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Abstract: Polyphenolic compounds are now widely studied using computational chemistry ap-
proaches, the most popular of which is Density Functional Theory. To ease this process, it is critical
to identify the optimal level of theory in terms of both accuracy and resource usage—a challenge
we tackle in this study. Eleven DFT functionals with varied Hartree–Fock exchange values, both
global and range-separated hybrids, were combined with 14 differently augmented basis sets to
calculate the reactivity indices of caffeic acid, a phenolic acid representative, and compare them to
experimental data or a high-level of theory outcome. Aside from the main course, a validation of
the widely used Janak’s theorem in the establishment of vertical ionization potential and vertical
electron affinity was evaluated. To investigate what influences the values of the properties under
consideration, linear regression models were developed and thoroughly discussed. The results were
utilized to compute the scores, which let us determine the best and worst combinations and make
broad suggestions on the final option. The study demonstrates that M06–2X/6–311G(d,p) is the best
fit for such research, and, curiously, it is not necessarily essential to include a diffuse function to
produce satisfactory results.

Keywords: density functional theory; polyphenols; computational chemistry; benchmark; caffeic
acid; Hartree–Fock exchange; basis set; Janak’s theorem; theoretical chemistry

1. Introduction

In recent years, dietary polyphenols have gained prominence as useful compounds
due to their beneficial ability to scavenge reactive oxygen, nitrogen, and sulfur species and,
in some cases, chelate transition-metal ions responsible for free radicals production [1–3].
The need for such investigations stems from the well-established detrimental impact of
oxidative damage on body processes and the need to mitigate it [4]. Currently, a variety
of methods are being used to study the antioxidant activity they display. Certainly, the
most popular are laboratory assays that provide a quantitative description of the processes,
allowing comparisons between compounds tested, but their key drawbacks is that they are
mechanism-specific. For example, FRAP [5] or ABTS [6] measure electron transfer potential,
while DPPH [7] evaluates hydrogen atom channel feasibility. Another major drawback is
the absence of a qualitative aspect. To resolve these shortcomings, a study may be expanded
or conducted exclusively using low-cost and satisfying quantum chemistry approaches
that offer insight at the atomic level. The foundations are to estimate the intrinsic reactivity
indices—bond dissociation enthalpy (BDE), ionization potential (IP), electron affinity (EA),
and proton affinity (PA) [8]—which are viewed as a numerical definition of the reaction
channels’ thermodynamic feasibility. It is also worth noting that kinetic studies of them are
being carried out thoroughly and with pleasing precision [9].
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BDE Antioxidant–OH → Antioxidant–O• + H•

IP Antioxidant–OH → [Antioxidant–OH]•+ + e–

EA Antioxidant–OH + e– → [Antioxidant–OH]•–

PA Antioxidant–OH → Antioxidant–O– + H+

The electronic structure methods, collectively known as a Density Functional Theory,
are the most widely used for that. The “DFT Zoo” has evolved over the years, and as a
result, a diverse set of functionalities is now available [10]. The primary cause of this state
is a relatively simple approach in the energy derivation method, which greatly reduces
computations. Briefly, DFT obeys Hohenberg–Kohn’s first theorem [11], and hence, the
ground state energy can be derived directly from the electron density distribution ρ, rather
than from the many-electron wave function. The way of the calculating ρ value within the
volume r involves just integration over the spin (σ) and N − 1 spatial coordinates (x) of
probability density for all electrons (N) considered, as shown by the following formula
(Equation (1)):

ρ(r) = N
∫
· · ·

∫
|Ψ(x1, x2, . . . , xN)|2dσ1dx2 . . . dxN . (1)

Then, the system’s ground state energy becomes a function of density (E[ρ]) and is
determined using the Kohn–Sham Equation [12], which fulfills the variational principle as
follows (Equation (2)):

Eexact ≤ E[ρ(r)] = T[ρ(r)] +
∫

ρ(r)v(r)dr + Eee. (2)

It represents a hypothetical system of non-interacting electrons, with the first term
being kinetic energy, the second denoting interactions with external potential (ν), and
the third expressing electron–electron interactions. The last one can be further expanded
(Equation (3)):

Eee =
1
2

x ρ(r)ρ(r′)
|r–r′| drdr′+ Exc[ρ(r)]. (3)

There, Exc is the sum of the exchange and correlation functionals that characterize
non-classical electron–electron interactions and kinetics in the real system, and its existence
is imposed by the antisymmetry and correlation requirements. During a self-consistent
reaction field procedure, all terms are determined: all but the exchange–correlation term,
which must be explicitly specified.

That leads to the five levels of accuracy that can be distinguished accordingly to
“Jacob’s Ladder” proposed by Perdew [13]. The first one is represented by functionals
establishing the electron density from the Local Density Approximation [11] (LDA), which
has nearly become obsolete due to the significant simplification of asserting that the total
exchange–correlation energy is the sum of local contributions, which furthermore are
generalized to the uniform electron gas at the given density. The second and third rung
functionals are, respectively, Generalized Gradient [14] (GGA), which takes into account
the gradient of the electron density, and meta-GGA [15], which uses the second derivative
instead. Finally, the penultimate rung is expressed by hybrid functionals [16], which have
advanced significantly and are the most widely used DFT methods. Although the energy
within them is calculated using LDA, GGA, or meta-GGA, regarding the functional used,
the main distinction is the inclusion of an exchange–correlation term containing an arbitrary
fraction of Hartree–Fock exact exchange (%HF). Two types of hybrid functionals can be
distinguished: global hybrids (GHs), in which the value of the exchange interaction term is
constant throughout the system, and range-separated hybrids (RSHs), in which the %HF
varies based on the form of interaction, namely short or long. Sometimes, a middle range
is separated as well, as in the case of HISSbPBE, which will be discussed within this paper.

There is no standard formulation of the exchange–correlation term, which leads to a
wide variety of DFT functionals. Thus, the logical dilemma of whether to use it emerges.
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It is well understood that proper selection has a significant effect on the final results—
while the given functional may yield the best kinetic data, it may also yield the worst
description of excited states, and the aforementioned can be further amplified by the overall
system structure [9,10,17]. That is why selecting the right method and basis set is critical,
particularly in multi-step jobs where using an untested combination at the beginning could
result in biased outcomes and, as a result, prejudice in the study’s conclusions [18]. This
is especially true when there is a lack of comparable experimental evidence, requiring
researchers to rely solely on theoretical findings. Furthermore, the margin of error is caused
by the foundations—the approximations made in quantum mechanics—and can never be
avoided. It must, though, be kept to a bare minimum.

Finally, the time and computational resources needed to execute computations with
the desired precision are also relevant. Considering that HPCs are now readily available
and that more sophisticated analyses can be done on them, using a high-end method
when a much cheaper one can yield results with statistically negligible deviation from the
aforementioned one makes little sense.

The aim of the research presented in this paper was to find the best method and basis
set combinations for studies on the antioxidative and antiradical action of phytochemicals.
Caffeic acid was chosen as a reference structure (Figure 1), and the logic for it is provided
in the “Materials and Methods” section. This was achieved by investigating the geometry
that underpins all and evaluating previously presented reactivity indices in relation to
accessible experimental data and a high-level reference structure (consult Supplementary
Materials). The importance of Hartree–Fock exact exchange fractions and “basis set”-linked
features is discussed together with the simple linear regression models. The applicability
of Janak’s theorem has been checked, as has the use of computing resources. Finally, the
decision on the best and the worst combinations was made using the scoring function.
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Figure 1. The 3D structure of the reference conformer of caffeic acid.

2. Results

The best and worst combinations were chosen based on our scoring function, which is
presented in the “Materials and Methods” section. The estimated score is shown in Table 1.

The best functional, according to it, is M06–2X, which is supported by other studies
that confirm its applicability and accuracy [19–21]. WB97 and M11 are two RSHs that
are slightly worse, but they might also be considered in the studies. BLYP, MPWB1K,
and HISSbPBE had the lowest overall results and thus are usually discouraged. Different
constructions of Minnesota functionals have a significant impact on their performance,
resulting in outcomes that are seldom comparable with the trends found for more typical
DFT methods. In addition, it should come as no surprise that BLYP received the lowest
score. Since it is the only functional that does not combine exchange energies calculated
from Hartree–Fock with those obtained using DFT methods, it confirms that even a small
amount of %HF is needed for accurate results.
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Table 1. The final score of each combination studied i.

BLYP TPSSh B3LYP PW6B95 MPWB1K M06-2X wB97 wB97X CAM–
B3LYP M11 HISSbPBE

6–31G(d,p) 41% 41% 46% 46% 41% 54% 53% 51% 55% 51% 46%
6–31+G(d,p) 32% 56% 51% 61% 57% 66% 61% 61% 65% 70% 60%

6–31++G(d,p) 32% 56% 51% 61% 57% 66% 61% 61% 63% 70% 60%
6–311G(d,p) 56% 61% 60% 56% 37% 78% 51% 51% 61% 65% 39%

6–311+G(d,p) 46% 53% 51% 63% 52% 65% 58% 58% 63% 65% 58%
6–311++G(d,p) 46% 53% 48% 63% 52% 70% 63% 58% 63% 65% 58%

cc–pVDZ 39% 46% 51% 46% 44% 53% 46% 46% 47% 46% 44%
aug–cc–pVDZ 29% 51% 48% 56% 42% 71% 53% 56% 61% 63% 51%

cc–pVTZ 44% 48% 46% 48% 32% 66% 53% 48% 49% 63% 48%
aug–cc–pVTZ 34% 48% 48% 53% 40% 63% 53% 53% 58% 58% 48%

def2–SVP 41% 46% 56% 46% 47% 61% 46% 53% 47% 56% 51%
def2–SVPD 39% 53% 48% 63% 52% 69% 58% 53% 63% 68% 68%
def2–TZVP 32% 56% 51% 56% 47% 65% 51% 51% 56% 63% 48%

def2–TZVPD 29% 48% 44% 53% 40% 64% 53% 53% 58% 63% 58%
i The % represent the overall efficiency of the particular level of theory. The method of their computation is detailed in the section “Materials
and Methods”.

In terms of basis sets, it appears that Pople’s triple-ζ is the most satisfactory, and, as
stated in the preceding sections, it does not necessarily need to have a diffused function.
Except for aug–cc–pVDZ, the lowest score was specifically associated with Dunning’s basis
sets and Ahlrich’s def2-SVP and def2-TZVPD.

Finally, among all provided combinations, the studies have shown that the highest
scores are obtained for M06–2X/6–311G(d,p), M06–2X/aug–cc–pVDZ, and M06-2X/cc–
pVTZ, and thus, we generally recommend them for the studies, but we leave the final
option to the researchers, depending on the purposes and resources available.

Calculations on bond dissociation enthalpies were performed on an extra set of
compounds for which experimental values are available in order to better support the
suggested level of theory for general investigations on polyphenols. The identical protocol
as in the benchmark section was utilized. We choose to concentrate on the other group of
polyphenols, flavonoids, to guarantee that our proposed method and basis set is applicable
to them as well. The findings are shown in Table 2. As can be observed, the bulk of
the calculated and experimental data discrepancies (∆(BDEcalc − BDEexp)) are less than
±4.0 kcal/mol—the best one was achieved for (–)-epicatechin, which varied from the
known experimental data by just 0.4 kcal/mol. Catechin has the largest underestimation
of BDE (−6.3 kcal/mol), whereas chrysin has the greatest overestimation (7.2 kcal/mol).
The discrepancy between experimental and computational estimates for gallic acid, the
only representative of phenolic acids from a distinct class, is just 2.0 kcal/mol. After all, the
findings are satisfactory, with MAE = 3.8 kcal/mol and RMSE = 4.2 kcal/mol, especially
given that totally different structures than those benchmarked were examined here.

Table 2. Validation set for BDE values (in kcal/mol) at M06–2X/6–311G(d,p).

Substance BDEcalc BDEexp [22] ∆(BDEcalc − BDEexp)

Catechin 76.9 83.2 (C4′) −6.3
Chrysin 92.6 85.4 (C7) 7.2

(–)-Epicatechin 82.4 82.0 (C4′) 0.4
(–)-Epigallocatechin 79.4 82.4 (C4′) −3.0

Fisetin 86.5 83.2 (C4′) 3.3
Galangin 92.5 86.8 (C7) 5.7

Gallic acid 81.0 83.0 (C4) −2.0
Luteolin 78.1 81.9 (C4′) −3.8

Myricetin 79.6 81.5 (C4′) −1.9
Quercetin 78.6 82.0 (C4′) −3.4
Taxifolin 86.6 82.1 (C4′) 4.5

MAE: 3.8 kcal/mol RMSE: 4.2 kcal/mol
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3. Discussion

Prior to analyzing the computational outcome, we had to determine which hydroxyl
groups the experimental values identified. For the time being, the experimental data
suggest that if C4–OH is present, it would primarily undergo hydrogen-related channels.
Furthermore, due to the much higher energy needed for bond cleavage, the participation
of the carboxyl–OH group can be omitted. The reported bond dissociation enthalpies
averaged out to 80.0 kcal/mol, which varied by 0.1 kcal/mol from the high-level theoretical
result for C4. The gap in C3 was even greater, reaching 12.6 kcal/mol. We reproduced
the method for proton affinity and discovered that the reference theoretical PA value of
C4 differed from the observed experimental value by around –2.9 kcal/mol, compared
to 17.0 kcal/mol for C3. We have already assumed that our reference level of theory
accurately estimates energetics and therefore can be used satisfactorily for the remaining
reactivity indices for which there are no literature values. A full list can be found in the
Supplementary Materials.

3.1. Bond Dissociation Enthalpy

All of the combinations generated underestimated values of bond dissociation en-
thalpies, as seen by the plotted charts (Figure 2). For both hydroxyl groups, Thrular’s
M06–2X (C3: 4.6 kcal/mol; C4: 3.0 kcal/mol) and M11 (C3: 4.2 kcal/mol; C4: 3.0 kcal/mol)
have been shown to provide the most reliable outcomes. BLYP should be labeled with
the higher MAE value once more, since the yielded values are the worst of any examined
functional (C3: 13.8 kcal/mol; C4: 13.6 kcal/mol). A trend may be identified within GHs at
first glance—when we examine how an increase in %HF affects BDE values, we can see that
it reduces the degree of underestimation, eventually approaching the comparison point.
However, there is an exception to this rule in the case of PW6B95 and MPWB1K functionals,
where the discrepancy is negligible despite a 10% difference. Importantly, regardless of
the combination used, the lowest BDE was always associated with C4 hydroxyl group; a
similar situation takes place in the case of proton affinity.

We related WB97 with WB97X to see how the short-range term affected them. Based
on the comparison, it was discovered that while WB97X was associated with better results,
they differed from those obtained by WB97 by just around 1.0 kcal/mol. Following that,
and assuming that minor changes in the short-range term will have little effect on the final
outcome, WB97X and CAM–B3LYP can be expected to vary only in the long term. For
this pair, the latter was found to understate the result the most, placing it mostly below
WB97. Based on this finding, we assume that long-range interactions are more important
than short-range interactions, and that decreasing the value of the terms responsible for
their representation is bounded by decreasing the BDE value. Examining the effect of
the medium-range term, for example, by contrasting it to the functional of approximately
equal value of the long-range term, as is the case for the HISSbPBE and CAM–B3LYP pair,
we can see that the first one approaches the target much more smoothly, despite the fact
that no other parameters are defined within it. As a consequence, we conclude that the
medium-range term is the most significant, followed by the long-range and, finally, the
short-range one.
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We can also see from the predicted values that double-ζ basis sets are ineffective for
calculating BDE because they tend to sharply underestimate the values of this reactivity
index. The cc–pVDZ produced noticeably weak results (C3: 9.1 kcal/mol; C4: 8.5 kcal/mol),
but transitioning to the diffused triple-ζ inside the same basis set family, namely aug–cc–
pVTZ, yielded the best outcomes (C3: 6.0 kcal/mol; C4: 4.9 kcal/mol). While the influence
of the mentioned modification is noticeable in either Pople’s, Ahlrich’s, or Dunning’s basis
sets, it is most prominent in the latter one. In general, we can see that diffused double-ζ
basis sets generated values similar to non-diffused triple-ζ basis sets of the same family.
This property may be important in the sense of calculation performance, as diffusion is
known to take significantly more computational resources.

YBDE_C3 = 1.747× 10−2SR∗ + 8.320× 10−2MR∗∗∗ + 4.429× 10−2LR∗∗∗

+ 2.721× 10−3NBF∗∗ + 5.351× 10−1D∗ − 1.249× 101∗∗∗ (4)

YBDE_C4 = 0.102MR∗∗∗ + 0.061LR∗∗∗ − 1.003ζ∗∗∗ + 1.219D∗∗∗ − 11.182∗∗∗. (5)

The coefficients obtained from our two regression models (Equations (4) and (5))
indicate that the medium- and long-range terms play an important role in estimating bond
dissociation enthalpy for both C3 and C4 hydroxyl groups. This adds to the conclusions
and debate provided in the preceding paragraphs. Furthermore, the observed similarity
between diffused double-ζ and undiffused triple-ζ was reflected in the C4 model—in
the first example, two terms are present, creating a slight increase in the total value
(1.219 − 1.003 = 0.216), while in the second, both are missing, leaving the estimate of
the BDE value to intercept, as well as MR and LR coefficients. Surprisingly, in the case of
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C3, the position of the diffuse feature is on the very edge of statistical significance. In both
models, the intercept has a high statistical significance and the greatest, though negative,
value. This means that some essential elements are missing from our basic models and
should be reconsidered. One of them may be resonance stabilization energy, which is
particularly significant in the case of C4, where delocalization extends into the side chain
after bond cleavage due to orbitals’ conjugation. Other possibilities include hydroxyl
oxygen repulsions and the formation of hydrogen bonds during the reaction. The latter
one is less important for C3 bond cleavage because forming a hydrogen bond would
necessitate rotation of the C4 hydroxyl hydrogen and additional work. Nonetheless, they
are represented by the satisfactory R2 values of 0.6775 and 0.7384, and residual errors of
1.519 and 1.532 for C3 and C4, respectively. Furthermore, the obtained F-statistic indicates
that they are valuable.

3.2. Adiabatic Ionization Potential

There was no mention of adiabatic ionization energies in the literature. As a re-
sult, we compared our findings to the result of our reference level of theory, B2PLYP–
D3/aug–cc–pVTZ, which equals 184.1 kcal/mol. As with bond dissociation energy, the
findings (Figure 3) were nearest to the reference value for Minnesota’s functionals M06–2X
(2.4 kcal/mol) and M11 (2.7 kcal/mol)—these are the only functionals that overestimate
the outcome regardless of the basis set used. Aside from them, some popular RSHs per-
formed well, including wB97 (2.3 kcal/mol), wB97X (2.3 kcal/mol), and CAM–B3LYP
(2.5 kcal/mol). Not surprisingly, BLYP was once again the worst choice (11.9 kcal/mol).
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In the case of GHs, the effect of increasing %HF is noticeable as a proclivity to approach
the reference value, with M06–2X being the closest. However, when comparing range
separation schemes, it is difficult to discuss the position of the short-range term because
WB97, WB97X, and CAM–B3LYP produce comparable results, while M11 differs and
produces the best. A similar logic to that given in the paragraph devoted to hydrogen
bonds length may be at work. As a result, we believe that neither the short- nor long-range
terms had a significant effect, at least among GGA functionals, but that the short-range
term could have double the impact of the long-range term. The results of HISSbPBE are
also difficult to interpret, especially because they are similar to those obtained by WB97 or
WB97X. That is, the influence of the medium-range term should be twice as strong as the
impact of the long-range term. As we move on to the topic of basis sets, the picture begins
to clear up. In general, it appears that the presence of the diffuse function is supposed to
correctly predict ionization potential. Furthermore, double-ζ basis sets have been shown to
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yield significantly underestimated values, which can be easily corrected by switching to
triple-ζ basis sets or, more ideally, simply augmenting it with a diffuse function, resulting in
a major correction in the given adiabatic ionization potential value. Lastly, the augmented
version produces results that are closer to the reference value than the undiffused triple-ζ,
pinpointing the role of diffusion. In the case of Pople’s basis sets, this encloses just in
its presence, regardless of whether a single or double one is used. As a result, the most
satisfactory findings came from 6–311+G(d,p) (2.6 kcal/mol), 6–311++G(d,p) (2.6 kcal/mol),
and Ahlrich’s def2–SVPD (2.6 kcal/mol).

YaIE = 0.031SR∗∗ + 0.100MR∗∗∗ + 0.087LR∗∗∗ − 1.696ζ∗∗∗ + 3.605D∗∗∗ − 11.393∗∗∗ (6)

All features except the basis set size are statistically significant, according to the es-
tablished regression model (Equation (6)). To begin with, we can see that increasing the
Hartree–Fock exchange term at any range causes an increase in the expected adiabatic
ionization potential, which in our series of combinations is usually associated with im-
proved outcomes and their enclosure within the X-axis. Furthermore, the coefficients for
the medium and long range are identical but greater than the one for short range. Actually,
the coefficient of the short-range term is the lowest, and a 20% HF discrepancy between two
functionals will result in an energetic disparity of just 0.6 kcal/mol. That may explain why
WB97 and WB97X are so similar to each other. A similar treatment for WB97X and CAM–
B3LYP yields a 3.0 kcal/mol gap, but this one is not apparent. According to the model we
presented here, its R2 is 0.8147, F-statistics indicate that it is statistically significant, and the
residual standard error varies around 1.924.

3.3. Adiabatic Electron Affinity

The reliability of electron affinity computed at lower levels was determined by com-
paring it to the reference values, which equals –12.8 kcal/mol. The plotted data (Figure 4)
reveal that extrema are far closer to the 0 value than in the case of adiabatic ionization
potential, implying that DFT methods estimate adiabatic electron affinity better. Overall,
the effects are somewhat stable, as shown by the MAE values, the lowest of which was
expressed by MPWB1K (3.1 kcal/mol) and the highest by BLYP (5.7 kcal/mol) and B3LYP
(5.6 kcal/mol).
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Aside from the BLYP, GHs usually provide higher values as the %HF increases. B3LYP
has been found to defy this law, especially when diffused, or generally, larger basis sets
are combined with it. As can be shown, WB97 and WB97X render adiabatic electron
affinity values almost at the same grade, implying that the short-term effect is insignificant.
However, as CAM–B3LYP is analyzed, the values noticeably decrease. That, on the one
hand, provides a basis for the presumption of the effect provided by the long-range term,
which is not inherently significant but is greater than the short-range term, in which no
major variations were detected. M11 distinguishes itself once more by producing even
lower values than expected. The importance of the medium range, which was clearly
shown by the projected outcomes when HISSbPBE was used, is uncertain. The findings
of diffused, Dunning’s, or Ahlrich’s basis sets are similar to those of CAM–B3LYP. When
no such basis set is used, the difference between them will exceed 4 kcal/mol (in the case
of the smallest basis set, 6–31G(d,p)). The inconsistencies discovered in this paragraph
provide clear evidence that similarly to adiabatic ionization potential, a basis set can have
the greatest effect on overall results.

To begin, the chart shows that in the case of electron affinity, the choice of double-ζ is
often insufficient, resulting in vastly exaggerated results. On the other hand, augmenting
with diffusion causes the findings to be significantly understated in each situation. The
golden mean happens to be the recruiting of the undiffused triple-ζ, which tends to provide
the best results; however, this does not apply to Ahlrich’s def2–. As a result, it is not sur-
prising that 6–311(d,p) (1.7 kcal/mol) and cc–pVTZ (1.5 kcal/mol) are representative basis
sets for adiabatic electron affinity computations. As most basis sets provide unsatisfactory
results, the greatest MAE is correlated with 6–31G(d,p) (6.9 kcal/mol).

YaEA = 0.012LR∗∗ + 2.416ζ∗∗∗ − 7.203D∗∗∗ (7)

The obtained regression equation for adiabatic electron affinity (Equation (7)) is the
simplest of all those found in the paper. It is also among the best, with an R2 of 0.7788,
passing the F-statistics criteria, and a residual standard error of 2.394. It states that the
outcomes of adiabatic electron affinity can be calculated using only the long-range term
and taking into account the type of basis set used as well as the presence of a diffuse
function. The relative effect, as assigned to coefficient values, is in reverse order. Since
range separation schemes play no part, this explains why we were unable to find a viable
pattern. The role of the last two coefficients, on the other hand, has already been narrowly
explained in the preceding paragraph. Indeed, the linear model confirms how the diffuse
function contributes significantly to the final outcome and how this effect is underestimated
when the basis set is changed from double to triple.

3.4. Proton Affinity

Similar to bond dissociation, proton detachment may occur at any available hydroxyl
hydrogen. At first sight, the plotted charts (Figure 5) do not seem to be those of the
bond dissociation enthalpy. The values obtained for proton affinity at C4 tend to be
estimated with greater accuracy than those obtained for C3, as shown by the MAE values:
TPSSh was discovered to have the most reliable result for C3 (3.0 kcal/mol). HISSbPBE
(C3: 6.8 kcal/mol; C4: 2.2 kcal/mol) and MPWB1K (C3: 6.9 kcal/mol; C4: 2.3 kcal/mol)
produced satisfactory results for this deprotonation site too, though the worst for the C4
location. WB97X reported similarly poor results for C3 (6.7 kcal/mol) and BLYP produced
poor results for C4 (6.6 kcal/mol).
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The figure exhibits a pattern showing that an increase in Hartree–Fock exchange
causes an increase in results found for GHs. WB97 and WB97X vary only in a short range
and tend to yield comparable results, while M11 reported more reliable results once again.
Assuming, once again, that the short-range influence is marginal as compared to others,
the decline in a long range, as seen in the contrast of WB97X and CAM–B3LYP, seems to
be responsible for the lower outcome. HISSbPBE has been observed to produce results
that vary between those produced by WB97 or WB97X and CAM–B3LYP, implying that
there is no substantial effect of the medium-range term and that it may be mathematically
evaluated as around twice the long-range term influence, which could be true if we note
that CAM–B3LYP yields approximately the same results, with a 15% greater exact exchange
at the long-range term. The findings further show that the basis set used might have a
larger impact on the results; namely, the best were found for augmented ones. This is due
to the observation that as the percentage of HF exchange increases, only the diffused basis
sets approach the reference value.

When we examine the effect of the basis set selection, we can see that every diffused
basis set, whether double- or triple-ζ, is a good one. Dunning’s aug–cc–pVTZ is an
exception, with results that are slightly weaker than those achieved by the non-augmented
cc–pVTZ. After all, the majority of them accurately estimate the desired values, and only
6–31G(d,p) is associated with significant MAE (C3: 13.1 kcal/mol; C4: 7.1 kcal/mol).

YPA_C3 = −0.053SR∗∗∗ + 0.101MR∗∗∗ + 0.071LR∗∗∗ + 2.099ζ∗∗∗ − 6.699D∗∗∗ + 2.825∗∗∗ (8)

YPA_C4 = −0.049SR∗∗∗ + 0.092MR∗∗∗ + 0.078LR∗∗∗ + 1.377ζ∗∗∗ − 5.349D∗∗∗ − 2.100∗∗∗ (9)
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As seen by the equations of the developed regression models (Equations (8) and (9)),
only the short-range term is responsible for the decrease in enthalpy value and can be
easily resolved by the coefficients of medium- and long-range terms. On the other hand,
the negative impact of long range posed for WB97X and CAM–B3LYP proton affinity is
not confirmed. Similarly, the impact of a medium-range term is not the same as what is
observed. Models find it much simpler to estimate the role of basis sets—indeed, double-ζ
basis sets induce an increase in process energy, although a smaller one than that observed.
The effect of diffusion is also evident, but it tends to be overlooked within a model in the
same way as the influence of base set type is. Overall, it provides a clear qualitative analysis
of how each function impacts the final outcome, as shown by R2 for C3 equaling 0.7956
and R2 for C4 equaling 0.7621. Residual errors are 1.882 and 2.37, respectively, and all pass
the statistical significance threshold as measured by F-statistics. Finally, the intercept is
statistically significant in both of these models.

3.5. Section Conclusions

We attempted to go into detail in this section on how different basis sets and function-
als affect the estimates of specific antiradical activity indices. To support our theoretical
findings, we established a variety of linear models, the majority of which had a satisfactory
coefficient of determination. Contrary to popular opinion, the use of a diffuse feature is
not necessarily needed and can be sufficiently substituted in certain cases by a triple-ζ.
Furthermore, we defined the role of RSHs in such studies and provided insight into the
Ahlrich’s and Dunning’s basis set families, indicating that they should be considered in
such studies.

3.6. Performance Evaluation

All of the points of the graph (Figure 6) have been standardized to reflect the average
time taken to complete one instance of Link502 or Link703 executables when only one
CPU is used. Since random access memory has only a minor impact on the pace of DFT
calculations, it was not taken into account in this study.

As can be shown, functionals have little effect on efficiency; however, the lines in
Link502 are not as well overlaid as in Link703, indicating that iterative SCF calculations
are more vulnerable to functionals selection. There, we can see that discrepancies are
beginning to emerge for Ahlrich’s def2–TZVP and def2–TZVPD families, as well as for
Dunning’s correlation-consistent family. M11 tends to take the most CPU time in each
of these scenarios. Furthermore, in the case of Link703, and only there, it was discovered
that TPSSh/aug–cc–pVDZ had nearly three times the computational time of any other
combination there.

The selection of the basis set has a much larger impact, since the number of base
functions necessarily corresponds to the greater number of calculations to be completed,
and hence, they are more vulnerable to available computing resources. There are no major
variations in Pople’s family, though the SCF procedure seems to be somewhat longer in the
case of diffused triple-ζ basis sets. While Ahlrich’s basis sets exhibit a similar trend, def2–
TZVP and def2–TZVPD need significantly more time than 6–31G or 6–311G. Ultimately, in
the case of correlation-consistent basis sets, the computing resources required to complete
each Link start to vary greatly. In their case, first, greater fluctuations occur at cc–pVDZ of
Link502 and reach a maximum for aug–cc–pVTZ, the largest and most resource demanding
basis set—in both SCF method and two-electron integral calculations.
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3.7. Janak’s Theorem Applicability

As previously said, approximating orbital energies is a quite common method for
estimating vertical ionization potential (vIP) and vertical electron affinity (vEA). As seen
in the figures above (Figure 7), the errors vary considerably, ranging from 1.5 to –2.3 eV.
Since 1.0 eV equals approximately 23.0 kcal/mol, the disparities are significant; therefore,
the benefit of the doubt in choice is at least not recommended. The values were compared
to the reference molecule’s (errors: vIP = 7.2 eV and vEA = 0.7 eV). Of all functionals,
BLYP produced the worst results (errors: vIP = 1.9 eV and vEA = 1.7 eV), while MPWB1K
produced the best vIP (error: 0.2 eV) and CAM–B3LYP produced the best vEA (error:
0.1 eV).

When we look at the significance of the Hartree–Fock exact exchange in the context
of GHs, we can see that increasing its value results in an increase in the values obtained
for vIP and a decrease in the values obtained for vEA. After all, this brings us closer to the
reference value. The role of the short-range term, as expressed by the difference between
WB97 (which represents the maximum or minimum, respectively, for vIP and vEA), WB97X,
and M11, suggests that this feature is of minor importance. As can be shown, increasing
the short-range term has little effect on the vIP, while in the case of vEA, the outcomes are
slowly approaching zero. However, in case of the EA, a greater impact is visible for M11,
particularly when combined with Pople’s or Dunning’s augmented basis to predict vertical
electron affinity. With this in mind, we should say that the 5% difference in short range
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between CAM–B3LYP and WB97X is marginal to the results, and we can analyze the effect
of the decrease in long range. It has been observed that the former produces significantly
more accurate results, especially for the vEA. According to the data, decreasing the long-
range term value seems to result in a much closer match to the desired outcome, implying
that it is essential for proper approximation. Finally, HISSbPBE, a representative functional
with only a medium-range term, is found to yield results at the degree of TPSSh or B3LYP.
When studying HISSbPBE, we reuse previously introduced assertions that an increase in
short range leads to steadily approaching the reference value, and a decrease in long range
does the same but faster; we assume that a medium-range term has twice as much effect as
a long-range term.
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In terms of basis sets, it is worth noting that even the simplest one can be used, as
shown by the MAE of vEA, the lowest value of which was observed for 6-31G(d,p) (0.8 eV).
On the other hand, aug–cc–pVDZ has the lowest MAE of vIP (1.0 eV). In the case of vEA,
the greatest MAE is observed for aug–cc–pVTZ (1.0 eV) and def2–SVPD (1.0 eV), and
def2–TZVP for both vIP (1.1 eV) and vEA (1.0 eV). Looking at the chart, we can see that
switching from a double- to a triple-ζ causes a rise in both values. When diffusion is
introduced, the effect is similar, but when applied to double-ζ, the effect is greater than
when applied to triple-ζ.

YvIP = −0.006SR∗∗∗+ 0.014MR∗∗∗+ 0.033LR∗∗∗− 0.108ζ∗∗∗+ 0.192D∗∗∗− 1.860∗∗∗ (10)
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YvEA = 0.008SR∗∗∗ − 0.007MR∗∗∗ − 0.028LR∗∗∗ + 0.283D∗∗∗ + 1.601∗∗∗ (11)

Based on our results, we generated linear regression models, attempting to correlate
proposed features in a linear model. According to statistics, the R2 of the models is 0.9805 in
the case of vIP (Equation (10)) and 0.9755 in the case of vEA (Equation (11)), indicating that
they are really fine. Both have a residual error of around 0.1570, and statistical validity is
confirmed using F-statistics. As one can see, the coefficients describing separation schemes
are mirror images, with LR being the greatest one. Although the task of double-/triple-ζ
appears to be important for the vIP model, no such thing was found for vEA.

To summarize this part, Janak’s theorem is valid to correctly predict the vertical
ionization potential and vertical electron affinity, but the results are very susceptible to
changes. As a consequence, using this approximation should be judged and avoided unless
M06–2X or M11 functionals are used.

4. Materials and Methods
4.1. Caffeic Acid as a Reference Structure

Caffeic acid is one of the most basic and readily available plant antioxidants found
in the diet [23–25]. Its chemical structure contains all of the features needed for effective
scavenging of free radicals, namely conjugated double bonds and hydroxyl hydrogens,
which form a catechol moiety in this case. Its presence is well known to be a determinant
of high antiradical activity and chelating properties [26,27]. In the scope of the paper,
the benchmark results obtained for the small compound can be easily applied in the
larger system.

In general, it would be better for the analysis to focus on the global minimum con-
former; but, using computational chemistry techniques, this is almost impossible. To some
extent, the X-ray structures can be representative, but the geometry deposited cannot be
guaranteed as a minimum due to deformations during crystallization caused by factors
such as temperature and milieu; further optimizations at the desired level of theory are
needed. As a result, we agreed to concentrate solely on computational data and produced a
series of initial conformers through a molecular dynamics simulation [28]. At that time, we
bypassed cis-conformers in favor of trans-, which are the least energetic [27,29]. The geome-
try with the lowest energy has been used as a starting point for all future DFT calculations.

4.2. On Functionals and Basis Set Choice

Eleven DFT functionals (Table 3) were selected and paired with 12 double- or triple-ζ
basis sets (Table 4), yielding a total of 132 ground state conformers to investigate.

Table 3. List of functionals tested within the paper.

Method Type %HF
(SR/MR/LR)

BLYP [30,31] GGA (0%)/0%/(0%)
TPSSh [32,33] GH meta–GGA (10%)/10%/(10%)
B3LYP [31,34] GH GGA (20%)/20%/(20%)
PW6B95 [35] GH meta–GGA (28%)/28%/(28%)

MPWB1K [36] GH meta–GGA (44%)/44%/(44%)
M06–2X [21] GH meta–GGA (54%)/54%/(54%)

WB97 [37] RSH GGA 0%/0%/100%
WB97X [37] RSH GGA 15.77%/0%/100%

CAM–B3LYP [38] RSH GGA 19%/0%/65%
M11 [39] RSH meta–GGA 42.8%/0%/100%

HISSbPBE [40] RSH GGA 0%/60%/0%

The global hybrids were chosen so that they span the spectrum of %HF from 0 to 50%
and enclose in a near interval, providing a pattern of how the properties analyzed change
with its increment. A similar approach was attempted for range-separated functionals in
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order to investigate the effect of exact exchange at short, middle, and long-range interac-
tions. In a paper published a few years earlier, La Rocca et al. [19] chose functionals based
on a similar condition, but it was done for edaravone and quercetin and with only four of
Pople’s basis sets.

Balancing precision versus computational time is a critical component of any compu-
tational challenge, not just benchmark studies. Since the number of basis functions scales
with the time required to complete the computations, it is generally preferable to choose
the smallest but still precise one whenever possible. To begin, we completely avoided those
that lacked polarization functions. Their position is clear: accurate representation of the
strongly polarized O–H bond (χ =1.24) is crucial for studying hydroxyl bond length, bond
break enthalpies, and atomic orbitals representation. Furthermore, they have no discernible
effect on computational power use. Far more relevant are diffuse functions, which are
known to slow down calculations but are thought to be necessary for proper studies on
compounds with large electron clouds, particularly ions and radicals. In addition, the
existence and role of hydrogen bonds within polyphenols encourages their use [8,41,42].

Table 4. List of basis sets tested within the paper.

Family Basis Set Number of Basis Functions

Pople’s [42,43]

6–31G(d,p) 235
6–31+G(d,p) [41,44–46] 287

6–31++G(d,p) 295
6–311G(d,p) 282

6–311+G(d,p) [47,48] 334
6–311++G(d,p) 342

Dunning’s [49,50]

cc–pVDZ 222
aug–cc–pVDZ 371

cc–pVTZ 502
aug–cc–pVTZ 782

Ahlrich’s [51,52]

def2–SVP 222
def2–SVPD 336
def2–TZVP 451

def2–TZVPD 565

One would wonder why such unusual basis sets as Ahlrich’s or Dunning’s, or methods
such as TPSSh or WB97, were chosen when Pople’s [53–55], particularly when combined
with Minnesota’s functionals [26,56–59], are leading the way? At the time of writing this
paper, we were barely able to find articles that used def2– [60] or (aug–)cc–pVXZ [61–63]
basis sets in their studies on antioxidative activity. A similar situation occurred in the case
of functionals where, with a few exceptions, the bulk of papers used B3LYP and Minnesota
functionals. This is not to suggest they are untrustworthy, particularly in the case of Min-
nesota, where theoretical outcomes precision has been verified by developer-independent
scientists [64–66]. Instead, we must accept that Pople’s basis sets and B3LYP were the
first to be widely and successively adopted, resulting in their extensive use and accuracy
tests “within” studies. While the reliability of the analyzed basis sets and functionals has
not yet been checked for polyphenolic compounds, their value can be comparable to or
even greater than that previously described. For example, bond and non-bond interactions
have been successfully estimated using def2- and correlation consistent basis sets [10],
and moreover, the balance between accuracy and calculations cost is appealing [67,68].
Similarly, when it came to determining ionization potential and electron affinity, which are
both essential for some antiradical activity channels, WB97X outperformed other function-
als studied [69]. We considered these to be valid justifications for incorporating them in
our paper.
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4.3. DFT Calculations

The coordinates of all geometries presented can be found in the Supplementary Materi-
als. All but the reference level of theory calculations were performed in the Gaussian16 [70]
quantum chemistry package, with a very tight geometry optimization cut-off and ultrafine
integration grid, as is recommended for all DFT calculations. A vibrational analysis was
conducted at each stage of the study to verify the absence of imaginary frequencies and
to obtain enthalpy values. To get the ground state conformer, the previously described
molecular dynamics geometry was optimized in each functional/basis set pair. Then, the
structures obtained were used as templates to generate the radicals, ion radicals, and ions
needed to determine the reactivity indices at the same level of theory. The findings were
compared to the reference system results or, if available, experimental data.

We were able to find experimental evidence for BDE: 78.7 kcal/mol [71] and
81.2 kcal/mol [22] (averaged to 80.0 kcal/mol); similarly, for PA: 323.3 (±2.2) kcal/mol [72]
through studying the literature. Since these values were obtained for the gaseous state,
the computations were done in vacuum. This has allowed us to exclude several solvent
effects from the linear regression models. To measure relative error to the reference value
(εf,b, Equation (12)), the following formula was used:

ε f ,b = X f ,b − Xre f (12)

where Xref is the reference value of the property examined, and Xf,b is the value of the
property calculated in functional f and basis set b. Regarding the fact that it parallels the
approximation error, we opted to ignore the modulus in order to keep track of whether
underestimation or overestimation occurred. Unless some of the displayed results were
particularly noteworthy, we generally discussed only mean absolute error (MAE) in a
specific functional (ε f , Equation (13)) or basis set (εb, Equation (14)):

ε f =
1

Nb

N

∑
b

(∣∣∣X f ,b − Xre f

∣∣∣) (13)

εb =
1

N f

N

∑
f

(∣∣∣X f ,b − Xre f

∣∣∣) (14)

where Nf is the number of functionals and Nb is the number of basis sets.
For reference purposes, the molecular dynamics geometry has been optimized us-

ing RI–MP2/aug–cc–pVTZ [50], along with the aug–cc–pVTZ/C auxiliary basis set [73],
which are all implemented in ORCA [74]. Then, the energy corrections were performed
using Grimme’s double hybrid functional RI–B2PLYP [75,76] with D3BJ dispersion correc-
tions [77] in the same basis sets. Additionally, the exchange integrals calculations were
sped up using the COSX algorithm [78–80]. BDE and PA have been computed at this level
of theory to corroborate the choice of B2PLYP–D3BJ/aug–cc–pVTZ energies for computing
the reference reactivity indices. When compared to the previously given experimental
results, the errors were determined to be 0.08 kcal/mol and 3 kcal/mol, respectively.

4.4. Linear Regression Models

Linear regression models were developed to express mathematically how certain
features of functionals and basis sets affect the results obtained for each property studied.
These models provide a numerical representation of the degree of influence, its type,
as well as insight into patterns that are not so readily observable. While we believe it
is the first time they are used for the benchmark study, their role is well known from
QSAR models [26,53,54] that enable evaluation of the effect of thousands of descriptors
and fingerprints on the activity exhibited. All of the models were developed using the R
programming language [81], and the following features were included within them:

• %HF at short range (SR, [0, 100]);
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• %HF at middle range (MR, [0, 100]);
• %HF at long range (LR, [0, 100]);
• Number of basis functions (NBF, N > 0);
• Presence of valence double basis set (ζ, 0 ∨ 1);

Note: The absence of double-ζ is automatically viewed as an inclusion of triple-ζ.

• presence of diffuse function (D, 0 ∨ 1).

Note: Due to the slight variation in findings between single and double diffusion, as well as
the lack of such divergence in Dunning’s and Ahlrich’s basis sets, no distinction has been made
between them.

The models were optimized by excluding statistically insignificant coefficients. We
decided to keep the intercept if it was statistically significant, so we could see how factors
not actually used in our models influenced the result.

4.5. Computational Performance

To address computational performance, we have gathered CPU times and number
of initializations of two main bottlenecks—iterative solution of SCF Equations (Link502)
and two-electron integral first or second derivatives for s, p, d, and f orbitals (Link703)—for
each method and basis set combination. An average CPU time/program instance for each
of these two procedures was established and then normalized to the one core. We decided
to make such an approximation, since according to output files we have been working
with, it is burdened with a marginal error of 1–2 s.

4.6. Janak’s Theorem Revisited

Aside from adiabatic ionization potential and adiabatic electron affinity, it is sometimes
necessary to estimate vertical ionization potential (vIP) and vertical electron affinity (vEA),
e.g., when comparing antioxidative activity by using a donator–acceptor map [82–84]. The
distinction is that in adiabatic geometry, relaxation after electron acceptance or donation is
permitted, reducing the total energetics of the process. In the case of vertical variants, this
is prohibited, and the geometry remains constrained.

Although the direct calculations are simple, these values are also believed to be
conveniently obtained from the energy of the orbitals. According to Janak’s theorem [85],
the DFT counterpart of Koopmans’ theorem, the vertical ionization potential, and the
vertical electron affinity can be approximated by the negative eigenvalues of the HOMO
and LUMO orbitals, respectively. Nonetheless, the DFT exchange–correlation energy
approximation is known to cause a self-interaction error due to the residual interactions of
the electron with itself, resulting in a contamination of the Kohn–Sham orbitals, as shown
for example in a tendency to underestimate ionization potential energies [86]. Owing to
that, the above indirect approach should be used with caution, especially in the case of
GHs. Despite these challenges, according to recent comments, RSH functionals can solve
them by providing results that are more reliable than those obtained by global hybrids [69].
To answer the method’s applicability, we checked whether any of the combinations yielded
outcomes close to those obtained from the reference level of theory—vIPref = 7.16 eV and
vEAref = 0.67 eV.

4.7. Scoring Function

To complete our paper and choose the best combination from our set, we used a scoring
function (Equation (15)) to determine the success of each of them, where S represents
the number of points assigned. The indices are as follows—p stands for the property
studied, namely:

• Hydroxyl bond length at C3;
• Hydroxyl bond length at C4;
• Hydrogen bond length;
• Bond dissociation enthalpy at C3;
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• Bond dissociation enthalpy at C4;
• Adiabatic electron affinity;
• Adiabatic ionization potential;
• Proton affinity at C3;
• Proton affinity at C4.

cp is the computational performance established in Link502 or Link703; J represents
a vertical ionization potential or vertical electron affinity computed according to Janak’s
theorem; ξ stands for the value yielded by examined combination in each of the previously
stated; and Xref remains as previously stated. For clarity, the score achieved by the specific
level of theory is related to the formula’s maximum and expressed as a percentage.

SCORE = 0.6 ∑
p

Sp + 0.3 ∑
cp

Scp + 0.1 ∑
J

SJ

SJ = Sp =


2 i f |ξ| < 0.01×

∣∣∣Xre f

∣∣∣
1 i f 0.01×

∣∣∣Xre f

∣∣∣ < |ξ| < 0.05×
∣∣∣Xre f

∣∣∣
0 i f 0.05×

∣∣∣Xre f

∣∣∣ < |ξ|
Scp =


2 i f εp < 0.01×max(ξ)

1 i f 0.01×maxξ < ξ < 0.05×max(ξ)
0 i f 0.05×max(ξ) < ξ

(15)

5. Conclusions

According to our literature study, it is the very first such comprehensive, in terms of
functionals and basis sets used, benchmark performed to determine the best method/basis
set combination for polyphenol studies.

We were able to pinpoint the best and the worst one for each parameter analyzed
by examining the most important geometrical features as well as reactivity indices, and
finally estimate general performance, which also included Janak’s theorem applicability
and computational resource use. Remarkably significant in terms of the last one was
determining that although the diffuse functions had a mostly significant effect, they are not
always needed and can be satisfactorily skipped. After all, M06–2X/6–311G(d,p) appears to
be the very best choice for the calculations. From that point of awareness of its accuracy, the
new possibilities in the thermochemical benchmarks on polyphenols opens, for example,
the impact of solvation models.

The mathematical representation of the results obtained has given insight into what
characteristics are critical in determining properties related to polyphenols’ antioxidant
activity. About the fact that limited models were used, they often satisfied and validated
observed trends. The observed differences between C3 and C4 hydroxyl groups are due
to structural characteristics that have been thoroughly studied by other authors. To name
a few, these include the ability to create a hydroquinone-like structure and extended
delocalization in case of C4 hydrogen detachment, as well as mutual interaction between
them [53,54,87,88].

We hope this approach prompts other researchers to recruit linear regression models,
where more components e.g., the effect of the electron density approximation approach
or the influence of the solvation method, are incorporated. However, most importantly,
we expect that with this paper, scientists will find it easier to research polyphenols and
investigate how they can protect us from the presence of oxidative stress.

Supplementary Materials: The following are available online, Cartesian coordinates of each structure
produced, geometrical measurements, thermochemical values, HOMO and LUMO orbital energies.
Additionally, a PDF file regarding conformational analysis in levels of theory under consideration is
provided: Figure S1:” Relative Errors to the Reference Value for C3 (upper) and C4 (lower) Hydroxyl
Bond Length. [Å].”, Figure S2: “Relative Errors to the Reference Value for Calculated Hydrogen Bond
Length. [Å].”.
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