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Abstract

Prostate cancer (PCa) is the leading cause of cancer death in men. With more therapeutic 

modalities available, the overall survival in PCa has increased significantly in recent years. 

Patients with relapses after advanced secondgeneration anti-androgen therapy however, often 

show poor disease prognosis. This group of patients often die from cancer-related complicacies. 

Multiple approaches have been taken to understand disease recurrence and to correlate the gene 

expression profile. In one such study, an 11-gene signature was identified to be associated 

with PCa recurrence and poor survival. Amongst them, a specific deubiquitinase called ubiquitin

specific peptidase 22 (USP22) was selectively and progressively overexpressed with PCa 

progression. Subsequently, it was shown to regulate androgen receptors and Myc, the two 

most important regulators of PCa progression. Furthermore, USP22 has been shown to be 

associated with the development of therapy resistant PCa. Inhibiting USP22 was also found to be 

therapeutically advantageous, especially in clinically challenging and advanced PCa. This review 

provides an update of USP22 related functions and challenges associated with PCa research and 

explains why targeting this axis is beneficial for PCa relapse cases.
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INTRODUCTION

Epidemiologically, prostate cancer (PCa) is the most common cancer in men and second 

most common cancer related death worldwide[1]. Over the past few years, treatment 

modalities have improved, albeit modestly, the overall survival of PCa patients. The fate 

of advanced PCa remains the same however, and androgen deprivation therapy (ADT) is the 

standard of care in such cases. PCa eventually recurs within 6 months to 2 years in the form 

of highly aggressive castration resistant prostate cancer (CRPC)[2-5]. While the treatment 

of CRPC with second generation ADT such as Abiraterone or Enzalutamide is promising, 

eventually, the cancer progresses to metastatic disease [called metastatic CRPC (mCRPC)], 

especially in the bone[6]. Chemotherapy with docetaxel is the first choice for treatment 

with mCRPC. Unfortunately, mCRPC patients have died due to complications related to 

metastatic transformation of PCa[7-11]. Interestingly, these mCRPC often lose the androgen

receptor dependency and are associated with the loss of tumor suppressor proteins such 

as tumor protein p53 (TP53) and retinoblastoma 1 (RB1)[12,13]. Genome-wide sequencing 

analysis has found some of the unique variations in the chromosomal sequence but no such 

driver mutation/s in PCa has been ascertained to correlate with cancer progression[14-16]. 

Moreover, not all primary PCa cases progress to CRPC. Therefore, to understand the 

indolent vs. aggressive nature of PCa, gene-expression analysis is highly important. To 

correlate CRPC progression and to stratify the therapeutic regimen, high throughput 

sequencing analysis of various stages of PCa to correlate genetic expression profiles with the 

therapy-resistant state has been attempted. The expression of a 11-gene signature in primary 

prostate tumors was shown to correlate with therapeutic failure in PCa patients[17]. Further 

characterization has shown that this 11-gene signature is a powerful predictor of distant 

metastasis and poor survival. Amongst these eleven genes, a specific deubiquitinases, named 

USP22, has been overexpressed following PCa progression. Further evidence indicates the 

importance of USP22 in a multi-faced pathway, which often correlates with a poor prognosis 

of PCa independently[18-20].

CLASSIFICATION OF DEUBIQUITINATING ENZYMES

The protein ubiquitin (Ub) plays an important role in tissue homeostasis. Ub modification 

is a reversible phenomenon that is coordinated by the deubiquitination pathway[21-24]. 

Deubiquitinating enzymes (DUBs) belong to either cysteine proteases [such as ubiquitin

specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), etc.] or metalloproteases 

[Jab1/Mov34/Mpr1 (JAMM)], which are important for maintaining normal physiological 

homeostasis[21,25]. Approximately 100 DUBs are encoded in the human genome. DUBs 

are involved in various physiological processes including the processing of Ub precursors, 

reversal of ubiquitination and removal of poly-ubiquitin chains[20,26]. Therefore, DUBs 

regulate a series of cellular processes and functions including proteolysis, apoptosis, 

cell cycle progression, gene expression, DNA repair, maintenance of telomeric length, 

spermatogenesis, and so on[27-30]. One such conserved ubiquitin-specific protease is USP22 

and it has been well characterized, relating to various physiological and pathological 

processes[19,31].
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UBIQUITIN-SPECIFIC PEPTIDASE 22

The ubiquitin-specific peptidase 22 (USP22) belongs to the USPs family of DUBs and is 

highly conserved from yeast to vertebrates. In yeast, the USP22 homologue known as Ubp8, 

is complexed with Sgf73, Sgf11 and Sus1 to form the deubiquitylase module (DUBm) 

of the SAGA (Spt-Ada-Gcn5 Acetyl transferase) complex. The SAGA complex has a multi

disciplinary role in gene-expression and RNA-transport. Like yeast Ubp8, USP22 also forms 

a DUBm complex with the human orthologue ATXN7L3, ENY2 and ATXN7 and functions 

as a DUB unit of the human SAGA complex[32,33].

ROLE OF USP22 IN CELLULAR PROCESSES

As a part of the SAGA complex, transcriptional activation by deubiquitination of 

lysine-123 of histone-H2B is enhanced[34,35]. Later it was identified that histone-H2A 

ubiquitination can be processed by USP22. Ubiquitination of H2A by the polycomb group 

of proteins is related to transcriptional repression. However, whether deubiquitination of 

H2Aub (monoubiquitinated histone) by USP22 reverses the phenotype is not yet clearly 

established[36].

Other than histones, USP22 also regulates the ubiquitination status of a large number 

of non-histone proteins. One of the most important functions of USP22 is to regulate 

telomeric length. Telomeric repeat binding factor 1 (TRF1) functions as a negative regulator 

of telomere length by inhibiting the access of telomerase to the telomeric region of 

chromosomes. Poly-ADP-ribosylation of TRF1 by Fbx4 releases it from the telomere, which 

in turn gets ubiquitinated and degraded by the proteasomal pathway. On the contrary, as a 

part of the SAGA complex, USP22, by deubiqitinating TRF1, restores its protein level and 

thereby maintains telomeric length. Depleting USP22 decreases TRF1 levels and enhances 

cell death by genotoxic insults[27]. The deubiquitination activity of USP22 is also important 

for the stability of Sirtuin 1 (SIRT1)[37]. By deacetylating, SIRT1 negatively regulates the 

transcriptional activity of p53 and thereby, p53 dependent apoptosis[38]. Deubiquitination 

also stabilizes another important transcription factor called c-Myc by the similar SIRT1 

mediated pathway. In short, by deubiquitinating a number of transcriptional regulators such 

as Hes1, NFAT, COX-2, SNF1, etc., USP22 maintains their homeostatic functions within 

the cell[39-42]. A compensatory mechanism also involves SAGA, c-Myc and SIRT1. The 

enhanced stability of c-Myc through a USP22 dependent manner increases its transcriptional 

activity, which in turn, increases SIRT1 expression. However, the increase in SIRT1 levels 

enhances its deacetylation activity, which in turn, deacetylates USP22 and other SAGA 

components, thereby decreasing the enzymatic activity of USP22[43]. Interestingly, not all 

deubiquitinations altered protein stability; it also changes the molecular function of the 

protein. Deubiquitinating lysine-63 of FBP1 enhances its recruitment to the chromosome[44]. 

The role of USP22 in B cells is also important for its functionality. Complete ablation of 

USP22 in primary B cells was found to impair the classical non-homologous end joining 

and thereby, affects both V(D)J recombination and class switch recombination for the 

development of various IgG and IgE subtypes[45].
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Little is known about USP22 regulation however. Reports indicate that USP22 transcription 

is regulated by Sp1 and the PKA/CREB dependent pathway[46,47]. USP22 is also regulated 

and stabilized by phosphorylation. Phosphorylation of USP22 at T147 and S237 by CDK1 

increases the deubiquitination status of cyclin B1 in a cell cycle dependent manner. USP22 

mediated deubiquitination of Cyclin B1 promotes its nuclear accumulation and cell cycle 

progression[48]. USP22 is ubiquitously expressed in human subjects as well as in mice. 

In mice, USP22 expression was detected as early as in E4.5. Loss of both USP22 alleles 

results in an embryonic lethality starting at E10.5 and no live embryos were recovered 

after E14.5. Embryonic expression patterns indicate that the potential functions of USP22 

relate to the development of extra-embryonic tissues and the loss of function of embryonic 

USP22 fails to establish vascular interactions with the maternal circulatory system, which 

leads to immense hypoxic stress induced lethality. Loss of USP22 is also associated with 

impairments in transforming growth factor β, vascular endothelial growth factor receptor-2 

and platelet derived growth factor signaling axes in endothelial cells, and pericytes have 

been shown to be implicated with detrimental effects on cell survival, differentiation and 

vessel formation. However, the heterozygous loss of USP22 in mice is still viable but with 

retardation of growth and brain development[38,45]. USP22 expression is also important for 

embryonic stem cell (ESC) differentiation into the embryonic body where Sox2 expression 

needs to be suppressed. Studies have reported that USP22 functions as a transcriptional 

repressor by occupying and deubiquitinating H2B at the Sox2-promoter region during the 

differentiation of ESC into the embryonic body. USP22 expression is also important for 

regulating neural stem/progenitor cell maintenance through the Notch signaling pathway[18]. 

Deubiquitination by USP22 stabilizes the expression of Hes1 protein that negatively 

modulates neuronal differentiation. On the contrary, depletion of USP22 delays Hes1 

oscillation and thereby, induces neuronal differentiation from neuronal progenitor stem 

cells[39]. Overall, USP22 functions in multiple pathways to maintain cellular homeostasis 

and physiological functions of cells.

USP22 EXPRESSION IS FREQUENTLY ALTERED IN CANCER

Altered expression of USP22 was first detected in microarray studies from patient tissue 

cohorts where the expression of 11-gene signatures in stem like cells correlates with poor 

prognosis of the cancer[17]. Over the years, upregulation of USP22 has been validated in 

several cancers such as breast, colorectal, pancreatic, lung, ovarian, bladder, lymphoma, 

glioma, mesothelioma, neuroblastoma, etc.[17,31,49-53]. USP22 mainly functions as a part 

of the SAGA complex and depletion of USP22 alters the expression of a variety of 

transcriptional regulators that ultimately affect the cellular conserved pathway or cell 

metabolism[54]. On the contrary, overexpression of USP22 often stabilizes the transcriptional 

effector proteins that directly or indirectly influence gene expression. Higher expression 

of USP22 is associated with increased risk of cancer recurrence and poor disease-free 

survival[19]. USP22 expression also correlates with cell cycle progression. In fact, depletion 

of USP22 has been shown to be associated with cell cycle arrest, mainly at the G0/G1 

phase[18,48,55,56]. Moreover, the depletion of USP22 was shown to decrease in vivo tumor 

growth[19,55].
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The oncogenic role of USP22 in cancer stem cells (CSC) has been identified as a 

poor prognostic factor in multiple cancer models. Mechanistic studies indicate that by 

deubiquitination, USP22 has been associated with the stabilization of a variety of its 

downstream proteins that are important for the development and maintenance of CSC 

including BMI1. It has also been shown that the increased stability of BMI1 induces CSC 

populations by inducing the expression of stemness associated genes such as CD133, SOX2, 

OCT4 and NANOG and thereby, favor the progression of gastric cancer[57]. The role of 

USP22 and BMI1 in glioma associated stem cells has also been reported. Under hypoxic 

conditions, USP22 stabilizes BMI1 to induce CSC formation for cancer progression in 

glioma models[58].

In non-small cell lung cancer (NSCLC), the upregulation of USP22 was reported to 

be associated with advanced stage or recurrent NSCLC and considered as a poor 

prognostic marker for overall survival[59]. Knockdown of USP22 in an in vivo model 

was shown to decrease tumor angiogenesis, impair non-homologous DNA damage repair 

pathways and significantly improve the therapeutic efficacy of cisplatin. USP22 upregulation 

affects a broad range of pathways in NSCLC to maintain tumor aggressiveness. Cisplatin

resistant lung adenocarcinoma cells were shown to be associated with upregulation of 

USP22. According to that model, USP22 enhances DNA damage repair and cisplatin 

resistance by deubiquitinating histone H2A, which in turn facilitates the phosphorylation 

of histone H2AX. In addition, USP22 was shown to decrease the acetylation of Ku70 

by stabilizing SIRT11 via deubiquitination. Ku70 acetylation dissociates the Bax-Ku70 

interaction and thereby, induces apoptosis by favoring mitochondrial translocation of Bax. 

However, upregulation of USP22 in lung adenocarcinoma inhibits Bax-mediated apoptosis 

in cisplatin-resistant cells[52]. Upregulation of USP22 was also shown to be associated with 

chemotherapy-resistant pancreatic cancer cell survival by enhancing autophagic activity[60]. 

In breast and colorectal cancer, upregulation of USP22 was reported to be associated with 

decreased therapeutic efficacy of the HSP90 inhibitor ganetespib. Depletion of USP22 in 

an in vivo model of colorectal cancer was shown to increase the therapeutic potentiation of 

ganetespib[61].

In gastric cancer, the co-expression of USP22 and BMI1 was shown to be associated with 

shorter disease-free survival and a poor prognosis for overall survival[62]. This was similarly 

reported in colon cancers. The upregulated expression of USP22 was significantly correlated 

with both a decrease in relapse-free survival and overall survival. An in vitro study showed 

that the upregulation of USP22 mediated the enhanced expression of BMI1 and Cyclin D2, 

and was responsible for increased cell proliferation and the metastatic behavior of colon 

cancer cells[63]. In hepatocellular carcinoma, the enhanced expression of USP22 was shown 

to be an independent factor for a poor prognosis with tumor progression[64]. The enhanced 

stability of c-Myc following USP22 mediated deubiquitination was reported to be associated 

with breast cancer cell proliferation and metastatic activity[43]. The upregulation of USP22 

was also reported to be associated with a poor prognosis in papillary thyroid carcinoma[65] 

and glioma[66]. In retinoblastoma, the depletion of USP22 has been shown to induce cancer 

cell apoptosis by suppressing the TERT/P53 signal pathway[67].
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In the majority of cancers, USP22 functions like an oncogene. Tumor suppressive functions 

however, were also reported in certain cancer models such as acute myeloid leukemia 

(AML) and colorectal cancer. Recently, in an in vivo model, it was shown that the deletion 

of USP22 from Mx1-Cre mice carrying KrasG12D/+ was associated with shorter survival 

compared to KrasG12D/+ mice. Further studies indicate that mice that received myeloid 

progenitor cells carrying USP22 deletion and mutated KrasG12D/+ had an AML phenotype. 

As a mechanism, USP22 was shown to positively regulate protein expression of the 

transcription factor PU.1, which is important for myeloid and B-lymphoid cell development. 

Depletion of USP22 directly affected myeloid specific gene expression in KrasG12D/+ 

mutated mice, which further led to the development of AML[68]. Contradictory functions of 

USP22 in the development of colorectal cancer have been reported. One such study showed 

that intestine specific USP22 deletion impaired the tumor phenotype associated with Apc 
mutation and positively correlated with the intestinal tumor burden and decreased survival. 

Mechanistically, the loss of USP22 resulted in increased mTOR activity and has been linked 

to the tumorigenic properties of colorectal carcinoma[69].

Over-expression of USP22 is observed in aggressive PCa and has been associated with its 

oncogenic function. In the following section, we will concentrate mainly on the role of 

USP22 in the development of CRPC and treatment-resistant PCa.

USP22 AND PROSTATE CANCER

During PCa progression, increase in copy numbers as well as enhanced expression of 

androgen receptor (AR) (along with its splice variant formation) often led to aggressive 

therapy resistant phenotypes[70,71]. Therefore, targeting AR is the most favorable choice to 

limit PCa progression. Over the years, improvement in AR targeted therapy has increased 

overall survival to some extent, however, recent clinical studies indicate that a individuals 

are becoming resistant to second generation anti-androgen therapy. Therefore, understanding 

therapy resistance pathways may provide better or alternative solutions to target PCa. Since 

the 11-gene signature was shown to predict PCa recurrence and therapy resistance, the 

contribution of individual genes and 5-year PCa survival was analyzed in mCRPC cases. 

High expression of Ki-67, BUB1, KNTC1 and USP22 showed significant association with 

poor 5-year survival[18]. Further, it was shown that the concerted expression of USP22, 

AR and Myc in PCa cells predicted the worst prognosis of the disease. USP22 plays an 

important role in AR protein stability and recruitment to AR-binding regions to drive AR 

driven cancer cell proliferation and tumor growth in CRPC cells. Later, it was shown that 

USP22 is equally important for protein stability of AR-variants. The upregulation of USP22 

also promotes AR/Myc driven gene expression independent of androgens in the CRPC cell 

line, implicating that USP22 has a tremendous impact on genes that are regulated by AR 

and Myc in CRPC cells. This might be important to the phenomenon of anti-androgen 

therapy resistance[18]. Interestingly, analysis of patient data with mCRPC validates that 

point (https://www.cbioportal.org/)[72]. Analysis of the coordinated expression of USP22 

and AR between abiraterone/enzalutamide (2nd generation anti-androgen therapy) in naïve 

vs. exposed groups revealed that USP22/AR expression is upregulated in patients who have 

progressed to mCRPC under treatment conditions. However, in the treatment naïve group, 

such correlation was not ascertained [Figure 1]. Patients who are resistant to abiraterone/
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enzalutamide therapy often develop neuroendocrine-like PCa. Further analysis of patient 

data (GSE126078) indicates that in pathologically validated neuroendocrine PCa, USP22 

expression is significantly higher compared to metastatic sites, which did not develop the 

neuroendocrine phenotype [Figure 2]. In general, bone is the preferred metastatic site for 

PCa. However, neuroendocrine PCas often develop visceral metastasis. USP22 expression in 

visceral metastatic sites (https://www.cbioportal.org/)[72] was significantly higher compared 

to bone [Figure 3]. Therefore, further validation of the earlier observations and selective 

upregulation of USP22 are associated with therapy resistance and progression of the disease. 

This group of patients need an alternative form of treatment and the early detection and 

stratification of these patients will be beneficial.

Increased expression of USP22 was also observed with progression of primary PCa. 

Analysis of the Oncomine database showed that USP22 expression increases with increased 

Gleason score [Figures 4 and 5][73,74], indicating that during progression of PCa, USP22 

expression can be a predictive factor for advanced disease. Further analysis of GSE54460 

expression data supports increased USP22 expression with higher grades of PCa [Figure 6]. 

Moreover, advanced PCa patients often have functionally inactive TP53. Oncomine analysis 

of the Grasso cohort indicates that TP53 mutation is associated with increased expression 

of USP22 [Figure 7][75]. Therefore, primary PCa patients who have higher expression 

of USP22 with functionally inactive TP53 might be candidates for alternative therapeutic 

approaches. Various clinical trials are currently ongoing with upfront administration of 

chemotherapy such as cabazitaxel for patients who have started to develop disease 

progression in the early stage. In future, analysis of such cohorts will address whether 

such therapy can be beneficial for those who have showed early upregulation of USP22 

expression.

To mimic that hyperactivation/overexpression state, the role of USP22 functions in PCa 

progression has recently been redefined in a genetically modified mouse model. According 

to the model, prostate specific upregulation of USP22 is associated with a hyperproliferative 

phenotype, an indication of aberrant cell proliferation. Moreover, studies have also showed 

that overexpression of USP22 is important for cellular survival following a genotoxic 

insult by DNA-damaging agents. In line with their finding, the authors have identified the 

nucleotide excision repair pathway protein XPC as a substrate for USP22, which modulate 

XPC polyubiquitination status following the DNA-damage response and thereby, efficiently 

recruited it into the damage foci. Interestingly, the depletion of USP22 in PCa cells affects 

efficient DNA repair and therefore, presents a therapeutic challenge[19].

Although USP22 was identified almost 15 years earlier as an important oncogenic driver 

for therapy resistant prostate cancer, not much work has been carried out to understand 

its importance in the development of mCRPC. As part of the SAGA complex, how 

inappropriate stoichiometric upregulation of USP22 in PCa drives AR/Myc mediated gene

expression remains unresolved. Also, whether USP22 plays an independent role in PCa 

progression is not well understood.
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OTHER USPS IN PROSTATE CANCERS

Importantly, other ubiquitin specific proteases or USPs have long been recognized in the 

progression of advanced PCa.

USP2a (also known as USP2) has been associated with PCa development. More than 50% of 

cases with PCa have USP2a overexpression. Increase in USP2a selectively deubiquitinates 

and stabilizes MDM2, which is important for the proteasomal degradation of p53 in PCa 

cells. p53 is the negative regulator of Myc in many cases. USP2a mediated enhanced 

stability of MDM2 abrogates p53 accumulation and its tumor suppressive functions. 

Therefore, the inhibition of p53 mediated transactivation of transcriptional activity indirectly 

stabilizes Myc accumulation in cells and thereby, enhances the development of aggressive 

PCa transformation. The deubiquitination activity of USP2a was also found to stabilize 

the anti-apoptotic gene fatty acid synthase and thereby induce cells to develop neoplastic 

transformation. The depletion of USP2a has also been shown to abrogate such cellular 

transformation[76,77].

USP7 has been associated with PCa and plays a negative role for PTEN nuclear 

localization. PTEN is generally regarded as a protein phosphatase that dephosphorylates the 

phosphatidylinositol (3,4,5)-triphosphate to inhibit AKT signaling. However, PTEN’s role in 

the nuclear DNA repair system associated with tumor suppressive functions has been well 

recognized. Following mono-ubiquitination, PTEN moves into the nucleus and participates 

in the repair processes. In PCa, over-expression of USP7 expels this ubiquitinated-PTEN 

to the cytosol and activates the cells towards transformation. Interestingly, in the presence 

of androgen, USP7 was identified as a co-regulator of AR. Studies also suggest that USP7 

mediated AR-deubiquitination enhance the AR-transcriptional ability that promotes cell 

proliferation and PCa aggressiveness. Moreover, single nucleotide polymorphisms that affect 

USP7 function has been associated with the development of intermediate risk PCas[78,79].

USP19 silencing directly affects the growth of several prostate cancer cell lines, suggesting 

a putative role in carcinogenesis[80]. USP19 deubiquitinates and stabilizes KPC1, an E3 

ligase for p27. Interestingly, the effects of decreased nuclear levels of p27, resulting in a 

poor prognosis, have already been described in prostate cancer[81]. USP19 regulates the 

levels of p27, although p27 is not a USP19 substrate. Reports indicate that the disruption 

of USP19 inhibits a series of PCa cell proliferation by arresting cells in the G1 to S phase 

transition through stabilization of the cyclin-dependent kinase inhibitor p27[80]. Increased 

stability of AR by USP12, USP14 and USP26 has been linked to the development of 

aggressive PCa[82-84]. Recent reports indicate that the overexpression of USP33 in PCa 

confers docetaxel resistance by inhibiting JNK activation and apoptosis[85].

In the context of PCa, most USPs are overexpressed; however, USP9x was found to be 

down regulated in advanced PCa and was associated with higher Gleason scores. This 

downregulation increases the local invasiveness of PCa cells, possibly through the ERK 

activation pathway[86].

Among all the DUBs, available data suggest that USP22 functions often overlapped with 

other reported USPs in the context of progression and development of therapy resistant 
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PCas. Therefore, USP22 targeted therapy or broad-spectrum inhibitors that can abrogate the 

functions of a group of USPs may be a better therapeutic agent in PCa.

TARGETING USP22 IN ADVANCED PROSTATE CANCER TREATMENT

Recent studies have suggested that USP22 is emerging as a potential oncogenic driver 

in relation to PCa. As a member of the cysteine protease family, its catalytic domains 

are somewhat conserved amongst family members. Therefore, the development of 

inhibitors specifically against one such member is challenging. Efforts have been made 

to develop small molecule inhibitors against the allosteric sites of USP22. However, 

till now, no such specific inhibitor has been validated to target USP22. Recently, 

Pirarubicin (4’-O-tetrahydropyranyl doxorubicin, THP), an anthracycline (analogue of 

another chemotherapeutic agent known as doxorubicin), has been shown to inhibit USP22 

expression in a condition-specific manner[87]. Reports indicated that protein kinase A 

(PKA), protein kinase B or mitogen activated kinase-mediated phosphorylation of CREB-1 

bind and activate the USP22 promoter for its synthesis. The addition of THP abrogates PKA 

activity and decreases CREB-1 phosphorylation,, thereby inhibiting USP22 expression and 

USP22 mediated tumorigenic activity. Betulinic acid (BA), a small molecule isolated from 

white birch trees, has been shown to inhibit an array of DUBs. BA was also showed to 

reduce AR protein stability and selectively kills PCa cells. Another multi-DUB inhibitor 

WP1130 has been shown to selectively kill PCa cells. Treatment with WP1130 also reduces 

AR expression in CRPC cells. Therefore, BA and WP1130 have the potential to enhance the 

therapeutic efficacy of CRPC cells and the published literature suggests that the combination 

of these inhibitors with enzalutamide increases the therapeutic window for the treatment of 

advanced PCa patients[88]. With such growing knowledge, scientists have tried to develop 

exosite inhibitors against the various DUBs. One such inhibitor, P5091, is highly selective 

against USP7 and has been shown to induce apoptotic cell death in therapy resistant multiple 

myeloma cells[89]. However, its selectivity and specificity as an agent in PCa remains 

unknown.

CONCLUSION

In summary, the oncogenic role of upregulated USP22 in the progression and development 

of treatment resistance of PCas has been observed [Figure 8][19]. Accumulated evidence 

indicates that USP22 possibly functions independent of the SAGA complex in the 

progression of PCas. Increased acetylation and enhanced activity of GCN5 has been 

reported to be associated with advanced PCa. However, there is a lack of studies to ascertain 

any relationship between upregulated USP22 and other members of the SAGA complex in 

the development of aggressive PCas. Moreover, in advanced PCas, the coordinated function 

of upregulated Myc and USP22 indicates the lack of feedback regulation by hyperactivated 

Myc. Therefore, to develop better targeted therapeutic approaches, a comprehensive 

understanding about the functional interactions among the various sub-units of SAGA and 

their relationships with AR/Myc is important. Moreover, the differential functions of USP22 

in the normal prostate, aggressive disease and disease progression are not fully understood. 

Thus, defining the role of USP22 will be beneficial for the development of future therapeutic 

modalities.
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Figure 1. 
Analysis of ubiquitin-specific peptidase 22 (USP22) and androgen receptor (AR) expression 

from metastatic biopsy samples deposited in https://github.com/cBioPortal/datahub/tree/

master/public/prad_su2c_2019
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Figure 2. 
Ubiquitin-specific peptidase 22 (USP22) expression between neuroendocrine (NE) vs. 

patients who did not develop neuroendocrine PCa (Non NE) using the GSE126078 database

Nag and Dutta Page 16

J Cancer Metastasis Treat. Author manuscript; available in PMC 2021 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Ubiquitin-specific peptidase 22 (USP22) expression compared between bone and visceral 

metastatic sites (Other met) using the expression data deposited in cbioportal (https://

www.cbioportal.org/study/summary?id=prad_su2c_2019, SU2C/PCF Dream Team, PNAS 

2019)
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Figure 4. 
Ubiquitin-specific peptidase 22 expression across the Gleason Score. Number of patients are 

in parenthesis
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Figure 5. 
Ubiquitin-specific peptidase 22 expression across the Gleason Score. Number of patients are 

in parenthesis
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Figure 6. 
Ubiquitin-specific peptidase 22 expression across the Gleason Score (GS) using the database 

GSE54460
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Figure 7. 
Comparison study for ubiquitin-specific peptidase 22 expression with TP53 mutation status. 

Number of patients are in parenthesis
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Figure 8. 
Summary of ubiquitin-specific peptidase 22 (USP22) role in prostate cancer
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