl phosphate (pNPP) (New England

Biolabs). Reactions were performed in 50 ll volumes with 1 mM pNPP,

50 mM Tris–HCl (pH 7.5), 5 mM MgCl2 and inorganic phosphate

(0 mM–42 mM). Reactions contained 1 µg purified recombinant enzyme.

Para-nitrophenyl production was quantified by absorbance at 405 nm.

Enzyme activity against phosphorylated substrates was

measured using the EnzChek Phosphate Assay Kit (Invitrogen)

according to supplier instructions. Each 50µl assay contained

200 ng recombinant purified enzyme and 1 mM substrate. The reac-

tion was quantified by absorbance at 360nm, and reactions were

linear with respect to time and enzyme concentration.

Enzyme activity against flavin mononucleotide (FMN) was

measured using the BIOMOL Green kit (Enzo Life Sciences) to

account for the overlap in absorbance between FMN and the

EnzChek kit. Each 50 µl assay contained 200 ng recombinant puri-

fied enzyme, 25 mM Tris–HCl (pH 7.5), 250 mM NaCl, 1 mM MgCl2
and 1 mM substrate. A time course was taken to obtain kinetic data,

and the reaction was quantified by absorbance at 620 nm.

Substrate abbreviations are as follows: dGMP, deoxyguanosine

monophosphate; dIMP, deoxyinosine monophosphate; dCMP, deoxycy-

tosine monophosphate; GMP, guanosine monophosphate; IMP, inosine

monophosphate; XMP, xanthosine monophosphate; AMP, adenosine

monophosphate; 8oxodGMP, 8-oxo-deoxyguanosine monophosphate;

dAMP, deoxyadenosine monophosphate; GDP, guanosine diphosphate;

UMP, uridine monophosphate; CMP, cytosine monophosphate; dTMP,

deoxythymidine monophosphate; dGDP, deoxyguanosine diphosphate;

GTP, guanosine triphosphate; dADP, deoxyadenosine diphosphate;

ADP, adenosine diphosphate; TTP, thymidine triphosphate; dGTP,

deoxyguanosine triphosphate; PLP, pyridoxal-5-phosphate; R5P, ribose-

5-phosphate; FBP, fructose-1,6-bisphosphate; E4P, erythrose-4-phos-

phate; and 3PGA, 3-phosphoglyceric acid.

Data availability

Mass spectrometry data are available at MetaboLights (https://

www.ebi.ac.uk/metabolights/) MTBLS1815 (http://www.ebi.ac.uk/

metabolights/MTBLS1815).

Expanded View for this article is available online.
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