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Abstract

Genome-wide gene expression profiles accumulate at an alarming rate, how to integrate these expression profiles
generated by different laboratories to reverse engineer the cellular regulatory network has been a major challenge. To
automatically infer gene regulatory pathways from genome-wide mRNA expression profiles before and after genetic
perturbations, we introduced a new Bayesian network algorithm: Deletion Mutant Bayesian Network (DM_BN). We applied
DM_BN to the expression profiles of 544 yeast single or double deletion mutants of transcription factors, chromatin
remodeling machinery components, protein kinases and phosphatases in S. cerevisiae. The network inferred by this method
identified causal regulatory and non-causal concurrent interactions among these regulators (genetically perturbed genes)
that are strongly supported by the experimental evidence, and generated many new testable hypotheses. Compared to
networks reconstructed by routine similarity measures or by alternative Bayesian network algorithms, the network inferred
by DM_BN excels in both precision and recall. To facilitate its application in other systems, we packaged the algorithm into a
user-friendly analysis tool that can be downloaded at http://www.picb.ac.cn/hanlab/DM_BN.html.
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Introduction

The complex functions in eukaryotic cells are implemented

through a highly organized regulatory network composed of

concerted activities of many genes and gene products. Gene

expression can be directly regulated by transcription factors (TFs)

[1], the states of chromatin structures [2,3] and small RNAs, and

interactions among them [4–6]. In other words, the mRNA

expression level of a gene is the output synthesized from the

information of several input signals.

Gene knockout is a classic approach to studying gene functions

and the collection of yeast knockout strains has enabled systematic

genome-wide functional analysis [7]. Transcriptional profiles of

mutant strains have been used as molecular phenotypes for

functional analysis and genetic epistasis analysis [8,9]. In addition,

the expression profiles of single, double and triple deletion mutants

of chromatin machinery components, protein kinases and

phosphatases were used to analyze the functional overlaps among

these proteins [3,10]. Dion et al. constructed 15 mutants of lysines

5, 8, 12, and 16 to arginine in the histone H4 tail and

characterized the resulting genome-wide gene expression changes

[11].

Transcriptional regulatory networks in different cellular con-

texts have been constructed through the DNA microarray analysis

of transcription factor deletion mutants and over expression strains

in S. cerevisiae [1,12] by directly linking the genetically perturbed

transcription factors (TFs) with the genes that change expression in

response to the perturbations. As none of the regulators works

alone, probably more important than constructing such regulator-

target networks is to understand how the regulators cooperate to

form regulatory pathways to specifically regulate a transcriptional

program or biological processes [3].

Here we use the transcriptional profiles of deletion mutants as

the molecular phenotypes of the mutants to determine how the

regulators interact genetically or cooperate functionally with each

other to modulate gene expression. We propose a Bayesian

network (BN) approach to reverse engineer regulator networks

from these gene expression profiles. The approach excels previous

methods such as context-dependent regulation and correlation

coefficient analysis [12–14] in that it can easily integrate different

datasets and infer causalities in the regulatory program. Nodes in

the network are the genes deleted in the mutants and the

algorithm greedily searches over all possible Bayesian network

structures for the one that best summarizes the relationships
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among the global differential expression change profiles upon

deleting these genes. Thus by exploring the relationships among

the global differential gene expression profiles for the deletion

mutant genes, we can obtain valuable causal or non-causal

relationships among these regulatory deletion-mutant genes

through the inferred BN structure.

Then, we used the above approach to analyze the global

differential gene expression profiles of 544 single or double

deletion mutants of transcription factors, chromatin machinery

components, protein kinases and phosphatases in S. cerevisiae. The

BN inferred identified with high precision and recall causal

regulatory and non-causal interaction relationships among these

regulators in different cellular contexts.

Results

Pair-wise similarity between expression profiles of
regulator mutants

The deletion mutants of transcriptional regulators used in this

study are nonessential genes in yeast under rich medium growth

conditions, yeast extract peptone dextrose medium (YPD) or

synthetic complete medium (SC). We compiled expression profiles

of sequence-specific DNA binding transcription factors (STFs)

deletion strains grown in SC and YPD mediums [12,15]. We also

collected the expression profiles for deletion mutants of protein

kinases, phosphatases [10] and chromatin machinery components

[3] (See Methods for more detailed data descriptions).

To confirm that regulators belonging to the same protein

complex or regulatory pathway tend to share common targets

[15], we used Jaccard similarity index (JI) to examine the

similarities between targets profiles of the perturbed regulators

(see Methods, Figure S1A, Table S1) and we observed that a STF

is more likely to connect with another STF than with a general

transcription regulator (GTFs e.g. chromatin modifiers and

remodelers) whether the regulators are derived from the same

data set or different data sets. Indeed, the percentage of known

physical interactions or genetic interactions (downloaded form

SGD) present among predicted gene pairs increases as the

threshold of pair-wise Jaccard similarity index (JI) used in

prediction increases (Figure S1B), suggesting that the similarities

of gene expression profile changes after genetic perturbation of

transcriptional regulators can be used to infer relationships among

these regulators. However, JI is only a crude measure that is

subject to different cutoffs and cannot infer directionality or

causality of regulatory relationships. In contrast, Bayesian network

is a solid statistical inference method that can infer directions or

causality of regulatory relationships and is more appropriate for

this task.

A perturbation based Bayesian network structure
learning algorithm

A Bayesian network [16] is a directed probabilistic graphical

model which represents conditional independency relationships

between variables. The BN learning approach has been exten-

sively used in previous works to analyze gene expression and other

high throughput data sets [14,17,18]. Suppose that the expression

of a deletion mutant gene (denoted by G) is fully determined by its

three intermediate regulator genes (denoted by A, B, C), if the

expression of genes A, B, C can be controlled precisely, we can

find a specific expression configuration of A, B, C (e.g., A is up-

regulated and B, C are down-regulated) so that the expression of G

is as small as possible just like being deleted. As such, we can

anticipate that the global differential gene expression profile of

deleting G versus the wild type strain can be well predicted from

the global differential expression profiles of deleting B, deleting C

and over-expressing A, respectively. Although the datasets contain

only genetic deletion strains, no over-expression strains, the global

differential expression profile of the profile of over-expressing A is

often opposite to that of deleting A, we can thus well predict the

differential gene expression pattern of deleting G from the three

differential gene expression profiles of deleting genes A, B and C,

respectively. In general, if one gene is combinatorially regulated by

a set of other genes, usually we can approximate its deletion-

mutant differential expression ‘phenotype’ fairly well by the

deletion-mutant differential expression ‘phenotypes’ of its regula-

tor genes.

However, in deletion mutant experiments, it is typical that most

genes have small expression changes in deletion mutant strains

compared to their WT. For instance, 80% yeast genes have similar

expressions to the WT strain in protein kinase or phosphatases

deletions under the same growth condition [19]. Thus, the

differential expression profiles of these regulators are sparse. The

majority of ‘neutral’ gene expression changes (represented by ‘0’s)

in the differential expression profiles will artificially induce a high

similarity between the deletion mutant genes (regulators) in classic

BN learning methods.

To this end, we developed a new Bayesian network structure-

learning algorithm called Deletion Mutant BN (DM_BN)

(Figure 1), which is specifically designed for reverse engineering

regulatory networks of deletion mutant genes from differential

gene expression profiles in the corresponding deletion mutant

strains. Note that, the input of this algorithm is a matrix of discrete

values: 1, 21, 0, which denote the differential gene expression of

the mutant strain versus the WT. Each column of the matrix

records the differential gene expression profile for one deletion

mutant gene. As described above, the training data for Bayesian

network is skewed towards 0, it is not viable to exploit classical

Bayesian network learning approaches based on discrete data [20].

Indeed, in our extensive comparison of the proposed DM_BN

algorithm with state-of-the-art BN learning algorithms with three

other scoring metrics [20–23], a well-known software package for

Author Summary

The complex functions of a living cell are carried out
through hierarchically organized regulatory pathways
composed of complex interactions between regulators
themselves and between regulators and their targets. Here
we developed a Bayesian network inference algorithm,
Deletion Mutant Bayesian Network (DM_BN) to reverse
engineer the yeast regulatory network based on the
hypothesis that components of the same protein com-
plexes or the same regulatory pathways share common
target genes. We used this approach to analyze expression
profiles of 544 single or double deletion mutants of
transcription factors, chromatin remodeling machinery
components, protein kinases and phosphatases in S.
cerevisiae. The Bayesian network inferred by this method
identified causal regulatory relationships and non-causal
concurrent interactions among these regulators in differ-
ent cellular processes, strongly supported by the experi-
mental evidence and generated many testable hypothe-
ses. Compared to networks reconstructed by routine
similarity measures or by alternative Bayesian network
algorithms, the network inferred by DM_BN excels in both
precision and recall. To facilitate its application in other
systems, we packaged the algorithm into a user-friendly
analysis tool that can be downloaded at http://www.picb.
ac.cn/hanlab/DM_BN.html.

Functional Dissection of Regulatory Model in Yeast
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BN learning [24] and two widely used non-Bayesian approaches to

building regulatory networks [25,26] on the yeast deletion mutant

datasets, the significantly improved network inference quality fully

confirmed the advantage of the DM_BN algorithm (See below).

The main technical contribution of the DM_BN algorithm is to

employ the kernel based approach to Bayesian network inference

[27] and the introduction of a novel kernel for discrete data that is

specifically designed for characterizing the deletion mutant data

sets. Specifically, suppose x and y are two discrete variables which

could take values 1, 21, 0, the trivial kernel for discrete data in

[27] is defined as: k(x,y)~dx~y, i.e., k(x,y)~1 when x~y; and

k(x,y)~0 when x=y. This is not viable for dealing with the

deletion mutant data sets since the dominant value in such data is

0, the trivial kernel for discrete data will induce a large similarity

output (1.0) for all most all gene pairs which are neither up-

regulated nor down-regulated. To prevent this biased effects, we

modified the trivial kernel to the DM kernel below:

k(x,y)~
1, if x~y~1 or x~y~{1;

0, other configurations:

�

The implication from the new DM kernel is clear: the differential

expression changes of two genes in a deletion mutant experiment

are considered similar (with kernel output 1.0) if they are either up-

regulated or down-regulated simultaneously. The similarity

between genes that are not responsive to the deletion mutant

experiment is abandoned (with kernel output 0.0). In this way,

only the information of the co-regulation activity is fed into the

Bayesian network-learning algorithm (Methods).

Another contribution of the DM_BN algorithm is the incorpo-

ration of the a priori knowledge from deletion mutant experiments

into Bayesian network learning. For this purpose, we employ a

network template to constrain the space of graph search in

Bayesian network learning and to provide additional causal

information in the learning and interpretation of Bayesian network

structure. The basic idea of constructing the adjacency matrix of

the network template (template matrix for short) is as follows: First,

we start with an empty template matrix of zeros. Then, we define

the list of target genes of a deletion mutant gene to be the genes

whose mRNA levels either up- or down-regulated compared to the

WT strain. If both deletion mutant genes A and B (with indices i,j,
respectively) are not in the target gene list of each other, the two

genes do not seems to have a direct regulatory relationship, but

they could cooperate to regulate other genes. So, if the target gene

list of A and B overlap (i.e., at least one gene appear in both of the

two target gene lists), the (i,j),(j,i) elements of the template matrix

are set to 1, which means that either one of the two edges

A?B,B?A might appear in the final BN. Finally, if gene B

appears in the target gene list of A, but A is not in the target gene

list of B, we set (i,j)~1,(j,i)~0, which means that A?B could

appear in the final BN while the reversed edge B?A is forbidden.

Figure 1. Overview of the Bayesian network learning algorithm DM_BN for reverse engineering regulatory networks from genetic
perturbation data. As an example, DM_BN takes as input deletion mutant gene expression profiles. The relative change of the mRNA expression
levels of the deletion mutant strains versus the wild type (WT) is represented by 1 (significant up-regulation), 21 (significant down-regulation) and 0
(no significant change). The algorithm incorporate a new kernel to model the consistent gene expression changes upon perturbation and it employs
a template of all potential regulator-regulator interactions to enable more accurate and much faster BN learning. After learning the BN structure,
Meek’s rule [28] is used to infer compelled (directed) and non-compelled (undirected) edges. The precision of the inferred network is then assessed
by existing knowledge of protein complexes, regulatory relationships (MAPK signaling transduction pathways) and gene annotations.
doi:10.1371/journal.pgen.1003757.g001

Functional Dissection of Regulatory Model in Yeast

PLOS Genetics | www.plosgenetics.org 3 September 2013 | Volume 9 | Issue 9 | e1003757



In rare occasions, when both A, B appear in the target gene list of

each other, we set (i,j)~1,(j,i)~1, since we do not know which

direction of the interaction represents the dominant regulatory

effect while the other represents the secondary feedback effect

(Figure 1).

To identify potential causal interactions from Bayesian network

structure, we have to determine whether the directionality of each

edge in the network is reversible or not [28]. In this step, the

template matrix again provides a priori causal information to guide

the algorithm to disambiguate more edge directionalities. More

details of the algorithm are presented in Methods.

Performance evaluation of BN structure inferences
To quantitatively compare the performance of the DM_BN

learning algorithm with other approaches to infer regulatory

networks, we curate a database of ground-truths protein-protein

interactions, regulatory interactions, genetic/epistatic interactions

and protein complexes from the KEGG and SGD databases.

Here, methods being compared include alternative Bayesian

network learning algorithms (the WinMine Toolkit [24], the BDeu

scoring approach [22] with optimized prior [23] and the BIC

scoring approach [20,21] and non-Bayesian network approaches

(the ARACNE [25] software, the Disruption Network [26] and the

Jaccard similarity index (JI) approach). Details of these algorithms

and the strategies used in the testing are described in Methods and

Supplemental Note 1 (Text S1).

Basically, two key performance indicators are important for

comparing the above algorithms: 1) Precision-recall curve, which

quantifies the ability of an algorithm to correctly predict bona fide

interactions between these regulators; 2) The precision of

orientation, which measures the ability of an algorithm to predict

correct directionality for each causal interaction. We first

calculated the precision and recalls of all the predicted yeast

regulator networks (Methods). In this computation, directionality is

not considered in matching a predicted edge and a known

interaction in the database, which is partly because we only have

very limited knowledge about the causality of these ground-truth

interactions. By plotting the corresponding precision-recall points

(or point, if an algorithm predicts only one network) for each

algorithm, we found that DM_BN algorithm outperforms all the

alternative network construction approaches in both precision and

recall (Figure 2, Table S2). In other words, regardless of causality,

DM_BN algorithm has the highest precision of de novo network

predictions over the whole range of recall rates.

A close examination of the BN inferred by the DM_BN

algorithm suggested it indeed recapitulated many interactions in

protein complexes or pathways. Specifically, the BN structure

visualized in Figure 3 with precision 0.4704 and recall rate 0.0323

(Figure 2) includes both causal (represented by directed edges) and

non-causal (by undirected edges) relationships among these

regulators, which are known to take place in diverse biological

processes to combinatorially regulate the expression of target

genes. Moreover, we also computed the functional enrichment of

these regulators based on their target genes (Methods). The result

suggests that regulators that tightly interconnected in the BN more

significantly share common functions than other regulator pairs

(Figure 3, Table S3). The network learned by DM_BN algorithm

further predicts how these regulators interact with each other in

different cellular processes (Figure 3).

For example, the predicted network module among subunits of

the chromatin remodeling machinery complex (Figure 3, shown by

purple nodes) has a high precision of 0.85217 (Table S4); the

network module consisting of protein kinases Vps15, Ark1, Prk1,

Cdk8, Cka2 and protein phosphatase Ptc1, Ptc2, Pph3, Ptp3 is

involved in three interrelated cell processes: cell wall organization

or biogenesis, amino acid metabolism and carbohydrate metab-

olism, which is consistent with biological knowledge; and the

predicted network suggests that Rpd3 complex, Sir complex and

Ste11 mediated MAPK kinase cascades pathway cooperate with

each other in mating process (Figure 3, Table S3). We also

observed that a STF is more likely to connect with another STF

than with a GTF, which is similarly observed in the densely

connected network inferred by the Jaccard index (JI) similarity

measure (Figure S1A). Our results are also consistent with the E-

MAP results, which are quantitative genetic interactions between

phosphorylation related genes in S. cerevisiae [19]. For instance, it is

known that histone variant H2A.Z (encoded by the Htz1 gene)

exchange with histone H2A in nucleosomes through the SWR1

complex [29,30] and that Htz1 displays positive genetic interac-

tions with SWR1 (+3.5), Vps71 (+3.9) and Vps72 (+3.5) [19].

These interactions are all predicted by the network inferred by

DM_BN (Figure 3). Indeed, the target sets of Htz1, SWR1, Vps71

and Vps72 deletion mutants have high similarity, with Jaccard

indices (Methods) J vps72,htz1ð Þ~0:23611J vps71,htz1ð Þ~0:22
85J swr1,htz1ð Þ~0:2625 (Figure 3 (blue circle), Table S5).

Moreover, the functional enrichment of the predicted SWR1

complex target gene sets for vesicle organization (Table S3) is

consistent with the fact that SWR1 complex is required for

vacuolar protein sorting [31]. More examples of the inferred

pathway relationships are listed in Table S6, S7.

Prediction of causal relationships
Inferring correct directionalities for causal interactions or

epistasis is an important aspect for regulatory network predictions.

However, most non-Bayesian network algorithms are unable to do

so. For example, the ARACNE [25] software and the Jaccard

similarity index (JI) approach could only predict undirected

interactions. Although the Disruption Network [26] could predict

the direct causal relationships between deletion mutant genes and

differentially expressed genes, such knowledge is derived from the

deletion mutant experiments without performing causality infer-

ence. It is of special interest to see if an algorithm can make de novo

predictions about causality among deletion mutant genes from the

similarity of their genome-wide differential expression profiles. In

principle, Bayesian network learning algorithms hold this promise

and thus we compare the performance of the four BN learning

algorithms (DM_BN, Winmine toolkit [24], the BDeu [22] and

BIC scoring approaches [20,21]) in predicting causal relationships.

Since the ground-truth causal relationships derived from

existing databases for the 378 regulator genes is very limited,

and also because we do not know the exact cellular contexts in

which those causal relationships hold true, to quantify the

performance in predicting causal relationships, we calculated the

recall and the precision of all these network inference approaches

except BDeu using the four MAPK (mitogen-activated protein

kinase) cascades where clear causal relationships are well described

among these kinases. The exclusion of BDeu here is simply

because it does not have a tunable parameter to generate a relative

sparse network that is comparable to the size of networks

generated by the other three approaches. However, using a

different evaluation approach, BDeu’s causality prediction appar-

ently does not perform as well as DM_BN and BIC (see below).

Yeast contains at least four MAPK (mitogen-activated protein

kinase) cascades that convert extracellular stimuli into intracellular

signals during a variety of cellular processes, such as mating, cell

wall remodeling and high osmolarity adaption [32]. We found that

when all tools predicted roughly the same number of edges, the

DM_BN algorithm with prior information can predict more

Functional Dissection of Regulatory Model in Yeast
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interactions with correct orientations than other tools among

kinases involved in the same signal transduction pathway (Table

S8, S9, S10, S11).

To test whether the correct inference of edge direction is solely

the result of applying a template, we examined the directionality of

edges in BNs inferred by DM_BN without any template. At

various parameters, 73.3–89.2% of the edges have the same

direction as the regulator-DEG relationships identified in the

deletion mutants experiments. These proportions are significantly

higher than that expected by chance (random coin tossing p = 0.5,

Binominal test p = 0.0625,5.42e-07, Table 1). This indicates that

the correct inference of edge directions by DM_BN is largely not

attributed to using the template. However, the BN inferred by

DM_BN with the template, did correct a small number edges

incorrectly predicted when not using the template (1/34,4/15

edges, Table 1). This is because the network template not only

corrects edge orientation errors inconsistent, but also improves the

global causal structure in the BN through the cascading

interactions between edges. Therefore, a template is included in

the actual implementation of the DM_BN algorithm as the default

setting.

Using a similar approach, we also compared with other BN

inference algorithms, the performance of DM_BN in de novo

predicting causal relationships without using the a priori informa-

tion encoded by the template. The DM_BN algorithm and the

BIC scoring approach [20,21] generally predict non-compelled

directed edges remarkably more precise than the BDeu scoring

method [22] or the WinMine toolkit [24] (Supplemental Note 2

and 3 in Text S1, Figure S2).

In particular, the causal relationships inferred by the DM_BN

algorithm (with the network template) correctly recapitulated the

linear cascade structure for regulators in the HOG signaling

pathway involved in the osmotic stress response (Figure 4A). For

instance, Ste11 MAPK kinase (MAPKKK) phosphorylates Pbs2

MAPK kinase (MAPKK). Then, the activated Pbs2 phosphory-

lates Hog1 in the MAPK kinase cascade pathway for osmostress

adaptation [33].

In the mating process, DM_BN not only accurately grouped the

SIR complex and the Ste11 mediated MAPK cascade pathways,

but also correctly predicted the connectivity among components of

the complex or the pathway (Figure 4B). The results correctly

recovered the role of Ste7 and Ste11 protein kinases in two

different MAPK Fus3 and Kss1 cascade pathways that controls

mating, respectively [33,34].

Novel regulator-regulator interactions predicted by
DM_BN

The inferred causal relationships or non-causal interactions

between these gene expression regulators not only confirmed

known relationships, such as physical interactions and genetic

epistasis relationships among these regulators, but also predicted

many novel relationships that could be important in gene

regulation.

For example, the DM_BN algorithm not only correctly

predicted the connection between components in the SIR complex

or in the MAPK pathway, but also predicted the dense connection

between the SIR complex and Ste11-mediated MAPK cascades

(Figure 4B, Table S3 and Table S12). Clustering of the expression

profiles of the genes in these network modules shows that the

genes up-regulated in the deletion mutants of Sir2, Sir3 and

Sir4 (Figure 5A, right panel) are all within 10 kb to their

nearest telomere. Meanwhile, the predicted functions of the genes

Figure 2. Precision and recall of networks inferred by DM_BN and by other network inference methods at various cutoffs. The
colored lines show the precision and recall tradeoffs as a function of different values of Jaccard index threshold, mutual information threshold in
ARACNE, kappa parameter in WinMine, weight of the penalty term in BIC and the w parameter in DM_BN, respectively. The Disruption network
approach and the BDeu metric do not have any tunable parameter and only one network can be predicted. We curated 5662 protein-protein
interactions, regulatory interactions, genetic/epistatic interactions and protein complexes from the KEGG and SGD databases to evaluation the
performance of different algorithms (See Table S2).
doi:10.1371/journal.pgen.1003757.g002

Functional Dissection of Regulatory Model in Yeast
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Figure 3. The yeast regulatory network inferred from the deletion mutant gene expression profiles by DM_BN. Each node in this
network represents a single or doubly mutated regulator(s). The directionality of edges indicates predicted causal relationship between the
regulators. Known regulator interactions (physical or epistatic interactions) were shown by red colored edges. Regulators involved in the same
cellular process, such as amino acid metabolism, cell wall organization or biogenesis, are highlighted by circles with annotations. Purple nodes:
chromatin machinery components (mostly general transcription factors); Cyan nodes: single or double mutants of protein kinases or phosphatases;
Green nodes: sequence-specific DNA binding transcription factors. The parameter in the DM_BN algorithm was set to w~10.
doi:10.1371/journal.pgen.1003757.g003

Functional Dissection of Regulatory Model in Yeast
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down-regulated by all deletion mutants in Figure 5A are enriched

for mating process (see also Table S3). All these findings are

consistent with the knowledge that SIR complex plays roles in

silencing at HML, HMR loci which carry unexpressed copies of

mating-type genes and telomeres [35] and that SIR complex is

comprised of two structural proteins Sir3 and Sir4, deletion of

which will cause reduced mating rate at different levels [36]. The

mRNA expression levels of Fus3 and Fus1 are very low in the

deletion mutants of Sir2, Sir3 and Sir4 in all the three data sets

(Figure 5A, left panel). However, the mRNA levels of other genes

in the model are not changed compared to WT (except the

expression levels of the deletion mutant genes themselves)

(Figure 5A, left panel). From the causal, non-causal relationships

predicted by DM_BN (Figure 4B) and the expression profiles of

Table 1. Precision of edge orientations for networks inferred by DM_BN with/without template at different w parameters.

v of DM_BN 1.5 2 2.5 3 4 5,6,8,9 7

No. of regulator- DEG relationships
predicted by DM_BN without template

No. of total edges 37 29 20 15 11 8 7

No. of edges with correct direction 33 24 16 11 9 7 6

Precision 0.8919 0.8276 0.8000 0.7333 0.8182 0.8750 0.8571

Binomial test (p$0.5) P-value 5.42e-07 0.0003 0.0059 0.0592 0.0327 0.0352 0.0625

No. of regulator- DEG relationships
predicted by DM_BN with template

No. of total edges 34 25 19 15 11 9 8

No. of edges with correct direction 34 25 19 15 11 9 8

Fraction corrected 1/34 1/25 3/19 4/15 2/11 2/9 2/8

Using the regulator-DEGs identified in the deletion mutants experiments as reference, the ‘‘No. of total edges’’ represents the total number of predicted causal
interactions in a BN that overlap with the reference regardless of edge direction. The ‘‘No. of edges with correct direction’’ represents the number of predicted causal
interactions with the same orientation as the reference. The ‘‘Fraction corrected’’ represents the percentage of edge orientations corrected by using the template in the
DM_BN algorithm.
doi:10.1371/journal.pgen.1003757.t001

Figure 4. Causal relationships predicted by DM_BN. (A) Linear cascading relationships among regulators involved in HOG signaling pathway in
response to osmotic stress were correctly inferred. (B) The predicted relationships between the SIR complex and the STE/FUS3/KSS MAPK signal
transduction pathway are consistent with their roles in mating process. Purple nodes: components of the SIR complex; Cyan nodes: single or double
mutants of protein kinases. The parameter in the DM_BN algorithm for generating these predictions was set to w~8. See section ‘‘Novel regulator-
regulator interactions predicted by DM_BN’’ for more details.
doi:10.1371/journal.pgen.1003757.g004

Functional Dissection of Regulatory Model in Yeast
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deletion mutants experiments (Figure 5A), we can infer a novel

model implying that the Ste11 mediated MAPK cascades pathway

may have overlapping functions with the SIR complex (Figure 5B).

Thus, SIR complex could indirectly influence the mRNA

expression of kinase Fus3, which is involved in the MAPK

cascades pathway in mating process.

Although a STF is more likely to have a similar gene expression

pattern with another STF than with a GTF generally (Figure 3A),

the network suggests that STFs Cst6, Sfp1, Bas1, Mac1, Gsm1,

Ixr1, haa1, Ume6 and Cad1 connect densely to GTFs (some

subunits of SIR complex, SWI/SNF complex and SAGA complex)

(Figure 5C). Clusters (Figure S3) of the expression profiles of these

regulators revealed high similarities between the target profiles of

the STFs, Sfp1 and Cst6, and the GTFs SWI/SNF complex and

SAGA complex. Another example is the high similarity between

the targets profiles of STFs: Ixr1, Cad1, Bas1 and Stp4; and GTFs:

SIR complex, SAGA complex. Although no physical interactions

or binding relationships between them have been reported in the

literature, SAGA subunit Spt3 has been reported to have negative

genetic interactions with Stp4 and Ixr1 [10]. These novel

predictions by the DM_BN algorithm may serve as blueprints

for further experimental explorations.

Discussion

Uncovering complex regulatory networks is an important and

challenging task [1,12,19,37]. Here, we introduced a new Bayesian

network inference algorithm ‘‘DM_BN’’, specifically designed to

infer regulatory networks from gene expression profiles generated

by gene perturbations, such as gene deletions. DM_BN can work

with both small and large datasets and infer causal and non-causal

relationships among the perturbed genes. To address the sparsity

of gene expression changes in the perturbation experiments, we

developed a kernel-based BN learning algorithm DM_BN, which

is appropriate for modeling such gene expression data sets.

Comparing with known biological interactions, both the recall and

the precision of the network inferred by the proposed DM_BN

algorithm are significantly higher than that inferred by WinMine

and by the Jaccard Index (JI) similarity measure (Figure 2). The

DM_BN network model not only successfully recapitulated known

interactions among the yeast transcriptional regulators, but also

predicted many novel interactions among these regulators and

regulatory protein complexes, offering new insights into the yeast

transcriptional regulatory network.

Our results show that the improved performance of the

DM_BN algorithm can be mainly ascribed to the new kernel.

Since an edge between two regulator genes is allowed in the

network template if they share at least one target gene, the

template matrix actually allowed all the possible interactions

between these genes, hence has a very little predictive value by

itself. However, the DM_BN algorithm still benefits from using the

network template in two aspects. First, by eliminating all

impossible edges, the template effectively reduced the search

space to speed up the DM_BN algorithm. Second, by encoding

the a priori regulator-target causal knowledge in deletion mutant

experiments, the network template not only corrects edge

orientations that are inconsistent with such information (Table 1),

but also improves the global causal structure predicted by DM_BN

through edge-edge interactions, as we demonstrated in the

inference of MAPK pathways (Table S11).

Although the DM_BN approach has achieved big success in

inferring yeast regulatory network from perturbation-based gene

expression data sets, there are still a few limitations to its

applications. For example, the mRNA expression levels of target

genes are not fully representative of the activities and interactions

of the regulators in modulating gene expression. This is because

post-transcriptional changes and the regulators’ context-specific

transient activity were not measured in the experiments. Due to

the intrinsic limitation of mRNA expression data, our method

failed to identify certain relationships among the regulators under

certain conditions, especially when the activity of the regulators is

not screened in the microarray experiments. Nevertheless, these

problems are not the fault of the proposed BN inference algorithm

but rather inherent limitations of current experimental systems,

which are expected to overcome by introducing other types of

high-throughput datasets. In this sense, the application of the

DM_BN algorithm is not limited to microarray expression profiles

of genetic perturbations, it can actually be extended to work on

many kinds of high-throughput data, such as epigenomic,

transciptomic, proteomic data sets, and even quantitative pheno-

type data.

Methods

Data sets
All the gene expression profiles are downloaded from the Gene

Expression Omnibus (GEO) database, including 269 transcription

factors knockout strains grown in yeast extract peptone dextrose

medium (YPD) [12], 150 deletion mutants of protein kinases and

phosphatases [10], 165 mutants of chromatin machinery compo-

nents [3] and 52 sequence-specific DNA binding transcription

factors (STFs) deletion strains grown in synthetic complete

medium (SC) [15]. Altogether the four data sets above contain

gene expression profiles of 544 yeast deletion mutants. The series

accession numbers of these data sets are GSE4654 [12],

GSE25644 [10], GSE25909 [3] and GSE2324 [15].

Gene expression data analysis
The detailed DNA microarray normalization and statistical

analysis procedures see described in Supplemental Methods (Text

S1). After processing, the gene expression changes are represented

by discrete values: 1 (significant up-regulation), 21 (significant

down-regulation) and 0 (no significant expression change).

Inference of the optimal Bayesian network structure
We employ the kernel-based Bayesian network learning

algorithm [27] with three modifications. First, we use the ‘DM

kernel’ instead of the trivial kernel to handle the yeast deletion

Figure 5. Novel causal or non-causal relationships predicted by DM_BN and an inferred novel regulatory model involved in mating
process. (A) Left panel: All genes that are significantly changed compared to the wild type upon deletion of subunits of the Sir Complex and kinases
of Ste11-mediated MAPK cascading pathway. Right panel: Genes marked by green bar are ,10 kb from the nearest telomeres, and genes marked by
red bar are involved in mating process. (B) A novel predicted regulatory network that SIR complex and (Ste11-mediated) MAPK cascades pathway has
functional overlap through kinase Fus3 (that were down regulated in the SIR complex) in mating. Known Ste11-mediated MAPK pathway is shown by
Solid lines. Solid lines: known interactions, dashed lines: newly predicted interactions. (C) Novel causal relationships and undirected interactions
predicted by DM_BN among STFs: Cst6, Sfp1, Bas1, Mac1, Gsm1, Ixr1, Haa1, Ume6 and Cad1, and some subunits of the SIR, SWI/SNF and SAGA
complex, under parameter setting w~10. Purple nodes: chromatin machinery components; Green nodes: sequence-specific DNA binding
transcription factors.
doi:10.1371/journal.pgen.1003757.g005
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mutant datasets. Second, we use a template matrix to constrain the

space of all possible Bayesian network structures. Details of the

‘DM kernel’ and the construction of the template matrix are

described in the Results and will not be repeated here. Finally, we

modified the BIC scoring function by increasing the weight of the

complexity term for penalizing the Kernel Generalized Variance

[38] measure. This is necessary for removing biological noise and

increasing the precision and sparsity of the finally obtained

network structure. Formally, the Bayesian network scoring

function is modified as follows (cf. eqn. 4 in ref [27] for details):

J(i,pi)~N(KGVfig|pi
{KGVpi

){
w

2
dpi

di log N

Here, J(i,pi) is the BIC score for node i and its parents pi, and the

overall score J for a full Bayesian network is: J~
P

i

J(i,pi).

KGVfig|pi
and KGVpi

are the Kernel Generalized Variance [38]

for node sets fig|pi and pi. w[Rz is the multiplicative weight

that we impose on the second term of the scoring function.

With the DM kernel inside the KGV measure, the template

matrix as a structural constraint and the modified scoring function,

we can search for the Bayesian network structure that optimally fit

the yeast deletion mutant datasets. Specifically, in each step, we

consider 1) adding an edge that is consistent with the template; 2)

deleting an edge from the current BN structure; 3) reversing the

direction of an edge that will not violate the causal constraints

embodied the template. In accordance with previous studies, we

use the greedy ascent TABU search method [39] to find the ideal

Bayesian network structure. Here, ‘TABU’ denotes a Meta

searching strategy that prohibits the algorithm from ‘undoing’ a

recent operation. It helps the search procedure from being getting

stuck in the local optima regions [39]. Finally, we adopt an

efficient dynamic graph acyclicity checking method [40] in the

Bayesian network structure search, since the most computational

intensive task in this study involves inferring a Bayesian network of

up to ,400 nodes, using the conventional static graph acyclicity

checking method would be fairly slow.

Deriving causal knowledge from the Bayesian network
structure

Interpreting the causalities in the Bayesian network structure is

not a straight forward task. This is because there are equivalence

classes of Bayesian network structures. All BNs in the equivalence

class are semantically equivalent. They share the same set of

skeletons (edge connections regardless of arrows), but differ in the

directionalities of some edges [41]. As such, there are two types of

edges in a Bayesian network: compelled edges, whose direction-

alities are fixed among BNs in the equivalence class and non-

compelled edges, whose directionalities are not consistent in the

equivalence class [42]. The authors also proposed an efficient

algorithm to dissect a Bayesian network into compelled (directed)

edges and non-compelled (undirected) edges (the results are

collectively represented as a partially directed acyclic graph,

a.k.a., PDAG) [42]. However, the approach is not well suited for

our study because the template matrix contains much a priori

causal information, which was not used by Chickering’s algorithm

[42].

To overcome this problem, we employ Meek’s rules [28] to

convert the Bayesian network structure into a PDAG. The merit of

this algorithm is that prior causal knowledge could be fully

exploited in making causal interpretations of the Bayesian network

structure. As such, we extract asymmetries in the template matrix

and impose those constraints in the causal interpretation algorithm

[28]. In this way, the causal information conveyed in deletion

mutant experiments is used maximally.

Jaccard index
Jaccard’s similarity index [43] quantifies the similarity between

two sets of elements. In this work, we use Jaccard index to evaluate

the similarity between the deletion mutant expression profiles of

two regulators, which is calculated as follows:

JI(regulator1,regulator2)~
k

mzn{k

Here:

k: No. of common targets for regulator1 and regulator2.

m: No. of genes whose expression significantly changed in the

deletion mutant of regulator 1.

n: No. of genes whose expression significantly changed in the

deletion mutant of regulator 2.

Evaluating the Precision/Recall of the inferred network
We use known relationships between the 165 mutants in 30

chromatin modification complexes [3], ground-truths protein-

protein interactions, regulatory interactions and genetic/epistatic

interactions curated from the KEGG and SGD databases to

evaluate the precision/recall for the predicted networks. For this

purpose, we calculated the recall and the precision of a network

using the formula below:

Recall~
Ntp

Nknown

,Precision~
Ntp

Nprediction

:

Ntp: the number of edges that are correctly predicted in the

network (true positives, i.e., predicted edges that are also consistent

with known protein-protein interactions).

Nknown: the total number of known pair-wise interactions

between nodes in the network (e.g., between subunits in known

protein complexes).

Nprediction: the number of edges in a predicted network.

In rare cases, a deletion-mutant regulator gene appears in more

than one data set. Removing any copy of that gene will typically

cause many of its interactors in that data set undetected. So,

multiple copies of all these overlapping genes are retained in our

analysis. In this scenario, no matter how many edges between two

same genes from two different datasets are predicted in the

network, we only count this interaction once. Moreover, in the

analysis of causal relationships, if the directionalities of these edges

are consistent, we retain the directionality of that interaction;

otherwise, we treat this interaction as an undirected (non-

compelled) edge.

Functional enrichment analysis
The significance of the functional enrichment of a gene list is

computed by performing the hypergeometric test. In this work, all

the GO annotation, phenotype and pathway data sets were

downloaded from the SGD, KEGG database. The P-value is

calculated as follows:

P-value~1{
Xk{1

i~0

S
i

� �
| N{S

n{i

� �
N
n

� �

N: The total number of genes with significant expression change

in any deletion mutant experiment.
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S: Number of genes in one particular functional category.

n: Number of genes with significant expression change in the

current deletion mutant experiment.

k: Number of overlapped genes between the n genes and the S

genes.

Strategies for systematic testing and evaluation of
network-inference methods

To systematically compare the performance of the DM_BN

algorithm with existing network-inference methods, we tested the

ARACNE [25] software, the Disruption Network approach [26]

and the Jaccard Index (JI) approach, which are not based on

Bayesian networks. We also tested the WinMine Toolkit [24] and

Bayesian network learning with two other scoring metrics (BIC

[20,21] and BDeu [22]) (Detailed description of each method is

listed in Supplemental Note 1 in Text S1).

To ensure the comprehensiveness of the evaluation, for each

method and whenever possible, we use a wide range of parameter

settings to infer a number of networks to best reveal the tradeoffs

between precision and recall. Specifically, for the DM_BN

algorithm, we run it with a wide range of values for the w
parameter (See Methods ‘‘Inference of the optimal Bayesian

network structure’’ for details) to infer a set of BNs with different

number of edges. Similarly, for the WinMine toolkit [24], we run it

at different values of the kappa parameter to infer BNs; for

ARACNE [25], various mutual information thresholds are used to

infer a set of regulatory networks; for the Jaccard index (JI)

approach, a wide range of the JI similarity cutoffs are used for

network construction and for the BIC score approach, different

weights (like the w parameter in DM_BN) are multiplied to the

penalty term ({ d
2

log N , see Eqn. 42 in [20]) in the Bayesian

information criterion to infer BNs. Note that we could only

generate a single best network for the BDeu scoring approach [22]

using the optimal ESS value [23] since there is no way to tune the

precision-recall tradeoffs. Similarly, only a single network can be

inferred for the disruption network approach [26]. This is because

to determine whether a gene is significantly differentially expressed

in a deletion mutant strain, we employed the default statistical tests

and significance thresholds used in the original experimental study

(See ‘‘Statistical analysis of expression profiles’’ in Supplemental

Methods). It is not clear how to adjust the thresholds synchro-

nously for the four data sets.

Supporting Information

Figure S1 Jaccard’s similarity between the target gene sets of

regulators. (A) Dense pair-wise similarities between the gene

expression profiles of deletion mutants. Edges connecting two

nodes were drawn in the figure if the Jaccard similarity index

between their targeting gene sets is higher than a specific threshold

JI regulator1,regulator2ð Þ§0:14. A STF (Green nodes) is more

likely to connect to another STF than to a GTF (Purple nodes). (B)

Left panel: the similarity level of deletion mutant expression

profiles (quantified by the thresholds of Jaccard’s index used in the

prediction) is correlated with the likelihood of being known

interactions (protein-protein interactions and epistatic relation-

ships downloaded from SGD). Right panel: The number of

predicted and known interactions that passed the thresholds of

Jaccard’s similarity index. KI: known protein-protein interaction

and epistatic relationships. PI: predicted protein-protein interac-

tion and epistatic relationships. KI%: the percentage of known

protein-protein interactions or epistatic relationships among gene

pairs that passed the thresholds of Jaccard’s similarity index.

Purple nodes: chromatin machinery components (GTFs); Cyan

nodes: single or double mutants of protein kinases, phosphatases;

Green nodes: sequence-specific DNA binding transcription factors

(STF).

(PDF)

Figure S2 Precision of edge orientations for networks inferred by

DM_BN, BIC, WinMine and BDeu at different parameters. BNs

are predicted by four template-free BN learning algorithms (as

indicated in the key) at various parameter settings. Using the

regulator-DEGs identified in the deletion mutants experiments as

reference, the x-axis represents the total number of predicted

causal interactions in a BN (i.e., the directed edges in the

corresponding PDAG) that overlap with the reference regardless of

edge direction. The y-axis represents the precision of edge

orientation (the percentage of predicted causal interactions with

the same orientation as the reference). Tunable parameters

include the kappa parameter in WinMine, the weight of the

penalty term in BIC and the w parameter in DM_BN. The BDeu

metric does not have any tunable parameter and only predicts one

network. Note that the recall of a BN prediction cannot be

calculated based on these reference relationships, because simply

linking regulators to DEGs identified from the deletion mutants

experiments are too permissive to represent the direct regulator-

target gene relationships and hence cannot be used as a gold

standard. DEG: Differentially expressed genes.

(PDF)

Figure S3 Clustering of the deletion mutant expression profiles

of the STFs and GTFs shown in Figure 5C.

(PDF)

Table S1 The pair-wise Jaccard similarity index (JI) values

between target gene sets for deletion mutants of the regulators

shown in Figure S1. JIw0:14.

(XLS)

Table S2 Known interactions downloaded from the SGD data

set. —— undirected interactions; ——. directed interactions.

(XLSX)

Table S3 Function enriched among a regulator’s target genes

under rich medium growth conditions.

(PDF)

Table S4 Evaluation of the WinMine and DM_BN algorithm

based on known knowledge of chromatin modification complex.

For a fair comparison, parameters for the two algorithms were set

to k~0:001 in WinMine and w~10 in DM_BN, so that the

networks inferred by different methods have roughly the same

number of edges.

(DOCX)

Table S5 Similarity between the target gene sets of subunits of

the SWR1 complex and Htz1, which are involved in vesicle

organization. See Figure 3 for their predicted relationships by

DM_BN.

(DOCX)

Table S6 The predicted interactions by WinMine when

k~0:001. —— undirected interactions; ——. directed interac-

tions. Networks shown in Table S6 and S7 were used for

functional enrichment analysis and for predicting the chromatin

modification complex relationships.

(XLSX)

Table S7 The predicted interactions by DM_BN with network

template when w~10.

(XLSX)
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Table S8 The predicted interactions by WinMine when

k~0:05.

(XLSX)

Table S9 The predicted interactions by DM_BN with network

template when w~8.

(XLSX)

Table S10 The predicted interactions by DM_BN without

network template when w~8.

(XLSX)

Table S11 Evaluating the causality predicting performance of

WinMine, BIC and DM_BN with/without the network template

using known knowledge of the MAPK signaling pathways. The

relationships were predicted by WinMine under the parameter

setting k~0:05, by BIC under the penalty term’s weight 2.0 and

by DM_BN under w~8.

(PDF)

Table S12 Similarity between target gene sets of subunits in the

SIR complex and kinases in the STE-mediated MAPK signaling

pathways. In this table, we list the Jaccard index similarities

between regulators involved in mating and filamentous growth

processes. See Figure 3 for more information for their predicted

relationships.

(DOCX)

Text S1 Supplemental methods and supplemental notes.

(DOCX)
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