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Abstract

Organisms are selected to maximize lifetime reproductive success by balancing the costs
of current reproduction with costs to future survival and fecundity. Males and females typi-
cally face different reproductive costs, which makes comparisons of their reproductive strat-
egies difficult. Burying beetles provide a unique system that allows us to compare the costs
of reproduction between the sexes because males and females are capable of raising off-
spring together or alone and carcass preparation and offspring care represent the majority
of reproductive costs for both sexes. Because both sexes perform the same functions of
carcass preparation and offspring care, we predict that they would experience similar costs
and have similar life history patterns. In this study we assess the cost of reproduction in
male Nicrophorus orbicollis and compare to patterns observed in females. We compare the
reproductive strategies of single males and females that provided pre- and post-hatching
parental care. There is a cost to reproduction for both males and females, but the sexes
respond to these costs differently. Females match brood size with carcass size, and thus
maximize the lifetime number of offspring on a given size carcass. Males cull proportion-
ately more offspring on all carcass sizes, and thus have a lower lifetime number of offspring
compared to females. Females exhibit an adaptive reproductive strategy based on resource
availability, but male reproductive strategies are not adaptive in relation to resource
availability.

Introduction

The cost of reproduction is the trade-off between current reproductive effort and future sur-
vival and reproduction [1]. Resources that are allocated to current reproduction cannot be allo-
cated towards future survival and reproduction [2]. As a consequence, organisms must balance
the fitness benefits of allocating resources to current reproduction with the potential costs to
tuture reproductive opportunities [3-4]. Thus, the cost of reproduction can act as a constraint
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on the level of current parental investment for iteroparous organisms. For example, young
individuals that allocate maximum available energy to current reproduction are predicted to
experience decreased survival and overall lower lifetime fecundity compared to individuals that
allocate less than the maximum available energy to early reproduction [3,5]. Empirical tests of
the cost of reproduction and resulting patterns of reproductive allocation have been reported
for females of a number of species [6]. However, there have been few attempts to test for gener-
ality of the theoretical solutions to the cost of reproduction tradeoff (viz. between sexes or
among differing environments).

As a consequence of fundamental differences between the sexes and resulting sexual conflict
(e.g., gamete production, parental care, etc.), the fitness benefits and the costs associated with
specific patterns of reproductive allocation likely differ between the sexes [7]. Costs of repro-
duction in female arthropods are mainly associated with the production of eggs and parental
care (e.g., [8-12]). In contrast, in male arthropods costs are typically associated with mating or
sexual advertisement (e.g., [13-15]). In species where males provide parental care, there are
costs associated with both mating and parental care (i.e. [9,16]).

How does one evaluate sex-specific life history traits in species that provide biparental care?
The standard approach of manipulating brood size may be limited because the level of invest-
ment in biparental species is predicted to be, in part, a result of negotiated investment between
the sexes. If the sexes are not affected by the manipulation in the same way (i.e. because of dif-
ferences in the relative importance of the cost of reproduction or rates of senescence), the
dynamics of care may result in over- or under- estimating the relative costs. Any interpretation
of the experimental results would be confounded by this complication. An alternative approach
would be to simultaneously remove one sex and manipulate brood size. However, this
approach also has difficulties: removing one sex potentially alters the co-evolved pattern of
biparental investment, as demonstrated in many mate removal experiments, again resulting in
an over- or under-estimation of the costs [17]. One approach to overcome these limitations is
to focus on species where both biparental and uniparental care naturally occur within a popula-
tion [18-19].

Burying beetles (genus Nicrophorus) provide an ideal model system for comparing costs of
reproduction and patterns of allocation in a biparental system because although biparental
care is most common, both male and female uniparental care also occurs [20-25]. Both sexes
can separately and independently provide all pre- and postnatal parental care required to suc-
cessfully raise a brood. Broods are raised on a small vertebrate carcass, which is the sole source
of food for parents and offspring during a reproductive attempt [22]. As a result, carcass mass
that is consumed by the parents is an investment in future offspring because that resource
cannot be allocated to the current brood if resource availability constrains reproduction.

Burying beetle parental care consists of preparing the carcass by burying it and then remov-
ing hair, rolling the carcass into a ball, and applying oral and anal secretions that prevent
decay. Once the young arrive on the carcass, parents defend the carcass and larvae and feed the
offspring [20,26]. The eggs are laid in the soil around the carcass, and in Nicrophorus orbicollis
the larvae arrive on the carcass 5-7 days after the parents arrive on the carcass. The larvae feed
directly on the carcass through a small hole made by the parents, and also receive regurgitate
derived from the carcass from both parents [27]. Parents use carcass volume to determine car-
cass size [28]. Both parents use this proximate cue to regulate brood size to match carcass size
through culling of offspring [24,29-30], which results in a positive correlation between off-
spring number and carcass size [29-31].

In this study, we compare costs of reproduction and patterns of reproductive allocation
between uniparental male and female burying beetles (N. orbicollis). Specifically, we (i)
manipulated reproductive resources of breeding males and females to evaluate the relative
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importance of the cost of reproduction as a constraint in the two sexes; (ii) compared life time
fitness of males and females in terms of lifespan, and number and size of offspring produced,
and (iii) evaluated the change in resource allocation between current and future reproduction
as males and females aged.

Methods
Source of Burying Beetles

Burying beetles used to generate the laboratory-born population for our experiments were cap-
tured at the same site in central Wisconsin during summers from 2006 to 2011 using pitfall
traps baited with aged chicken. These beetles were caught on private land, and permission to
collect beetles was obtained from the owners. No endangered or protected species were col-
lected. Wild-caught pairs were placed on 30-g mouse carcasses and allowed to breed to gener-
ate the laboratory population. The date of eclosion was recorded for all first generation
laboratory-bred beetles. They were placed individually in small plastic containers (15.6 x 11.6 x
6.7cm) with ad libitum raw chicken liver and maintained on a 14:10h light:dark cycle until
their use in the experiments as detailed below. The experiment for the female uniparental treat-
ments was conducted in 2007 and 2008, and these data were previously used in a study of
female costs of reproduction by Creighton et al. [5]. We conducted experiments for the male
uniparental treatments during 2010 and 2011, and it is these experiments that we describe in
this study.

To compare costs of reproduction between males and females we combined data from the
male uniparental treatments derived from these later experiments with data from the previ-
ously published study on female uniparental treatments for analysis. Although there is a tem-
poral difference in the experiments, all individuals were collected from the same site and were
subjected to the same experimental conditions, procedures, and treatments. Further, during
the time frame of the current study, two experiments evaluating female life history were per-
formed with beetles from this population. Both experiments produced similar results in regard
to female life history patterns [5,32]. Thus, temporal variation in female life history (in the con-
text of our experiment) seem to be minimal, allowing us to compare male and female life histo-
ries with confidence.

Experimental Design

Parental Care Experiment. The purpose of this experiment was twofold. First, we evalu-
ated the change in parental investment pattern of males as they aged. Second, we manipulated
resource availability as described below to evaluate the cost of reproduction hypothesis. The
experimental design followed that used for females in the previous study [5] with the exception
that we added an under-allocation treatment for both sexes.

We manipulated resource levels during reproduction to create conditions as if parent burying
beetles overinvested (by exchanging a large carcass with a small carcass after the young arrive
on a carcass) or underinvested (by exchanging a small carcass with a large carcass) in current
offspring. Parents assess carcass size during preparation, and subsequently cull offspring based
on this assessment. When carcasses are switched immediately after young arrive, the number of
young culled by the parents reflects the original carcass size and not the substituted carcass size.
For example, female N. orbicollis initially given a 30-g carcass that is subsequently replaced by a
20-g carcass as the larvae first begin to arrive (before culling is completed) rear the number of
young typically raised on a 30-g carcass and not a 20-g carcass [5]. This partitioning of assess-
ment and culling behavior from parental care behavior during later stages allows us to indirectly
manipulate brood size without the parents responding to the manipulation [5]. As a result, we
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are able to assess the effects of the cost of reproduction independent of confounding issues cre-
ated by brood augmentation or physiological manipulation [5].

The experimental design consisted of four treatments: 20-g control, 30-g control, 30-g —
20-g experimental, and 20-g — 30-g experimental. In each of the control treatments, the orig-
inal carcass was left with the parent for the duration of the trial. In the 30-g — 20-g experi-
mental treatment the 30-g carcass was replaced with a pre-prepared 20-g carcass within 12
hours of the arrival of larvae on the carcass. This treatment allowed us to determine the bee-
tle’s responses to overproduction of offspring compared to the available resources. In the 20-g
— 30-g experimental treatment the 20-g carcass was replaced with a pre-prepared 30 g car-
cass within 12 hours of the arrival of larvae on the carcass. This treatment allowed us to deter-
mine the beetle’s responses to underproduction of offspring compared to the available
resources. Although carcasses were switched in the experimental treatments, carcasses were
not switched in the control treatments because previous research found that switching a car-
cass with one that was pre-prepared of the same size had no effect on reproduction [5]. In
addition, each brood was handled daily, regardless of treatment to count larvae and check
brood progress. Therefore, control carcasses were not replaced entirely but were removed
briefly and replaced in a similar way to the experimental treatments. In all treatments, con-
tainers were kept the same. Twelve replicates were completed for each of the four treatments
for males for comparison to the previously documented patterns of females [5]. Combining
data from males from this experiment (plus females in the underallocation treatment) and
females from the Creighton et al. [5] study resulted in 96 total replicates.

The experimental protocol consisted of measuring and recording traits of individual parents
and offspring for each reproductive bout during the parents’ entire lifetimes. The mass, prono-
tum width, and date of eclosion were recorded for each individual that was used for a trial. Pro-
notum width correlates strongly with overall body size (a potentially useful covariate). To
begin each trial we randomly chose a genetically unrelated, 28 day old, virgin male and female
to match the protocol used by Creighton et al. [5]. We randomly assigned each pair to one of
the four treatments, and individuals were assigned to the same treatment for the duration of
their lifetime. The pair was placed in a small brood container (16.5 x 15 x 9 cm) filled with 6cm
of moist soil and either a 20-g (+ 1.0-g) or 30-g (£ 1.0-g) mouse carcass, depending on the
treatment. The containers were kept in an environmental chamber at 21°C on a 14:10 h light:
dark cycle to simulate breeding conditions in August. After the larvae hatched, the female was
removed, and the remaining male provided parental care alone. When the larvae dispersed
into the soil, the male was weighed and placed on ad libitum chicken liver, then placed on a
new carcass of the same size two days later with a genetically unrelated female that had not pre-
viously mated. The cycle continued for the focal male parent beetle until death. The larvae
from each brood eclosed 4-5 weeks after dispersal. On the day of eclosion for each individual
offspring, the date was recorded, along with the mass and pronotum width of each individual.
The experimental protocol for females in the underallocation treatment was the same as that
described for all other treatments.

Non-Breeding Experiment. The purpose of this experiment was to determine the life spans
of males when they did not reproduce for comparison to females from the previous study.
Twenty-four males were selected and placed on ad libitum chicken liver for the duration of their
life spans. Date of eclosion and date of death were used to determine life span of each individual.

Statistical Analyses

Lifetime Fitness Measures. To determine differences in lifetime fitness between males and
females and among treatments, we combined data from the above experiments on males with
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data on females from Creighton et al. [5] and additional data from females for the underalloca-
tion treatment. For summary lifetime measures of fitness, we used two response variables: life
span and lifetime number of offspring. The experiment was designed as a fully crossed factorial
design with two fixed factors: sex (2 levels) and carcass treatment (4 or 5 levels). We evaluated
the two response variables for normality of residuals and equal variances across treatment com-
binations. The data met these assumptions. We also tested size (pronotum width) of individuals
as a covariate. Size was not a significant effect in preliminary analyses and was not used in the
final analysis. The analysis of life span (days from eclosion to death) included the treatment of
non-reproducing individuals. For lifespan and lifetime number of offspring we used a model
where sex and carcass treatment were main effects (fixed) and we included the sex by carcass
treatment interaction (Proc GLM in SAS; SAS 9.3 SAS Institute, Cary, North Carolina, USA).

Within Lifetime Patterns. In our second set of analyses we compared within lifetime pat-
terns of change in life history traits. We analyzed three response variables for their within life-
time pattern of change: initial brood size, final brood size, and mean individual offspring mass
per reproductive bout. Initial brood size is the number of offspring on the carcass before the
parent has reduced the brood through culling. This serves as a measure of the number of eggs
laid on the carcass. It may seem odd to include sex as a factor in initial number of eggs laid
because that is dependent on the female. However, there is potential for females to respond to
male age or quality by changing the number of eggs that they lay, and there is also the possibil-
ity that males are able to produce less sperm over time and thus limit the number of viable
eggs. To acknowledge the potential influence of males on number of eggs laid, we included sex
as a factor in that analysis. Final brood size is the size of the brood when the larvae leave the
tully consumed carcass. This measures the reduction due to culling by the parents and survival
of larvae during the time on the carcass and serves as a measure of fitness per each reproductive
bout. Individual offspring mass is the mass of newly eclosed adults, and it serves as a measure
of individual offspring quality.

The experiment was designed as a fully crossed factorial design with two fixed factors, sex (2
levels) and carcass treatment (4 levels), and repeated measures of the response variables that
corresponded to each reproductive bout (age). We evaluated the three response variables for
normality of residuals and equal variances across treatment combinations. The data met these
assumptions. Typically, count data such as brood size are modeled with a Poisson distribution;
however, in this case the Gaussian normal distribution resulted in a more normal distribution
of residuals. We used the same model for each of the three response variables: sex and carcass
treatment were fixed main effects and age (measured as the chronological number of the repro-
ductive bout) was considered a covariate. Because parents reproduced a different number of
times over their lifetime (range = 2 to 6 times), age cannot be used as a main effect with a set
number of levels, so we treated it as a repeated measures covariate. All possible interactions
between main effects and between main effects and the covariate were included in the model.
The two-way and three-way interactions that included age were of particular interest because
they test for differences in the within lifetime pattern of allocation to future or current repro-
duction. Individual identification number was considered a random effect as a consequence of
the repeated measure on the same individuals. We used the procedure GLIMMIX in SAS (SAS
9.3 SAS Institute, Cary, North Carolina, USA) for the analysis.

Results
Lifetime Fitness Measures

There are significant differences in life span between sexes and across treatments, and the inter-
action between sex and treatment is significant (Table 1). Females live an average of 80.95 days
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Table 1. Analysis of variance table (ANOVA) for life span and lifetime number of offspring.

Response Variable

Life Span

Lifetime Number of Offspring

doi:10.1371/journal.pone.0143762.t001

Source Num df/Den df F-Value
Sex 1/166 9.38
Treatment 4/166 34.95
Sex*Treatment 4/166 2.72
Sex 1/132 7.48
Treatment 3/132 19.89
Sex*Treatment 3/132 1.52

p-value

0.0027
<.0001
0.0325

0.0075
<.0001
0.2147

(confidence interval, hereafter CI = 77.3-84.6 days), and males live an average of 88.74 days
(CI = 85.27-92.21 days). Non-breeding beetles of both sexes live significantly longer than their
breeding counterparts (P < 0.0001 for all comparisons; 110 days versus 79 days, average for

males and females combined across all breeding treatments). There are no differences in life
span among male breeding treatments (P > 0.05 for all comparisons). However, females vary
in life span depending on treatment. Females in the 20-g control treatment and the 20-g —
30-g experimental treatment have significantly longer life spans than beetles from the other

two treatments (P < 0.05 for all comparisons), and females in the 30-g — 20-g experimental
treatment have significantly shorter lives than all other treatments (P < 0.03 for all compari-

sons; Fig 1).
140 -
120 -
—~ 100 -
>
T
2 80
c
T
2 60
Q
= 40
20
O - T T I 1
20g 30g 30->20g 20->30g Nonbreeders

Treatment

Fig 1. Mean (+/- 95% confidence interval) lifespan for males and females in all treatments. Males are black and females are white.

doi:10.1371/journal.pone.0143762.g001
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Lifetime number of offspring differs significantly by sex and treatment, but the interaction
between sex and treatment is not significant (Table 1). Females have an average of 48.9
(CI =45.0-52.7) offspring and males have an average of 41.4 (CI = 37.5-45.2) offspring over
their lifetimes (averaged across all treatments). The overallocation and underallocation treat-
ments had lower lifetime number of offspring compared to the two control treatments (Fig 2).

Within Lifetime Patterns

Initial brood size, a measure of the number of eggs laid per each reproductive attempt, differs
significantly by treatment and age, but not between sexes (Table 2). Initial brood size reflects
the size of the initial carcass in each treatment. It is significantly lower in the 20-g control (16.3,
CI = 15.1-17.6) and the 20-g — 30-g treatment (14.0, CI = 12.6-15.4) compared to the 30-g
control (19.5, CI = 18.1-20.8) or the 30-g — 20-g treatment (18.5, CI = 16.8-20.2; all P < 0.05;
Fig 3). Initial brood size is highly variable with age, but on average declines slightly through
time (slope = -0.8; Fig 3).

Final brood size, the number of eclosed adult offspring for each reproductive attempt, differs
significantly by sex, treatment, age, an interaction between sex and treatment, an interaction
between age and sex, and the three-way interaction between age, sex, and treatment (Table 2).
Final brood size for females (12.5, CI = 11.7-13.3) is higher than for males (10.6, CI = 9.9-
11.4). Similar to initial brood size, final brood size somewhat reflects the initial carcass size. It is
significantly lower in the 20-g control (11.3, CI = 10.3-12.3) and the 20-g — 30-g treatment
(8.1, CI =7.0-9.2) compared to the 30-g control (13.7, CI = 12.7-14.7) or the 30-g — 20-g
treatment (13.2, CI = 11.9-14.5; all P < 0.02). Males and females respond differently to the
carcass treatments through time. In males, final brood size does not differ significantly through
time for the two control treatments and the 30-g — 20-g experimental, but it declines through
time for the 20-g — 30-g experimental treatment (Fig 4A). In females, final brood size
decreases significantly through time for the two control treatments and the 30-g — 20-g exper-
imental treatment, but it does not differ through time in the 20-g — 30-g experimental treat-
ment (Fig 4B).

Mean individual offspring size per reproductive attempt differs significantly by treatment
and a three-way interaction between age, sex, and treatment (Table 2). Offspring size reflects
final carcass size in all treatments. Mean individual offspring size on 20-g carcasses is 0.28-g
(CI=0.26-0.29-g), on 30-g carcasses is 0.35-g (CI = 0.33-0.36-g), on experimental 30-g —
20-g carcasses is 0.29-g (CI = 0.27-0.31-g), and on experimental 20-g — 30-g carcasses is
0.36-g (CI = 0.34-0.38-g). Males and females respond differently to the 30-g carcass treatment
through time. In males, individual offspring mass in the 30-g control treatment declines signifi-
cantly through time (Fig 5A); whereas, in females, individual offspring mass in the 30-g control
treatment increases significantly through time (Fig 5B). In both males and females, average
individual offspring mass remains constant through time in the other three treatments.

Discussion

Male and female N. orbicollis take very different approaches to parental care. The key difference
between the sexes that generates many of the other observed patterns is the difference in num-
ber of offspring kept on a carcass after culling. Females keep substantially more offspring than
males on a given size carcass. Brood sizes resulting from female culling match resource avail-
ability, such that larger broods are found on larger carcasses (Fig 4B; difference in final brood
sizes between 20-g and 30-g carcasses). In contrast, brood sizes resulting from male culling do
not differ with carcass size (Fig 4A; no difference between final brood sizes on 20-g and 30-g
carcasses), but rather reflect a relatively constant 60% of initial brood size. As a consequence,
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Fig 2. Mean (+/- 95% confidence interval) lifetime number of offspring for males and females in all reproducing treatments. Males are black and
females are white.

doi:10.1371/journal.pone.0143762.g002

total mass of offspring produced per reproductive bout and over a lifetime is lower in males
than females. This difference between the sexes suggests that sexual conflict over brood size
could be an important component of the burying beetle breeding system.

Our results differ from those of Walling et al. [25] who found no difference in brood size
between the sexes in N. vespilloides. These contrasting results could be a result of species-spe-
cific differences or a result of differences in experimental design. Whereas we used carcass sizes
that normally result in brood regulation through filial cannibalism in N. orbicollis, Walling
etal. [25] focused on carcass sizes beyond which N. vespilloides regulates brood size [33]. As a
result, brood sizes may have been influenced more by female fecundity than active regulation
through cannibalism.

Why do males keep fewer offspring on a carcass compared to females? We consider three
potential explanations. First, males may be selected to favor a different balance between oft-
spring number and individual offspring size. Body size is an important determinant of fitness
in burying beetles with larger individuals being more successful in competition for a carcass
[22]. Theoretically, males could increase their lifetime fitness by producing fewer, but larger
offspring (i.e. higher quality offspring) relative to other males that kept larger broods. However,
although males keep fewer offspring on a given-sized carcass relative to females, their offspring
did not differ in size compared to females (Table 2 and Fig 5). Instead, males keep fewer off-
spring on a given carcass size and experience reduced fitness by our measure (lifetime number
of offspring).

Second, differences in culling between sexes could result from differences in lifetime strategy
for solving the tradeoff between current and future reproduction. Females raising offspring on
smaller carcasses adopt a conservative lifetime strategy by keeping fewer offspring and using
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Table 2. Analysis of covariance table for initial brood size, final brood size, and mean offspring size for each reproductive attempt. Age reflects the
number of reproductive attempt and is considered a covariate.

Response Variable

Initial Brood Size

Final Brood Size

Mean Offspring Mass

doi:10.1371/journal.pone.0143762.t002

Effect Num df/Den df F-Value p-value
Sex 1/134.8 2.66 0.1050
Treatment 3/131.3 3.74 0.0128
Age 1/293.5 4.46 0.0356
Sex*Treatment 3/131.3 0.68 0.5648
Age*Sex 1/293.5 2.67 0.1033
Age*Treatment 3/259.8 0.27 0.8469
Age*Sex*Treatment 3/259.8 1.74 0.1598
Sex 1/350.7 20.26 <.0001
Treatment 3/349.5 8.79 <.0001
Age 1/302.2 13.13 0.0003
Sex*Treatment 3/349.5 3.74 0.0115
Age*Sex 1/302.2 8.69 0.0034
Age*Treatment 3/301.9 0.62 0.6035
Age*Sex*Treatment 3/301.9 4.60 0.0036
Sex 1/367 0.46 0.4992
Treatment 3/367 5.13 0.0024
Age 1/367 0.34 0.5582
Sex*Treatment 3/367 1.81 0.1502
Age*Sex 1/367 1.43 0.2334
Age*Treatment 3/367 0.07 0.9737
Age*Sex*Treatment 3/367 2.72 0.0458

more of the carcass for their own energy reserves [5,32]. As a result, females breeding on
smaller carcasses have longer lifespans and more reproductive attempts compared to females
breeding on larger carcasses, and thus females on large and small carcasses have equal fitness
[5]. Theoretically, males could be taking a similar approach by keeping fewer offspring on a
given carcass, and therefore survive for more reproductive bouts compared to females. Thus,
differential culling may be a result of differences between the sexes in the balance between cur-
rent and future reproduction. However, males do not experience extended lifespans compared
to females (Fig 1). Males do not appear to be using a different strategy for balancing current
versus future reproduction.

Third, an as yet untested possible explanation for why males keep fewer offspring than
females is for paternity assurance. Female burying beetles store sperm from previous matings
[34], which they use to fertilize eggs along with the sperm of the resident male [35]. After a car-
cass is buried, satellite males attempt extra-pair copulations with the resident female and, if
successful, tend to copulate with females for longer periods of time than resident males [36]. In
N. vespilloides, offspring from female brood parasites tend to arrive on a carcass first, and resi-
dent females use a time-dependent cue while culling the brood to increase the proportion of
the brood that is their own [37-38]. By some similar rule, resident males may differentially cull
offspring to increase their paternity. Culling of more offspring by males compared to females
may have little to do with reproductive strategy of offspring size or cost of reproduction, but
rather it may represent an evolved response to the risk of extra pair paternity.
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black line with closed triangles is the 30->20g experimental treatment, and the dashed black line with open triangles is the 20->30g experimental treatment.

doi:10.1371/journal.pone.0143762.9003
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Fig 4. Least-squares means (+/- standard error) for final brood sizes per reproductive attempt for males (A) and females (B). For both males and
females the solid black line with closed squares is the 20g control treatment, the solid black line with open squares is the 30g control treatment, the dashed
black line with closed triangles is the 30->20g experimental treatment, and the dashed black line with open triangles is the 20->30g experimental treatment.

doi:10.1371/journal.pone.0143762.9g004

Largely as a consequence of keeping different numbers of offspring on a carcass, male and
female N. orbicollis experience costs of reproduction differently. Females change brood size
and their corresponding level of investment proportional to resource availability (Fig 4B).
Opverallocation (30-g — 20-g) is costly for females and results in a dramatic decrease in lifetime
fitness (Fig 2) especially compared to reproduction on 30-g carcasses. Underallocation (20-g
— 30-g) allows females to experience a longer reproductive lifespan compared to the
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Fig 5. Least-squares means (+/- standard error) for mean offspring mass per reproductive attempt for males (A) and females (B). For both males
and females the solid black line with closed squares is the 20g control treatment, the solid black line with open squares is the 30g control treatment, the
dashed black line with closed triangles is the 30->20g experimental treatment, and the dashed black line with open triangles is the 20->30g experimental
treatment.

doi:10.1371/journal.pone.0143762.9005
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overallocation treatment. However, underallocation results in decreased fitness for females
because final brood sizes are reduced compared to 20-g controls (Fig 4), possibly from lack of
ability to maintain the larger carcass with a smaller brood. Taken together these results suggest
that the cost of reproduction for females depends on resource availability and acts as a con-
straint on female reproductive investment.

In contrast to patterns of cost of reproduction in females, males do not experience costs of
reproduction associated with resource availability because they keep far fewer offspring on a
given carcass. Final number of offspring per brood differs much less on large and small car-
casses compared to females, and the effect of overallocation on males is negligible in terms of
lifespan and lifetime number of offspring. Fewer offspring kept on a carcass enhanced the neg-
ative effect of underallocation for males such that the number of offspring was lower even than
the normal brood size for a 20-g carcass. Like females, males may have difficulty controlling
decomposition of the larger carcass with a small broods. Taken together these results suggest
that reproductive strategy of males does not change depending on the amount of available
resources. Males incurred the same costs of reproduction in all treatments.

Both males and females experience decreased lifespans as a cost of reproduction, consistent
with results from several other insect species [8,14,39-42]. However, specific activities that pro-
duce the cost of reproduction vary among species and sexes. Male dung beetles (O. binodis)
incur a cost of reproduction manifest in lifespan from mating and courtship, but females
showed no effects of these activities compared to non-reproducing individuals [14]. Lifespan
was reduced due to egg production and parental care in female dung beetles of a different spe-
cies [8]. A similar result was found in seed beetles (Callosobruchus maculatus) where males suf-
tered from reduced lifespan due to mating [41], while females suffered from reduced lifespan
due to egg-laying [40]. Although reproduction generally reduces lifespan for males and
females, the source and magnitude of the effect differs between the sexes. Male reproductive
costs are typically fixed relative to resource availability; whereas, female costs of reproduction
vary based on resource availability consistent with our results in N. orbicollis.

Terminal investment has been demonstrated in female burying beetles [5], but can males
terminally invest in a system where offspring number and size are not strongly related to
resource availability? For males, the tradeoff between current and future reproduction is not as
tightly linked as in females (because they cull offspring below the level a carcass can support).
In such a system, males cannot increase current reproductive output by limiting allocation to
self, so terminal investment may not be compatible with the level of culling provided by males.
Older males could provide better post-hatching parental care [43], and thus produce larger oft-
spring similar to the pattern seen in females. However, males appear to be poorer at parental
care as they age, and offspring size declines. Our data do not support the presence of male ter-
minal investment in N. orbicollis.

Our experimental approach of using uniparental parents to evaluate life history traits in a
biparental species is contingent on the level of investment being similar between the two types
of care [18]. If uniparental parents increase their level of investment to compensate for the loss
of their partner, then our experiment would overestimate the level of investment. Female bury-
ing beetles do not compensate for the loss of mate during the period of care we focused on but
males do [44]. As a result, we potentially could be overestimating male but not female parental
investment. Given that males were unaffected by our brood manipulation and do not seem to
be resource limited, it is highly unlikely that any compensation by male parents compromises
our conclusions.

Large-scale experiments such as this always represent a tradeoft between logistical con-
straints and the number of treatments required in a large factorial design. In this case, we did
not have time ore space to replicate the uniparental female treatments along with the same
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treatments in uniparental males. To make the comparison between the sexes we used data
from a study done few years earlier [5]. We went to great lengths to create exactly the same
experimental conditions, both experiments were done in the same location, we used beetles col-
lected from the same source population, and we used F1 and F2 generation beetles to avoid
influences from the field population. Also, one of the authors oversaw both experiments to
ensure the same protocols were used. To the extent possible, other than doing these two experi-
ments at the same time, all other conditions were identical. We realize that the observed differ-
ences between males and females may be partially due to random variation in the sample, or
small unobservable differences among individuals collected at two different times. The main
difference we identify in this paper is a difference in the number of offspring culled by each sex.
Males cull about 40% of offspring on average, and female culling, as noted above, differs by car-
cass size but averages about 20%. This difference is relatively large, and thus is likely to reflect
real differences between sexes and not small differences in timing of experiments. As with all
large-scale experiments, reproducibility of the results can only be determined by redoing the
experiment multiple times.

Conclusions

Female N. orbicollis incur different costs of reproduction depending on the amount of
resources available because they alter their reproductive tactic in a way that maximizes their fit-
ness. However, males invest a similar amount of effort into each brood, regardless of resource
availability, which leads to a decrease in their fitness in comparison to females. Further investi-
gation is necessary to determine the evolutionary cause of biparental care in this species. To
determine why the cost of reproduction differs between the sexes in this biparental species will
require further investigation into the evolution of biparental care.
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