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Abstract: In this study, we report on a numerical study on design optimization for a microfluidic
crossflow filtration system incorporated with the staggered herringbone micromixer (SHM).
Computational fluid dynamics (CFD) and the Taguchi method were employed to find out an
optimal set of design parameters, mitigating fouling in the filtration system. The flow and the
mass transfer characteristics in a reference SHM model and a plain rectangular microchannel were
numerically investigated in detail. Downwelling flows in the SHM model lead to backtransport of
foulants from the permeable wall, which slows down the development of the concentration boundary
layer in the filtration system. Four design parameters — the number of grooves, the groove depth,
the interspace between two neighboring grooves, and the interspace between half mixing periods —
were chosen to construct a set of numerical experiments using an orthogonal array L9(34) from the
Taguchi method. The Analysis of Variance (ANOVA) using the evaluated signal-to-noise (SN) ratios
enabled us to identify the contribution of each design parameter on the performance. The proposed
optimal SHM model indeed showed the lowest growth rate of the wall concentration compared to
other SHM models.

Keywords: microfluidic filtration; fouling; micromixer; Taguchi method; optimization;
numerical simulation

1. Introduction

Membrane filtration is widely used in a variety of areas, e.g., wastewater treatment, chemical
and biological industries, food industry, pharmaceutical industry, and microfluidics [1–4]. Crossflow
filtration (CFF), used for a large-scale application in conventional filtration processes, is a filtration
process in which a feed flow is parallel to the membrane surfaces. If the feed flow is directed
perpendicular to the membrane surfaces, it is called dead-end filtration. Depending on the pore size,
a filtration process is classified into microfiltration, ultrafiltration, and nanofiltration. Two major
drawbacks limiting the performance and the reliability of a membrane filtration system are concentration
polarization and fouling, leading to flux decline and the decrease in lifetime of membranes [5,6].
Concentration polarization refers to a build-up of the concentration of foulants (molecules or small
particles) near the membrane surface, forming a concentration boundary layer. Fouling is an irreversible
adsorption of rejected foulants that forms a layer of molecules or particles on the membrane surface.

Typical approaches to enhance flux are the pretreatment of membrane and membrane modifications
to obtain fouling-resistant membranes [7,8]. From the viewpoint of fluid mechanics, meanwhile,
hydrodynamic techniques such as flow instabilities, inserts, patterned surfaces, and turbulent flow
can also be employed to achieve an enhanced performance in crossflow filtration [6,9–12]. Among
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such techniques, flow instabilities can be induced by vortical flows, e.g., Taylor vortices in a rotational
Couette flow and Dean vortices in a curved channel flow [13–16]. In the crossflow filtration, such flow
instabilities, occurring in coiled or twisted tubular membranes, increase the backtransport of solute or
foulants away from the membrane surface, ultimately leading to enhanced permeate fluxes [17–20].
Another hydrodynamic technique to enhance filtration performance is the use of inserts. Helical baffles
inserted in a tubular membranes generate secondary helical flows, suppressing membrane fouling and
concentration polarization [21,22].

As far as inserts are concerned, static mixers [23] inducing chaotic advection [24,25] in a laminar
flow regime is the most efficient way of utilizing inserts in crossflow filtration [12,26,27]. If chaotic
advection takes place in a crossflow filtration system, it leads to chaotic trajectories of fluid particles
even in a simple laminar flow condition, preventing suspended particles or solute from adsorbing
on the membrane surface. Therefore, mixing via chaotic advection can be regarded as a promising
means to mitigate fouling and concentration polarization in a crossflow filtration system working in
a laminar flow regime. A recent numerical study conducted by Jung et al. [12] is a representative
example, demonstrating the use of a static mixer to suppress the development of the concentration
boundary layer and to reduce the wall concentration in a tubular membrane module. In their work,
a barrier-embedded partitioned pipe mixer (BPPM) [28,29] is employed as a static mixer inducing
chaotic mixing.

With the development of microfabrication technologies in the last decade, microfluidic membrane
filtration combining microfluidics and membrane technologies has become a promising research
area [30–32]. Many different fabrication methods integrating membranes into a microfluidic device
have been proposed, e.g., direct incorporation of membranes in microchannels and incorporation of
membranes during lithography processes. As for recently developed novel fabrication methods and
their applications in microfluidics, we refer to a review paper by Chen and Shen [32]. Since typical
flows in microfluidic devices belong to the laminar flow regime, mixing near the membrane surface is
not significant and the local concentration of foulants near the membrane surface increases rapidly [32].
Thus, concentration polarization becomes a serious drawback in microfluidic membrane filtration.
As in conventional macroscale filtration, membrane fouling is also a factor to be considered when
designing a microfluidic filtration system [33–35]. In previous studies [36,37], it was demonstrated that,
with a micromixer incorporated with a microfluidic membrane filtration system, the permeate flux
could be significantly improved via chaotic mixing that reduces the amount of fouling on membrane
surfaces. To fully understand the flow kinematics and the mass transport in such filtration systems
relying on chaotic mixing, however, further investigation is required.

To ensure the enhanced performance of a microfluidic filtration system with mixing elements, it is
crucial to optimize the mixer geometry and mixing protocols. In this study, we chose the staggered
herringbone mixer (SHM) [38] as a micromixer incorporated in a microfluidic crossflow filtration
system and demonstrated the design optimization for the filtration system. Our main focus was
on optimizing the filtration system using computational fluid dynamics (CFD) and an optimization
scheme. In addition, we attempted to elucidate the flow and the mass transfer characteristics in the
filtration system with an emphasis on the influence of the unique flow characteristics of the SHM on the
development of the wall concentration. To this end, first, the flow and the concentration distribution in
the filtration system are investigated using a commercial CFD software, ANSYS-CFX 18.1 (ANSYS Inc.,
Canonsburg, PA, USA). Then, the Taguchi method [39] is employed to optimize the design variables in
such a way that the development of the wall concentration is suppressed. From there, Analysis of
Variance (ANOVA) enables us to quantify the influence of each design variable on the development of
the wall concentration. Finally, an optimal set of design variables is identified.
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2. Problem Statement

2.1. Geometry of the Crossflow Filtration System

Figure 1 illustrates the periodic unit of the staggered herringbone mixer (SHM) with a flat permeable
region (membrane) on top of the microchannel, opposite to the bottom with the herringbone-like
grooves, for a microfluidic filtration application. The original design suggested by Stroock et al. [38] is
referred to determine our SHM designs. As shown in Figure 1a, the location of the apex of a groove is
positioned at a distance 1/3 wc from the sidewall in the first half cycle and at a distance 2/3 wc from
the sidewall in the last half cycle, where wc is the channel width. The patterned surface with the
grooves creates two counter-rotating cross-sectional flows repeating periodically and inducing chaotic
advection [38,40,41]. As the grooves are incorporated in a permeating microchannel, the accumulation
of concentration near the permeable wall is expected to be reduced if effective stirring occurs near
the membrane surface. Four major design parameters of the SHM — the number of grooves (np),
the interspace between two neighboring grooves (lg), the interspace between half mixing periods (lp),
and the groove depth (hg) — are selected and manipulated, whose specific values are summarized
in Section 2.3, to minimize the development of the wall concentration (See Figure 1a for the details).
Other geometric parameters are fixed as in [38]; hc = 77 µm and wc = 200 µm, where hc is the channel
height. The slanted angle of the grooves is 45◦.
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Figure 1. (a) Periodic unit of the staggered herringbone mixer (SHM) consisting of four grooves in
a half cycle; (b) computational domain consisting of 10 periodic units, where a permeable region is
located on top of the microchannel, opposite to the herringbone-like grooves; (c) a thin rectangular
domain (Ωε) defined at a cross-section, where the surface-averaged dimensionless wall concentration
cw is evaluated.

Figure 1b shows a typical computational domain, consisting of 10 periodic units of the SHM and
two buffer regions near the inlet and outlet. Since a periodic flow field cannot be ensured due to the
presence of the permeable region, the computational domain composed of 10 periodic units is used to
investigate the flow and the mass transport in the filtration system. The number of spatial periods was
determined by referring to previous literatures [40,41], where a significant mixing was identified after
ten or so periods. In Sections 3.3 and 3.4, it is confirmed that the growth rate of the wall concentration
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in the down-channel direction can be determined from the obtained concentration distributions,
demonstrating that the number of periodic units is large enough to capture the development of the wall
concentration and the concentration boundary layer. On the other hands, the length of a buffer region
is set to be 100 µm, considered to be much larger than the entrance length (lent) for the rectangular
channel flow (for reference, lent ~ 6 µm, when Re = 1 [42]). Two buffer regions are inserted to avoid
any numerical artifact caused by the presence of abrupt permeate flux near the inlet and outlet of the
channel. The origin of the coordinate is located at the center of the inlet. A thin rectangular domain
(Ωε) defined at a cross-section, shown in Figure 1c, will be used to evaluate the surface-averaged
dimensionless wall concentration cw as defined in Equation (4) in Section 2.4.

2.2. Governing Equations and Boundary Conditions

The objective function in the design optimization of the microfluidic filtration system is to
minimize the development of the wall concentration on the permeable region. Therefore, the evolution
of the wall concentration in the down-channel direction should be obtained. To find the concentration
distribution affected by the flow in a specific channel design, we solve the flow and mass transport
problems in a decoupled manner. A steady flow of an incompressible Newtonian fluid in a laminar
flow regime is assumed. The velocity field is obtained by solving the steady Navier-Stokes equation
and the continuity equation, given by

ρ(u · ∇u) = −∇p + µ∇2u in Ω (1)

∇ · u = 0 in Ω (2)

where ρ is the density, u the velocity, µ the viscosity, and p the pressure. A uniform inlet velocity u
is imposed at the inlet (Γi). The zero pressure boundary condition (p = 0) is imposed at the outlet
(Γo). At the permeable region (Γp), a uniform normal permeate velocity is imposed as a Dirichlet
boundary condition, given by u · n = uper, where uper is the magnitude of the permeate velocity and
n the outward unit normal vector at the boundary. In this study, uper is fixed to uper = 1 × 10−4u,
which lies in a typical operational condition of a microfiltration application. This assumption of a
constant permeate velocity holds when the applied transmembrane pressure (∆pm) is much higher than
the transmembrane osmotic pressure (∆πm), which is frequently assumed in previous studies [43,44].
At the remaining boundaries (denoted by Γw) — corresponding to the bottom wall, side walls, surface
of the grooves, and buffer region — the no-slip boundary condition (u = 0) is imposed. The Reynolds
number (Re) is defined as Re = ρuDh/µ, where Dh is the hydraulic diameter (Dh = wchc/2(wc + hc)).
It is assumed that Re = 1 in our numerical simulation, since we are concerned with filtration in a
microfluidic device.

The concentration distribution of foulants is obtained by solving a steady convection-diffusion
equation using the velocity field obtained as a solution of the flow problem. Although complex fouling
behaviors would exist in real applications, due to shear-induced migration, frictional dynamics, cell
adhesion, and diffusiophoresis, we focus on the simplest mass transfer driven by convection and
diffusion to investigate the fouling mitigation by chaotic mixing. The steady convection-diffusion
equation is given by

∇ · (D∇c) − u · ∇c = 0 in Ω (3)

whereD is the diffusivity of the foulant and c the concentration of the foulant. A uniform concentration
(c = c0, where c0 is a constant) is imposed at the inlet (Γi), which is the case when a well-dispersed
feed solution is introduced through the inlet. At the outlet (Γo), the diffusive mass transport is
zero, i.e., n · D∇c = 0. At the remaining boundaries (Γp and Γw), the total mass flux is zero, i.e.,
n · (−D∇c + cu) = 0. It should be noted that the zero flux condition at Γp corresponds to the case
of 100% rejection of the foulant by the permeable membrane. The Péclet number (Pe) is defined as
Pe = uDh/D, fixed at Pe = 107 in this study, corresponding to the case where the transport of foulants
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is dominated by the convective transport. For other details on the problem statement, we refer to our
previous study [12].

2.3. Design Parameters

For the optimal design of SHM minimizing the degree of fouling (which is characterized by the
rate of increase of the wall concentration), the Taguchi method is employed to conduct the optimization
and sensitivity analysis. Table 1 summarizes the levels of four selected design parameters. We adopted
the SHM design proposed in the previous studies [38,45] to determine the range of variation for each
parameter. We choose a reference SHM model that is constructed with the design parameters, np = 4,
lg = 56.6 µm, lp = 56.6 µm, and hg = 12 µm. Our numerical analysis is carried out for nine SHM
models derived from the L9(34) orthogonal array of the Taguchi method. Since the three parameters
(np, lg, and lp) are related to the length of one periodic unit of a specific SHM design, the length of a
simulation domain with ten SHM units varies with the combination of the design parameters.

Table 1. Design parameters of the SHM and their range of variation.

Levels
Parameters

np lg
* lp

* hg
*

1 4 56.6 56.6 12
2 6 70.7 70.7 17
3 8 84.8 84.8 22

* The unit of length is µm.

2.4. Characterization of the Degree of Fouling

To assess the degree of fouling in a SHM model, one needs to define the wall concentration on
the permeable region. As used in our previous study [12], a surface-averaged dimensionless wall
concentration (cw) is defined to avoid a possible numerical artifact in the concentration values at wall
nodes, given by:

cw =

∫
Ωε

c(x)dA∫
Ωε

c0dA
(4)

where Ωε is a thin rectangular domain defined in a cross-section of interest at a specific z coordinate
(See Figure 1c) and x the position vector for a location in the cross-section. In optimization, we will use
an objective function, the minimization of the growth rate of the dimensionless wall concentration
in the down-channel direction, rather than minimizing the wall concentration at a fixed location.
The objective function is an appropriate one since the channel length varies with the design parameters
of the SHM. The growth rate of the wall concentration is obtained from the regression of the average
wall concentration cw as a function of the axial coordinate z.

To characterize the growth of the wall concentration cw, we adopt the film theory developed for a
thin slit channel [46,47]. In this theory, the dimensionless concentration difference is represented by

cw − cp

cb − cp
= exp

(
uperδ

D

)
(5)

where cw is the wall concentration, cb the bulk concentration, cp the permeate concentration, uper the
permeate velocity, and δ the concentration boundary layer thickness. From the film theory for a
fully developed laminar flow in the slit channel, the concentration boundary layer thickness (δ) is
represented by

δ(z)
z

= 1.475
(

h
z

)2/3(
D

umaxh

)1/3
(6)
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where h is the channel height and umax the maximum fluid velocity in the fully developed laminar
flow. Since we assume 100% rejection of foulants on the permeable wall, the permeate concentration is
zero, i.e., cp = 0. Rearranging Equations (5) and (6), the dimensionless wall concentration becomes

ln
(

cw

cb

)
= 1.475

(
D

umaxh

)1/3
h2uper

3

D3 z

1/3

(7)

Motivated by Equation (7), we propose to use an exponential form to describe the change of the
dimensionless wall concentration cw with respect to ẑ, given by

cw = exp(aẑn) (8)

where n is an exponent representing the growth rate of the fouling layer along the down-channel
direction and ẑ = z/wc. The two parameters (a and n) in Equation (8) are determined by curve fitting.

2.5. Numerical Methods

Numerical simulations are performed using a commercial CFD software, ANSYS-CFX 18.1
(ANSYS, Inc.). A simulation domain is discretized by hexahedral elements. The number of nodes
ranges from 12,180,401 to 23,699,911, while the number of elements from 11,775,360 to 22,910,400, for
channel geometries used in this study. Since more than one million elements are generated in one
periodic unit of a SHM model, it is considered to be fine enough to avoid grid dependency, referring
to the previous literatures [40,41], where less than one million elements are used in mixing analysis
to reproduce experimentally observed mixing patterns. Refined boundary-layer elements with the
minimum size being 0.25 µm (equivalent to 0.003 hc) are generated near the permeable wall to obtain
reliable concentration values. A workstation with two 10-core processors (Intel(R) Xeon(R) CPUs
E5-2687 W 3.1 GHz) and 512 GB of memory is used for our numerical simulation.

3. Results and Discussion

3.1. Development of the Concentration Boundary Layer in a Plain Rectangular Channel

Before conducting numerical simulations for the SHM models, we first solve the flow and mass
transfer problems in a plain rectangular channel (without any mixing element) to investigate the
development of the wall concentration and the concentration boundary layer. A plain rectangular
channel with the same cross-sectional dimensions as those of the SHM (hc = 77 µm and wc = 200 µm) is
used in the simulations. The same boundary conditions and material properties as used for the SHM
models are used to solve the flow and mass transport problem for the plain rectangular channel.

Figure 2 illustrates the evolution of the surface-averaged dimensionless wall concentration (cw)
and the dimensionless concentration boundary layer thickness (δB/hc) in the down-channel direction
of the plain rectangular channel. The concentration boundary layer thickness (δB) is defined by a
criterion, given by

c∗ − cw

c∗b − cw

∣∣∣∣∣∣
y=δB

= 0.01, (9)

where c∗ = c/c0 and c∗b = cb/c0 (c∗b = 1, in this study), which is analogous to that used to define the
thermal boundary layer in heat transfer [42]. As expected by Equations (6) and (7) derived from the
film theory, the dimensionless wall concentration (cw) and the dimensionless boundary layer thickness
(δB/hc) keep increasing with z/wc. Since cw is defined as the surface-averaged wall concentration
scaled by the inlet concentration, it starts from the initial value of 1. It should be noted here that
δB/hc ∝ z0.325, i.e., the power-law index n for the plain channel is 0.325, while that predicted from the
film theory is 1/3, thus the relative difference of the two values is less than 3%.
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Figure 2. The surface-averaged dimensionless wall concentration (cw) and the dimensionless
concentration boundary layer thickness (δB/hc ) in the plain rectangular channel as functions of
the dimensionless axial coordinate, z/wc.

3.2. Flow Characteristics of the Shm with a Permeable Wall

In the SHM, two helical flows are generated in each half cycle by the herringbone-like grooves
inducing lateral motions of the fluid [38,40]. Due to the apex location changing alternatingly in a
periodic unit, two cross-sectional flow portraits are generated in the first and second half cycles and
they intersect one another when projected onto the same plane. According to the linked twisted maps
(LTM) framework [48], the two flow portraits satisfy the necessary condition for the creation of chaotic
advection [49,50]. Figure 3 depicts cross-sectional velocity vectors projected onto planes normal to
the z direction. The red lines indicate the axial positions used to plot cross-sectional velocity vectors.
One can clearly observe that downwelling flows are generated when a fluid stream passes through
the apex of a herringbone-like groove, leading to two counter-rotating cross-sectional flows [40]. Due
to asymmetric groove patterns repeating periodically, the location of the downwelling flow changes
periodically as well, which is the unique flow characteristic of the SHM. It is worth mentioning that,
in spite of the outflux at top surface, the cross-sectional flow pattern is similar to that observed in
the SHM with non-permeable walls, which is due to the small permeation velocity compared to
the average inlet velocity as mentioned in Section 2.2. The two counter-rotating flows repeating
periodically are able to increase the backtransport of foulants from the permeable wall, effectively
mitigating concentration polarization and membrane fouling in the microfluidic crossflow filtration.
The concentration distribution of foulants affected by the flow in the filtration system with the SHM
will be discussed in the following section.
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Figure 3. The velocity vector plots at four cross sections showing two counter-rotating flow portraits
and downwelling flows in the reference SHM model. Velocity vectors are projected on the cross-sections.
The axial location of each cross section is indicated by a red line. Velocity vectors (a) at the first apex in
the first half cycle; (b) at the last apex in the first half cycle; (c) at the first apex in the second half cycle;
and (d) at the last apex in the second half cycle.
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3.3. Concentration Distribution of Foulants

Figure 4 illustrates the cross-sectional concentration distributions in the reference SHM model
(where np = 4, lg = 56.6 µm, lp = 56.6 µm, and hg = 12 µm) and in the plain rectangular channel, both
with the constant permeation velocity uper on Γp, demonstrating the development of the concentration
boundary layer near the permeable region. As for the reference SHM model, the concentration
distribution at the end of the five selected periods are shown, where each subscript indicates the
corresponding spatial period (i.e., C2 indicates the concentration at the end of the second period, and so
on). In the case of the plain rectangular channel, the concentration distributions are plotted at the
same cross-sections used in the reference SHM model. Due to the downwelling flows present in the
SHM model (See Figure 3), foulants accumulated near the upper wall (permeable wall) were dragged
downward, thus slowing down the concentration boundary layer development. Compared to the
concentration distribution in the plain rectangular channel, the boundary layer in the SHM model
was thinner, especially around x = ±0.25wc, clearly demonstrating that the accumulated mass was
back-transported toward the bulk region by the rotational motions of the fluid. However, the wall
concentration near the center (x = 0) was locally high due to the two counter-rotating flow patterns
merged at the center. It is apparent that, even though the SHM model is not an optimized one, the flow
and mixing characteristics in the SHM lead to the reduction of the wall concentration in an overall
sense, compared to the case of the plain rectangular channel.
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Figure 4. Evolution of the concentration distribution in the reference SHM model and the plain
rectangular channel with the permeating wall (upper wall). The color contour represents the
dimensionless concentration (c/c0), with black region having a higher accumulation of foulants.
Here, subscripts indicate the spatial periods of the SHM model in which the concentration contours
are plotted.

Figure 5 shows the evolution of cw in the reference SHM model and in the plain rectangular channel
along the down-channel direction. It was observed that the growth of cw was suppressed by introducing
the SHM in the channel, compared to that in the plain rectangular channel. As qualitatively observed
in Figure 4, the downwelling flows induced by the herringbone-like grooves lead to the slowdown
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of the growth rate of the wall concentration cw. To quantify the growth rate of cw, we performed a
linear regression to find the exponent n in the model equation, Equation (8), and plotted the regression
lines using the fitted parameters (a and n) for the two cases (See Figure 5). The regression line of the
SHM model slightly deviated from the numerically obtained data points. The deviation is thought
to be caused by adopting the film theory, which was originally developed for an infinitely thin slit
channel without considering any geometric feature in the channel, which is not the case for the SHM
model. In the case of the plain rectangular channel, however, the regression line matched well with
the data points. The fitted exponent n in the plain rectangular channel was 0.368, which is higher
than that predicted from the film theory given by Equation (7). Since we are concerned with the plain
rectangular channel with a finite width, there is a possibility of a deviation from the predicted value
using the film theory in which an infinite channel width is assumed.
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3.4. Design Optimization using the Taguchi Method

In the previous section, we learned that the flow in the SHM can reduce the growth rate of the
wall concentration in the down-channel direction. Now, we attempt to optimize the microfluidic
filtration system, the SHM with a permeable wall. The objective function is to minimize the growth
exponent n of the dimensionless wall concentration cw. As described in Section 2.3, we construct nine
models (for numerical experiments) with a specific combination of design parameters provided by the
L9(34) orthogonal array. For each SHM model, the flow and mass transfer problems were solved and a
linear regression was performed to find the exponent n. Figure 6 shows the evolution of cw in each
SHM model along the down-channel direction. In all SHM designs, a remarkable reduction of cw was
observed, compared to that in the plain rectangular channel. In this figure, a periodic fluctuation in cw

is observed in each SHM model, because the concentration distribution is affected by the periodically
rotating flow nature. Table 2 summarizes the orthogonal array and the fitted exponent n in each SHM
model, which will be used to evaluate the signal-to-noise (SN) ratio for the model.
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Table 2. The L9(34) orthogonal array and the growth exponent (n ) of cw in each SHM model.

Model
Parameter Levels n

np lg lp hg

1 (reference) 1 1 1 1 0.304
2 1 2 2 2 0.247
3 1 3 3 3 0.242
4 2 1 2 3 0.298
5 2 2 3 1 0.298
6 2 3 1 2 0.262
7 3 1 3 2 0.269
8 3 2 1 3 0.234
9 3 3 2 1 0.299

Since a lower value of n is desirable to mitigate fouling, the performance analysis was carried out
with the lower-the-better type [39], where the SN ratio is defined by

SN ratio = −10 log10

(
n
n0

)2

(10)

where n0 is the growth exponent of the reference SHM model. By investigating the SN ratio, an optimal
combination of design parameters of the SHM model that are expected to minimize the growth
exponent n would be determined within the limit of the selected levels of the design parameters.
The contribution of each design parameter on the performance can be estimated from the Analysis of
Variance (ANOVA). Figure 7 shows the SN ratios of different levels in each design parameter. In this
plot, the optimal set of design parameters can be obtained by selecting the level with the highest SN
ratio for each design parameter. The contribution of each design parameter on the growth exponent,
identified by the ANOVA, is shown in Figure 8. It shows that the groove depth hg is the most significant
parameter, while the interspace between two half cycles lp shows the weakest contribution on the
performance. As for hg, it was reported in previous studies [40,45] that the groove depth is highly
related to the strength of the rotational flows induced in the SHM, thus also to the strength of the
backtransport of foulants caused by the downwelling flows.
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Table 3 summarizes the optimal combination of design parameters and the corresponding growth
exponent obtained from the concentration distributions for the optimal SHM design. It should be noted
that the optimal SHM design leads to the smallest value of n less than that of any SHM model (See
Table 2), showing the best performance with regard to minimizing the growth rate of the dimensionless
wall concentration cw. Figure 9 illustrates the evolution of the concentration in the vertical direction (in
the y-direction) at several periods for three channel designs, the plain rectangular channel, the reference
SHM model, and the optimized SHM model. The ordinate in the figure is the surface-averaged
dimensionless concentration c at a vertical location y, defined by

c =

∫
Ωy

c(x)dA∫
Ωy

c0dA
(11)

where Ωy is a thin rectangular slab with the height 0.01 hc and the width wc, defined at a cross-section
and centered at a specific y coordinate. In all cases, the wall concentration increases as the number of
the spatial period increases, but with a different growth rate. The growth rate of c decreases significantly
by the introduction of the SHM, compared to that observed in the plain rectangular channel. A further
reduction in the growth rate is achieved with the optimal SHM design.

Table 3. The optimal design of the SHM to minimize the growth exponent (n) of cw.

np lg lp hg n

1 2 1 3 0.225
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4. Conclusions

In this study, design optimization for the staggered herringbone mixer (SHM) incorporated in a
microfluidic crossflow filtration system was carried out using the Taguchi method and computational
fluid dynamics (CFD) and the Taguchi method. Four design parameters of the SHM were chosen
and nine sets of SHM models with different combinations of the design parameters were constructed
by the L9(34) orthogonal array. Numerical simulations were conducted using a commercial CFD
software, ANSYS-CFX 18.1 (ANSYS Inc.), to obtain the flow and mass transfer characteristics for
each model. Downwelling flows observed in the reference SHM model induced the back-transport
of accumulated mass away from the permeable region, ultimately reducing the wall concentration
(cw). The growth exponent n of cw along the down-channel direction was determined by the linear
regression applied to a set of data for cw and z/wc. The signal-to-noise (SN) ratio for each design
parameter with three different levels enabled us to identify an optimal SHM design and the Analysis of
Variance (ANOVA) was used to quantify the contribution of each design parameter on the performance.
The optimized SHM design resulted in the lowest value of the growth rate of cw and the most suppressed
concentration distribution near to the permeable region, compared to other SHM models. To the
best of our knowledge, this research is the first attempt to optimize a microfluidic filtration system to
mitigate the development of fouling (in this study, characterized by the growth exponent n). As far as
the optimization scheme is concerned, our methodology was not a sophisticated one, but it indeed
enabled us to find key parameters with influence on the filtration performance and a set of optimal
design parameters.
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