
RESEARCH ARTICLE

PDBrenum: A webserver and program

providing Protein Data Bank files renumbered

according to their UniProt sequences

Bulat Faezov1,2, Roland L. Dunbrack, Jr.ID
2*

1 Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation,

2 Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of

America

* roland.dunbrack@fccc.edu

Abstract

The Protein Data Bank (PDB) was established at Brookhaven National Laboratories in 1971

as an archive for biological macromolecular crystal structures. In mid 2021, the database

has almost 180,000 structures solved by X-ray crystallography, nuclear magnetic reso-

nance, cryo-electron microscopy, and other methods. Many proteins have been studied

under different conditions, including binding partners such as ligands, nucleic acids, or other

proteins; mutations, and post-translational modifications, thus enabling extensive compara-

tive structure-function studies. However, these studies are made more difficult because

authors are allowed by the PDB to number the amino acids in each protein sequence in any

manner they wish. This results in the same protein being numbered differently in the avail-

able PDB entries. For instance, some authors may include N-terminal signal peptides or the

N-terminal methionine in the sequence numbering and others may not. In addition to the

coordinates, there are many fields that contain structural and functional information regard-

ing specific residues numbered according to the author. Here we provide a webserver and

Python3 application that fixes the PDB sequence numbering problem by replacing the

author numbering with numbering derived from the corresponding UniProt sequences. We

obtain this correspondence from the SIFTS database from PDBe. The server and program

can take a list of PDB entries or a list of UniProt identifiers (e.g., “P04637” or

“P53_HUMAN”) and provide renumbered files in mmCIF format and the legacy PDB format

for both asymmetric unit files and biological assembly files provided by PDBe.

Introduction

The Protein Data Bank (PDB) is a database for the three-dimensional structural data of biolog-

ical macromolecules, including proteins and nucleic acids [1]. The data, typically obtained by

X-ray crystallography, NMR spectroscopy, or cryo-electron microscopy, and submitted by sci-

entists from around the world, are freely accessible through the World Wide PDB (wwPDB)

http://www.wwpdb.org/ and three wwPDB partner sites, https://www.rcsb.org [2], https://

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Faezov B, Dunbrack RL, Jr. (2021)

PDBrenum: A webserver and program providing

Protein Data Bank files renumbered according to

their UniProt sequences. PLoS ONE 16(7):

e0253411. https://doi.org/10.1371/journal.

pone.0253411

Editor: Yang Zhang, University of Michigan,

UNITED STATES

Received: May 5, 2021

Accepted: June 5, 2021

Published: July 6, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0253411

Copyright: © 2021 Faezov, Dunbrack. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data used in this

study are derived from data on PDBrenum (http://

dunbrack3.fccc.edu/PDBrenum) and can be

https://orcid.org/0000-0001-7674-6667
http://www.wwpdb.org/
https://www.rcsb.org
https://www.ebi.ac.uk/pdbe
https://doi.org/10.1371/journal.pone.0253411
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253411&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253411&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253411&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253411&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253411&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253411&domain=pdf&date_stamp=2021-07-06
https://doi.org/10.1371/journal.pone.0253411
https://doi.org/10.1371/journal.pone.0253411
https://doi.org/10.1371/journal.pone.0253411
http://creativecommons.org/licenses/by/4.0/
http://dunbrack3.fccc.edu/PDBrenum
http://dunbrack3.fccc.edu/PDBrenum

www.ebi.ac.uk/pdbe [3], and https://pdbj.org [4]. The PDB provides useful and fundamental

information about tens of thousands of proteins. For many proteins, there are 10s or even 100s

of available structures performed under varying conditions, including the presence of different

binding partners such as inhibitors, nucleic acids, or other proteins, or with mutations and

post-translational modifications. However, in each structure in the PDB, authors are allowed

to number protein sequences in any way they wish. This includes the coordinates and any

functional or structural annotations contained within the PDB files. Authors commonly num-

ber according to sequences deposited in gene databanks such as GenBank [5] or UniProt [6].

So, for instance, a domain from a protein that is not at the N-terminus of the natural sequence

may start with its position in the full-length sequence. However, different authors may choose

different conventions for this numbering. Authors may or may not include the N-terminal

methionine or N-terminal signal sequences in the numbering, both of which may be cleaved

off to form the mature protein. For example, in PDB entry 3lvp [7], which is a structure of the

kinase domain of human IGF1R, the DFG motif amino acids are numbered 1153–1155. But in

PDB entry 3d94 [8], these residues are labeled as residues 1123–1125, because the numbering

is that of the mature protein, which does not include the 30 amino acid signal sequence cleaved

from the N-terminus of the preprotein. Proteins in the PDB often include N-terminal

sequence tags, and the numbering of these residues can be just about anything including nega-

tive numbers, 0, or numbers that seem to indicate the residues are from the same gene as the

protein under study. These inconsistent numbering schemes compromise structural bioinfor-

matics studies that seek to compare multiple structures of a single protein or structures within

protein families across the PDB. They also affect mapping of sequence annotation data (such

as mutation data) to structural information in the PDB, since any structure downloaded from

the PDB may or may not have the same numbering scheme as the sequence database.

The problem of inconsistent numbering, insertion codes, negative residue numbers, and

other problems have been discussed previously but not addressed in any rigorous way (e.g.

https://proteopedia.org/wiki/index.php/Unusual_sequence_numbering and https://www3.

cmbi.umcn.nl/wiki/index.php/Residue_number). Mapping PDB structures to UniProt has been

attempted a number of times, including SSMAP [9], Seq2Struct [10], and PDBSWS [11],

although these servers did not renumber actual coordinate files, instead only providing the map-

ping of residue numbers from the PDB to UniProt. Only the PDBSWS server is still functioning.

In this paper, we present downloadable computer code in Python3 and a webserver that

provide PDB files where the amino acids in all fields are renumbered according to their Uni-

Prot sequences. We obtain the correspondence between protein sequences in PDB chains with

UniProt entries from the SIFTS database available from PDBe (https://www.ebi.ac.uk/pdbe/

docs/sifts/) [12]. Our program and webserver provide renumbered files in mmCIF [13] and

legacy PDB format [14] for both asymmetric unit files (the coordinates deposited by authors)

obtained from the RCSB server and biological assembly files (provided by the authors or calcu-

lated with the program PISA [15]) in mmCIF format obtained from PDBe, which distributes

them for all PDB entries. The webserver is easy to use—the user enters a list of PDB codes

(“1abc”) or UniProt identifiers in the accession code (“P04637”) or SwissProt ID

(“P53_HUMAN”) format, selects which kinds of files to download (mmCIF and/or legacy-

PDB format; asymmetric units and/or biological assemblies), and with one click enables the

download of a zip file containing the requested files.

Methods

PDBrenum was written in Python with use of Python 3.6, BioPython 1.76 [16], Pandas 0.25.1

[17], and Numpy 1.17 modules within Jupyter-Notebook 6.0.1 [18] and PyCharm 2020.2

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 2 / 15

accessed following the protocol outlined in the

Methods section.

Funding: This work was funded by National

Institutes of Health grant R35 GM122517 (R.L.D.),

https://www.nigms.nih.gov/. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://www.ebi.ac.uk/pdbe
https://pdbj.org
https://proteopedia.org/wiki/index.php/Unusual_sequence_numbering
https://www3.cmbi.umcn.nl/wiki/index.php/Residue_number
https://www3.cmbi.umcn.nl/wiki/index.php/Residue_number
https://www.ebi.ac.uk/pdbe/docs/sifts/
https://www.ebi.ac.uk/pdbe/docs/sifts/
https://doi.org/10.1371/journal.pone.0253411
https://www.nigms.nih.gov/

(https://www.jetbrains.com/pycharm/) as an integrated development environment on a

Ubuntu 20.04 operating system.

Fig 1 represents a basic scheme of the PDBrenum workflow. First, PDBrenum downloads

the structure files (in PDB or/and mmCIF format) and corresponding SIFTS files (in.xml for-

mat). The program downloads files in three attempts; if there is no success in three attempts,

the assumption is that there is no such file (sometimes servers might not respond or respond

with errors, but it is very unlikely to get three bad responses from the server in a row). PDBre-

num then parses the SIFTS file to obtain numbering data for each amino acid in each protein

chain in the file and places the results in a Pandas dataframe with the following data fields:

• PDBChainID: the label_asym_id in mmCIF coordinates (from entityId in SIFTS).

Note: this does not correspond to entity_id in the mmCIF files, which instead is an inte-

ger that indicates the molecule identity (i.e., each protein sequence and each ligand type gets

an entity_id).

• AuthChainID: the auth_asym_id in mmCIF coordinates (from PDB:dbChainID in

SIFTS).

Fig 1. Flow-chart describing basic procedure of PDBrenum.

https://doi.org/10.1371/journal.pone.0253411.g001

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 3 / 15

https://www.jetbrains.com/pycharm/
https://doi.org/10.1371/journal.pone.0253411.g001
https://doi.org/10.1371/journal.pone.0253411

• SeqResNum: the label_seq_id in mmCIF coordinates, which is the number of each resi-

due in each protein construct when numbered from 1 to N, the number of residues in the

protein chain (from PDBe:dbResNum in the SIFTS file).

• AuthResNum: the auth_seq_id in mmCIF coordinates, which is the author residue

number (from PDB:dbResNum in SIFTS).

• InsCode: the pdbx_PDB_ins_code labels in mmCIF coordinates, which are insertion

codes, if any, attached to residue numbers in legacy PDB files to distinguish residues inserted

in the sequence (from upper-case letters in PDB:dbResNum in SIFTS).

• ResName: the label_comp_id and auth_comp_id in mmCIF coordinates, which is

the residue name in three-letter code (from PDB:dbResName in SIFTS).

• AccessionID: for UniProt entry (if any) (from UniProt:dbAccessionId in SIFTS).

• UniProtResNum: residue number in UniProt reference sequence (if any) (from UniProt:
dbResNum in SIFTS).

• UniProtResName: amino acid type in UniProt sequence (if any) in one-letter code (from

UniProt:dbResName in SIFTS).

The typical Pandas dataframe will look like the ones shown in Fig 2. The dataframe corre-

lates different numbering systems for the amino acids in each protein chain. The unique resi-

due numbering is the 1 to N numbering (SeqResNum) for each chain, where N is the chain

length. This is referred to as label_seq_id in the mmCIF file coordinate (_atom_site)

records. The tuple representing (SeqResNum, ResName, and PDBChainID), denoted

label_seq_id, label_comp_id, and label_asym_id in the mmCIF coordinates, is

shown in the first column where the combination of the residue number and chain id act as a

Pandas index or key for the table. The second numbering system is that used by the authors in

the coordinates of the mmCIF file, which is represented in the “PDB” column. It consists of

tuples (AuthResNum + InsCode, ResName, and AuthChainID). These values are denoted

auth_seq_id, pdbx_PDB_ins_code, auth_comp_id, and auth_asym_id in the

coordinate section of mmCIF files respectively. Insertion codes are letters attached to some

residue numbers by authors to create new residue identifiers for inserted residues in a

sequence. They are common in antibody numbering systems [19].

For most amino acids in the PDB, the SIFTS database has a UniProt reference and residue

number, which is given in the 3rd column in each dataframe. When there is no UniProt num-

ber given in SIFTS for some residues in a chain (usually for sequence tags), we place the num-

ber 50,000 in this column. The resulting numbering system (given in the column labeled

“UniProt_50k”) that PDBrenum will use as a replacement for the author numbering system is

the UniProt number where it is available and 50,000+SeqResNum when there is no UniProt

number. This guarantees that there will be no collision between a UniProt residue number,

and the numbers assigned to sequence tags and other insertions that are not part of the Uni-

Prot numbering system.

After reading and processing the SIFTS file for an entry, PDBrenum uncompresses and

reads the gzipped mmCIF file as a Python dictionary using BioPython. The dictionary created

by the BioPython function MMCIF2DICT forms keys from each mmCIF table and item name

as a single string (e.g., _atom_site.Cartn_x). The corresponding value for each key is a

Python list (e.g., the x-coordinates for all atoms in an entry).

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 4 / 15

https://doi.org/10.1371/journal.pone.0253411

In order to renumber PDB files according to UniProt from SIFTS, we need to identify cor-

responding values in all tables in the mmCIF files and all records in the PDB format files.

SIFTS contains the PDBChainIDs, the author ChainIDs, the author residue numbers (with

appended insert codes, if they exist), and the 1-to-N numbering of each chain. For each table

(e.g. _atom_site or _pdbx_validate_torsion), we detect whether the table has resi-

due numbers and chain identifiers that may be compared to the SIFTS data described above.

For the ChainIDs, tables may contain both the author ChainIDs and the PDB’s ChainIDs,

but in some tables only the author ChainIDs exist (e.g., table _struct_ref_seq) and are

labeled either as auth_asym_id, pdb_strand_id or pdbx_strand_id. These Chai-

nIDs agree with the auth_asym_id in the coordinates. According to the mmCIF dictionary, all

variants (with suffixes and prefixes (e.g., struct_sheet_range.beg_auth_asym_id)

of auth_asym_id, pdb_strand_id, and pdbx_strand_id) correspond to the author

ChainIDs in the coordinates and SIFTS, and thus can be used by PDBrenum to translate pro-

tein residue numbering into UniProt.

Many tables do not contain the 1-to-N numbering of each chain (SeqResNum in Fig 2), and

so we need to interpret the values in the author numbering (with insert codes, if any) in each

table in order to renumber according to UniProt from SIFTS. Author sequence numbering

may be designated as auth_seq_id, and may be prefixed or suffixed with other identifiers,

Fig 2. Small fragments of the Pandas dataframes assembled from SIFTS files: (A) 2vl3, (B) 2aa3, and (C) 1d5t. Entry 2vl3 contains a His

tag that is not observed in the coordinates. Chain D of 2aa3 contains insertion codes (column 2) for some residues. Entry 1d5t contains a

His tag with negative author residue numbers (column 2). The PDBe column in each image contains data for each amino acid in tuples

(SeqResNum, ResName, and EntityId), where SeqResNum is the position of the amino acid in the sequence numbered from 1 to N (the

length of the sequence). This field acts as the Pandas dataframe index for the whole table, since it is unique for each amino acid. The PDB

column contains tuples (AuthResNum + InsCode, ResName, and ChainID). The UniProt column contain tuples of (UniProtResNum,

UniProtResName, ChainID) and if there is no UniProt residue number, it contains the number “50,000”. The next column contains the

UniProt AccessionID. The column UniProt_50k provides the final numbering of residues in the PDBrenum output file: it is the UniProt

number when it is available, and 50,000+SeqResNum when there is no UniProt for a chain that has a UniProt. Chains with no UniProt in

SIFTS are not renumbered.

https://doi.org/10.1371/journal.pone.0253411.g002

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 5 / 15

https://doi.org/10.1371/journal.pone.0253411.g002
https://doi.org/10.1371/journal.pone.0253411

e.g., auth_seq_id_1 or beg_auth_seq_id. We used the mmCIF dictionary to deter-

mine that all identifiers that contain auth_seq_id or its variants are children of _atom_-
site.auth_seq_id in the coordinate records, i.e. the author residue numbering in the

coordinates that corresponds to the author numbering in SIFTS.

mmCIF files contain three tables that provide information on the sequence numbering of

molecules in the structure: _pdbx_poly_seq_scheme, _pdbx_nonpoly_
seq_scheme, and _pdbx_branch_scheme. These tables include four residue numbering

schemes: seq_id, pdb_seq_num, ndb_seq_num, and auth_seq_num. For proteins and

other polymers, seq_id in the _pdbx_poly_seq_scheme is the 1 to N numbering of

the chain. These numbers are also found in the ndb_seq_num column. The pdb_seq_num
column corresponds to the residue numbering in the coordinates, according to the mmCIF

dictionary. The dictionary indicates that the auth_seq_num in the three tables may or may

not correspond to the numbering in the coordinates. We found about 2000 files where these

numbers differ from pdb_seq_num. These residue numbers appear to be those originally

deposited by the authors and in these 2000 files, the “author” residue numbering has been

altered by the PDB in the coordinates and other tables, and in the legacy PDB format files.

This information is apparently kept in the file for reference. It is not used in any other table in

any current PDB entry or in the legacy PDB format files. As it turns out, there is only one

instance of a similar prefixed identifier, pdbx_auth_seq_num (_struct_ref_seq_
dif.pdbx_auth_seq_num), and it corresponds to pdb_seq_num, not auth_seq_num
in the pdbx_poly_seq_scheme table, so it is renumbered by PDBrenum according to

SIFTS.

Insert codes may be designated ins_code, PDB_ins_code, or pdb_ins_code, and

these names may contain prefixes and suffixes. According to the dictionary, all of these are

children of _atom_site.pdbx_PDB_ins_code, and thus will agree with any insert codes

present in SIFTS.

PDBrenum forms a Pandas dataframe for each mmCIF table (e.g. _atom_site) with

index names equal to the Python tuple consisting of (AuthResNum + InsCode, ChainID), and

merges it with the same combination (labeled “PDB” in Fig 2) from the SIFTS dataframe. This

merged table is then used to replace the AuthResNum values with the UniProtResNum or

50,000+SeqResNum values. Non-polymeric molecule types such as small ligands are also

renumbered as 60,000+their residue number (_pdbx_nonpoly_seq_scheme.

pdb_seq_num) in the mmCIF file. With a tuple consisting of the author chainID the author

residue number, and the insert code (if any), the following items in mmCIF files are

renumbered:
_atom_site_anisotrop.pdbx_auth_seq_id
_atom_site.auth_seq_id
_pdbx_distant_solvent_atoms.auth_seq_id
_pdbx_refine_tls_group.beg_auth_seq_id
_pdbx_refine_tls_group.end_auth_seq_id
_pdbx_struct_chem_comp_diagnostics.auth_seq_id
_pdbx_struct_conn_angle.ptnr1_auth_seq_id
_pdbx_struct_conn_angle.ptnr2_auth_seq_id
_pdbx_struct_conn_angle.ptnr3_auth_seq_id
_pdbx_struct_mod_residue.auth_seq_id
_pdbx_struct_sheet_hbond.range_1_auth_seq_id
_pdbx_struct_sheet_hbond.range_2_auth_seq_id
_pdbx_struct_special_symmetry.auth_seq_id
_pdbx_unobs_or_zero_occ_atoms.auth_seq_id
_pdbx_unobs_or_zero_occ_residues.auth_seq_id
_pdbx_validate_chiral.auth_seq_id

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0253411

_pdbx_validate_close_contact.auth_seq_id_1
_pdbx_validate_close_contact.auth_seq_id_2
_pdbx_validate_main_chain_plane.auth_seq_id
_pdbx_validate_peptide_omega.auth_seq_id_1
_pdbx_validate_peptide_omega.auth_seq_id_2
_pdbx_validate_planes.auth_seq_id
_pdbx_validate_polymer_linkage.auth_seq_id_1
_pdbx_validate_polymer_linkage.auth_seq_id_2
_pdbx_validate_rmsd_angle.auth_seq_id_1
_pdbx_validate_rmsd_angle.auth_seq_id_2
_pdbx_validate_rmsd_angle.auth_seq_id_3
_pdbx_validate_rmsd_bond.auth_seq_id_1
_pdbx_validate_rmsd_bond.auth_seq_id_2
_pdbx_validate_symm_contact.auth_seq_id_1
_pdbx_validate_symm_contact.auth_seq_id_2
_pdbx_validate_torsion.auth_seq_id
_struct_conf.beg_auth_seq_id
_struct_conf.end_auth_seq_id
_struct_conn.ptnr1_auth_seq_id
_struct_conn.ptnr2_auth_seq_id
_struct_mon_prot_cis.auth_seq_id
_struct_mon_prot_cis.pdbx_auth_seq_id_2
_struct_ncs_dom_lim.beg_auth_seq_id
_struct_ncs_dom_lim.end_auth_seq_id
_struct_sheet_range.beg_auth_seq_id
_struct_sheet_range.end_auth_seq_id
_struct_site_gen.auth_seq_id
_struct_site.pdbx_auth_seq_id
_pdbx_nonpoly_scheme.pdb_seq_num
_pdbx_poly_seq_scheme.pdb_seq_num
_pdbx_branch_scheme.pdb_seq_num
_struct_ref_seq_dif.pdbx_auth_seq_num
_struct_ref_seq.pdbx_auth_seq_align_beg
_struct_ref_seq.pdbx_auth_seq_align_end

As noted above, the pdbx_poly_seq_scheme, pdbx_nonpoly_seq_scheme, and

the pdbx_branch_scheme (for branched sugars) contain the 1-to-N numbering (called

seq_id), the author residue numbering corresponding to the coordinates (pdb_seq_num),

and an extra residue number (auth_seq_num) that may differ from pdb_seq_num, con-

taining historical data from the original file deposition. When it differs from pdb_seq_num,

it is not used elsewhere in the mmCIF files. We renumber pdb_seq_num according to Uni-

Prot, and replace auth_seq_num in this table with the values of pdb_seq_num in the

PDB-issued mmCIF file. That way, our files have a table that provides a correspondence

between the 1-to-N numbering, the UniProt numbering, and the residue numbering of the

original mmCIF file obtained from the PDB (Fig 3).

For the space-delimited legacy PDB format files, if the line starts with ("ATOM"), ("TER"),

("ANISOU") or ("SIGUIJ") the program gets columns 22:26, 27, 17:20, 21 as residue number

(AuthResNum), insertion code (InsCode), residue name (AuthResName), and ChainID

respectively. For special lines “REMARK 465” records which list missing residues, columns

20:26, 27, 15:18, 19 are obtained as the residue number, insertion code, residue name, and

ChainID correspondingly. The two data frames are merged and if the residue does not have a

UniProt residue number then it gets default_PDB_num (default_PDB_num = 5000 + SeqRes-

Num). In order to prevent possible numbering collisions, PDBrenum calculates available num-

bers in the range from 1 to 9999 and reassigns them to non-polymeric compounds in reverse

order. After PDBrenum makes the replacement dictionary out of two python strings where the

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0253411

keys are AuthResNum (4 Char) + InsCode (1 Char) + ResName (3 Char) + ChainID (1 Char)

and the values are UniProtResNum + InsCode + ResName + ChainID, where the values have

the same number of characters. Finally, PDBrenum processes each line of the PDB file, replac-

ing keys with values.

The value offset for non-UniProt residues, default_PDB_num (5,000), can be reset (with

“- -set_default_mmCIF_num” flag) and default_mmCIF_num (50,000) (with “- -set_default-

_PDB_num” flag) as you wish but we recommend it to be big enough so it will not be the same

as any other numbers but not bigger then 9000 for PDB format because it might go over the

4-character limit of 9999).

There are some chains in the PDB that are chimeras containing sequence from two or more

UniProt entries. In cases where there is no collision of residue numbering, then the sequences

are numbered according to the UniProt sequences in the SIFTS file. In cases when there is a

collision, the longest sequence is taken as the default. The only exception to this is for a small

number of UniProt sequences that are commonly used as crystallization chaperones, and are

therefore not the target of main interest. These include UniProt codes GFP_AEQVI,

GCN4_YEAST, C562_ECOLX, ENLYS_BPT4, MALE_ECOLI.

Mutations in a UniProt sequence in a PDB entry are annotated in SIFTS files, and the

mutated residue type and residue number are retained within the output mmCIF or PDB files.

All the files that were processed by PDBrenum get the name tag “_renum” (e.g. 2aa3_re-

num.cif.gz) and we insert REMARKs in them.

Fig 3. Renumbering of the pdbx_poly_seq_scheme table from 2aa3 processed by PDBrenum. Left: the original file

from the PDB. Right: the renumbered file from PDBrenum. The original author numbering is given in column 6 of the

table on the left (18, 19, 20, etc.), which is replaced with the UniProt numbering (entry Q9PRK9) for this chain (2,3,4,

etc) in column 6 of the table on the right. The original author numbering has been placed in column 7 of the table on

the right (i.e., in the auth_seq_num position).

https://doi.org/10.1371/journal.pone.0253411.g003

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 8 / 15

https://doi.org/10.1371/journal.pone.0253411.g003
https://doi.org/10.1371/journal.pone.0253411

REMARK for mmCIF

loop_
_database_PDB_remark.id 1
_database_PDB_remark.text
;File processed by PDBrenum: http://dunbrack.fccc.edu/PDBrenum
Author sequence numbering is replaced with UniProt numbering according
to
alignment by SIFTS (https://www.ebi.ac.uk/pdbe/docs/sifts/).
Only chains with UniProt sequences in SIFTS are renumbered.
Residues in UniProt chains without UniProt residue numbers in SIFTS
(e.g., sequence tags) are given residue numbers 50000+label_seq_id
(where label_seq_id is the 1-to-N residue numbering of each chain.
Ligands are numbered 50000+their residue number in the original file.
The _poly_seq_scheme table contains a correspondence between the
1-to-N sequence (seq_id), the new numbering based on UniProt
(pdb_seq_num =
auth_seq_id in the _atom_site records), and the author numbering
in the original mmCIF file from the PDB (auth_seq_num).
;
#

REMARK for PDB legacy

REMARK 0 File processed by PDBrenum: http://dunbrack.fccc.edu/
PDBrenum
REMARK 0 Author sequence numbering is replaced with UniProt numbering
REMARK 0 according to alignment by SIFTS
REMARK 0 (https://www.ebi.ac.uk/pdbe/docs/sifts/).
REMARK 0 Only chains with UniProt sequences in SIFTS are renumbered.
REMARK 0 Residues in UniProt chains without UniProt residue numbers in
SIFTS
REMARK 0 (e.g., sequence tags) are given residue numbers 5000
+label_seq_id
REMARK 0 (where label_seq_id is the 1-to-N residue numbering of each
chain.
REMARK 0 Ligands are numbered 5000+their residue number in the
original
REMARK 0 file. The _poly_seq_scheme table contains a correspondence
between
REMARK 0 the 1-to-N sequence (seq_id), the new numbering based on
UniProt
REMARK 0 (pdb_seq_num = auth_seq_id in the _atom_site records), and
REMARK 0 the author numbering in the original mmCIF file from the PDB
REMARK 0 (auth_seq_num).

Setting up PDBrenum

As a prerequisites, anaconda should be installed https://docs.anaconda.com/anaconda/install/.

The following will set up a conda environment for running PDBrenum locally:
(base) $ git clone https://github.com/Faezov/PDBrenum.git
(base) $ cd PDBrenum
(base) $ conda create -n PDBrenum python = 3.6 numpy = 1.17 pan-
das = 0.25.1 biopython = 1.76 tqdm = 4.36.1 ipython = 7.8.0
requests = 2.25.1 lxml = 4.6.2
(base) $ conda activate PDBrenum

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 9 / 15

http://dunbrack.fccc.edu/PDBrenum
https://www.ebi.ac.uk/pdbe/docs/sifts/
http://dunbrack.fccc.edu/PDBrenum
http://dunbrack.fccc.edu/PDBrenum
https://www.ebi.ac.uk/pdbe/docs/sifts/
https://docs.anaconda.com/anaconda/install/
https://github.com/Faezov/PDBrenum.git
https://doi.org/10.1371/journal.pone.0253411

If the Python packages listed above are already installed (or similar versions of them), then

PDBrenum may work outside of a conda environment. The user can try it that way, and if no

errors are returned, then the program works.

Running PDBrenum

Help can be obtained with this command:
(PDBrenum) $ python3 PDBrenum.py -h

The user can provide PDBids directly as a list of arguments (-rfla

- -renumber_from_list_of_arguments):
(PDBrenum) $ python3 PDBrenum.py -rfla 1d5t 1bxw 2vl3 5e6h -mmCIF
(PDBrenum) $ python3 PDBrenum.py -rfla 1d5t 1bxw 2vl3 5e6h -PDB
(PDBrenum) $ python3 PDBrenum.py -rfla 1d5t 1bxw 2vl3 5e6h
-mmCIF_assembly
(PDBrenum) $ python3 PDBrenum.py -rfla 1d5t 1bxw 2vl3 5e6h
-PDB_assembly

or put PDBids in a text file (comma, space, tab, or newline delimited) (-rftf

- -renumber_from_text_file):
(PDBrenum) $ python3 PDBrenum.py -rftf input.txt -mmCIF
(PDBrenum) $ python3 PDBrenum.py -rftf input.txt -PDB
(PDBrenum) $ python3 PDBrenum.py -rftf input.txt -mmCIF_assembly
(PDBrenum) $ python3 PDBrenum.py -rftf input.txt -PDB_assembly

The user can renumber the entire PDB in a given format (by default in mmCIF if no format

is provided):
(PDBrenum) $ python3 PDBrenum.py -redb -mmCIF
(PDBrenum) $ python3 PDBrenum.py -redb -PDB
(PDBrenum) $ python3 PDBrenum.py -redb -mmCIF_assembly
(PDBrenum) $ python3 PDBrenum.py -redb -PDB_assembly

Note that sometimes on Windows installations, the biopython module might be installed

incorrectly by conda and it will cause a module error in python. To resolve this problem sim-

ply run:
(PDBrenum) $ pip install biopython = = 1.76

PDBrenum was heavily tested on all PDB structure files in both formats and on all popular

operating systems (Linux, Mac and Windows).

PDBrenum uses multiprocessing by default using all available cores, but the user can set a

limit to the number of processors by providing number to -nproc flag.

The user can also change where input output files will go by using these self-explanatory

flags (with absolute paths):
"-sipm", "--set_default_input_path_to_mmCIF"
"-sipma", "--set_default_input_path_to_mmCIF_assembly"
"-sipp", "--set_default_input_path_to_PDB"
"-sippa", "--set_default_input_path_to_PDB_assembly"
"-sips", "--set_default_input_path_to_SIFTS"
"-sopm", "--set_default_output_path_to_mmCIF"
"-sopma", "--set_default_output_path_to_mmCIF_assembly"
"-sopp", "--set_default_output_path_to_PDB"
"-soppa", "--set_default_output_path_to_PDB_assembly"

By default, files go here:
default_input_path_to_mmCIF = current_directory + "/mmCIF"
default_input_path_to_mmCIF_assembly = current_directory +
"/mmCIF_assembly"
default_input_path_to_PDB = current_directory + "/PDB"
default_input_path_to_PDB_assembly = current_directory +
"/PDB_assembly"

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 10 / 15

https://doi.org/10.1371/journal.pone.0253411

default_input_path_to_SIFTS = current_directory + "/SIFTS"
default_output_path_to_mmCIF = current_directory + "/output_mmCIF"
default_output_path_to_mmCIF_assembly = current_directory +
"/output_mmCIF_assembly"
default_output_path_to_PDB = current_directory + "/output_PDB"
default_output_path_to_PDB_assembly = current_directory +
"/output_PDB_assembly"

Also, by default all files gzipped if you want have them unzipped please use "-offz" or

"- -set_to_off_mode_gzip"

Result and discussion

PDBrenum returns a log file and renumbered structure files, shown in Figs 4 and 5 respectively

for PDB entry 2aa3. In Fig 5, green arrows point to the columns which were changed.

We have created a webserver (http://dunbrack.fccc.edu/PDBrenum) that will take a list of

PDB entry codes or a list of UniProt identifiers (as Accession IDs or SwissProt IDs) and with

one click of the mouse, will return a zip file with the requested mmCIF or legacy-PDB format

files of the asymmetric units and/or biological assemblies (Fig 6). The output files can also be

accessed programmatically via direct http links:
http://dunbrack.fccc.edu/PDBrenum/output_PDB/2aa3_renum.pdb.gz
http://dunbrack.fccc.edu/PDBrenum/output_mmCIF/2aa3_renum.cif.gz
http://dunbrack.fccc.edu/PDBrenum/output_PDB_assembly/2aa3_renum.
pdb1.gz
http://dunbrack.fccc.edu/PDBrenum/output_mmCIF_assembly/
2aa3-assembly-1_renum.cif.gz

On April 26, 2020, the PDB had 176,507 structures. When processed with PDBrenum:

1. 3,659 structures (2.1%) do not have corresponding SIFTS files (mostly DNA or RNA-only

files)

2. 5,919 structures (3.4%) have SIFTS files but do not have any UniProt data in SIFTS (mostly

antibodies)

3. 75,359 structures (42.7%) were not changed because all of the proteins have UniProt

numbering

4. 23,448 structures (13.3%) were changed due only to the presence of sequence tags or other

residues with no UniProt numbers

Fig 4. Log file of PDBrenum on PDB entry 2aa3. In this logfile, “SP” means “special case” and denotes which chains

were handled in specific ways. It is “+” for cases where there is no clash in UniProt numbers. It is “�” for the case where

a chain has more than one UniProt in SIFTS; the UniProt that represents the largest portion of the chain is taken unless

it is in the exception list of UniProts often used as crystallization chaperones [GFP_AEQVI, GCN4_YEAST,

C562_ECOLX, ENLYS_BPT4, MALE_ECOLI]. PDB_id is the 4-character long PDB identifier; chain_PDB is the chain

identifier given by the PDB in mmCIF files (label_asym_id); chain_auth is a chain identifier given by authors of the

structure (auth_asym_id); UniProt is the 6-character long UniProt identifier (e.g. Q4PRK9); SwissProt is the human-

readable UniProt identifier (e.g., P53_HUMAN); uni_len is the number of residues in the chain represented in the

UniProt sequence; chain_len represent the length of the chain sequence; renum represents total quantity of residues

that were renumbered according to UniProt; 5k_or_50k represents quantity of residues that were renumbered by

adding 5000 to 1-to-N numbering for the PDB-legacy format or adding 50000 to the 1-to-N numbering for the mmCIF

format.

https://doi.org/10.1371/journal.pone.0253411.g004

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 11 / 15

http://dunbrack.fccc.edu/PDBrenum
http://dunbrack.fccc.edu/PDBrenum/output_PDB/2aa3_renum.pdb.gz
http://dunbrack.fccc.edu/PDBrenum/output_mmCIF/2aa3_renum.cif.gz
http://dunbrack.fccc.edu/PDBrenum/output_PDB_assembly/2aa3_renum.pdb1.gz
http://dunbrack.fccc.edu/PDBrenum/output_PDB_assembly/2aa3_renum.pdb1.gz
http://dunbrack.fccc.edu/PDBrenum/output_mmCIF_assembly/2aa3-assembly-1_renum.cif.gz
http://dunbrack.fccc.edu/PDBrenum/output_mmCIF_assembly/2aa3-assembly-1_renum.cif.gz
https://doi.org/10.1371/journal.pone.0253411.g004
https://doi.org/10.1371/journal.pone.0253411

5. 49,422 structures (28.0%) were changed due to differences between UniProt and author res-

idue numbering only

6. 18,700 structures (10.6%) were changed due to both UniProt/author numbering differences

and sequence tags or other non-UniProt residues.

The large percentage of entries (38.6%) that contain proteins that are not numbered accord-

ing to a standard for each protein (UniProt) demonstrates the need for the approach enabled

by PDBrenum.

We feel it is very important that PDBrenum provides renumbered files for both mmCIF

and legacy-PDB format. mmCIF is the current standard for PDB files, and provides signifi-

cantly more information than the original PDB format developed in the 1970s. However,

many programs still exist that take only the legacy PDB format, and so it is still worthwhile to

provide these files. Finally, we also feel it is important to provide the biological assembly files.

More than half of crystal structures in the PDB have annotated assemblies that are different

from the asymmetric unit [20]. While RCSB does not provide these files in mmCIF format at

this time, they are available from PDBe. Even when the assembly consists of multiple copies of

the asymmetric unit, every chain in the assembly files from PDBe has its own unique chainID

in the auth_asym_id fields, and so can be processed like any PDB file for further analysis. As

an example of the utility of this function in PDBrenum, in Fig 7 we show the result of down-

loading the renumbered biological assembly structures of UniProt BMP2_HUMAN.

Fig 5. Renumbering PDB entry 2aa3. Screenshot of files 2aa3 before (left) and after (right) PDBrenum: “_atom_site”

(coordinate section) (A) and “struct_conf” (B). Green arrows pointed to the columns which were changed.

https://doi.org/10.1371/journal.pone.0253411.g005

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 12 / 15

https://doi.org/10.1371/journal.pone.0253411.g005
https://doi.org/10.1371/journal.pone.0253411

Fig 6. Screenshot of the PDBrenum server. The server takes in a list of PDB entry codes (comma, space, tab, or newline

separated) or a list of UniProt (e.g. P38398) or SwissProt (e.g., BRCA1_HUMAN) accession codes. The user can choose whether

to obtain mmCIF and/or PDB-format files, and whether to obtain asymmetric units and/or biological assemblies with check

boxes. If more than one file is requested, a zip file is returned, and the name of this file can be specified.

https://doi.org/10.1371/journal.pone.0253411.g006

Fig 7. Biological assemblies of human bone morphogenetic protein 2 (BMP2_HUMAN downloaded with

PDBrenum. BMP2 is a homodimer (orange and blue) that binds Type I (magenta) and Type II receptors (cyan), RGM

domain family members (yellow), and von Willebrand factor C-terminal domains (green).

https://doi.org/10.1371/journal.pone.0253411.g007

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 13 / 15

https://doi.org/10.1371/journal.pone.0253411.g006
https://doi.org/10.1371/journal.pone.0253411.g007
https://doi.org/10.1371/journal.pone.0253411

Acknowledgments

We thank Vivek Modi and Mitchell Parker for testing the PDBrenum program.

Author Contributions

Conceptualization: Roland L. Dunbrack, Jr.

Data curation: Bulat Faezov.

Funding acquisition: Roland L. Dunbrack, Jr.

Investigation: Bulat Faezov.

Methodology: Bulat Faezov, Roland L. Dunbrack, Jr.

Software: Bulat Faezov.

Supervision: Roland L. Dunbrack, Jr.

Validation: Bulat Faezov, Roland L. Dunbrack, Jr.

Visualization: Bulat Faezov.

Writing – original draft: Bulat Faezov.

Writing – review & editing: Bulat Faezov, Roland L. Dunbrack, Jr.

References
1. Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB): ensuring

a single, uniform archive of PDB data. Nucleic Acids Res. 2007; 35(suppl_1):D301–D3. https://doi.org/

10.1093/nar/gkl971 PMID: 17142228

2. Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, et al. RCSB Protein Data Bank: bio-

logical macromolecular structures enabling research and education in fundamental biology, biomedi-

cine, biotechnology and energy. Nucleic Acids Res. 2019; 47(D1):D464–D74. https://doi.org/10.1093/

nar/gky1004 PMID: 30357411

3. Armstrong DR, Berrisford JM, Conroy MJ, Gutmanas A, Anyango S, Choudhary P, et al. PDBe:

improved findability of macromolecular structure data in the PDB. Nucleic Acids Res. 2020; 48(D1):

D335–D43. https://doi.org/10.1093/nar/gkz990 PMID: 31691821

4. Kinjo AR, Bekker GJ, Wako H, Endo S, Tsuchiya Y, Sato H, et al. New tools and functions in data-out

activities at Protein Data Bank Japan (PDBj). Protein Sci. 2018; 27(1):95–102. https://doi.org/10.1002/

pro.3273 PMID: 28815765

5. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids

Res. 2019; 47(D1):D94–D9. https://doi.org/10.1093/nar/gky989 PMID: 30365038

6. Consortium UniProt. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019; 47(D1):

D506–D15. https://doi.org/10.1093/nar/gky1049 PMID: 30395287

7. Nemecek C, Metz WA, Wentzler S, Ding FX, Venot C, Souaille C, et al. Design of potent IGF1-R inhibi-

tors related to bis-azaindoles. Chem Biol Drug Des. 2010; 76(2):100–6. https://doi.org/10.1111/j.1747-

0285.2010.00991.x PMID: 20545947

8. Wu J, Li W, Craddock BP, Foreman KW, Mulvihill MJ, Ji Qs, et al. Small-molecule inhibition and activa-

tion-loop trans-phosphorylation of the IGF1 receptor. The EMBO journal. 2008; 27(14):1985–94.

https://doi.org/10.1038/emboj.2008.116 PMID: 18566589

9. David FP, Yip YL. SSMap: a new UniProt-PDB mapping resource for the curation of structural-related

information in the UniProt/Swiss-Prot Knowledgebase. BMC Bioinformatics. 2008; 9(1):1–12. https://

doi.org/10.1186/1471-2105-9-391 PMID: 18811932

10. Via A, Zanzoni A, Helmer-Citterich M. Seq2Struct: a resource for establishing sequence-structure links.

Bioinformatics. 2005; 21(4):551–3. https://doi.org/10.1093/bioinformatics/bti049 PMID: 15454411

11. Martin AC. Mapping PDB chains to UniProtKB entries. Bioinformatics. 2005; 21(23):4297–301. https://

doi.org/10.1093/bioinformatics/bti694 PMID: 16188924

12. Dana JM, Gutmanas A, Tyagi N, Qi G, O’Donovan C, Martin M, et al. SIFTS: updated Structure Integra-

tion with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 14 / 15

https://doi.org/10.1093/nar/gkl971
https://doi.org/10.1093/nar/gkl971
http://www.ncbi.nlm.nih.gov/pubmed/17142228
https://doi.org/10.1093/nar/gky1004
https://doi.org/10.1093/nar/gky1004
http://www.ncbi.nlm.nih.gov/pubmed/30357411
https://doi.org/10.1093/nar/gkz990
http://www.ncbi.nlm.nih.gov/pubmed/31691821
https://doi.org/10.1002/pro.3273
https://doi.org/10.1002/pro.3273
http://www.ncbi.nlm.nih.gov/pubmed/28815765
https://doi.org/10.1093/nar/gky989
http://www.ncbi.nlm.nih.gov/pubmed/30365038
https://doi.org/10.1093/nar/gky1049
http://www.ncbi.nlm.nih.gov/pubmed/30395287
https://doi.org/10.1111/j.1747-0285.2010.00991.x
https://doi.org/10.1111/j.1747-0285.2010.00991.x
http://www.ncbi.nlm.nih.gov/pubmed/20545947
https://doi.org/10.1038/emboj.2008.116
http://www.ncbi.nlm.nih.gov/pubmed/18566589
https://doi.org/10.1186/1471-2105-9-391
https://doi.org/10.1186/1471-2105-9-391
http://www.ncbi.nlm.nih.gov/pubmed/18811932
https://doi.org/10.1093/bioinformatics/bti049
http://www.ncbi.nlm.nih.gov/pubmed/15454411
https://doi.org/10.1093/bioinformatics/bti694
https://doi.org/10.1093/bioinformatics/bti694
http://www.ncbi.nlm.nih.gov/pubmed/16188924
https://doi.org/10.1371/journal.pone.0253411

structure-based annotations for proteins. Nucleic Acids Res. 2019; 47(D1):D482–D9. https://doi.org/10.

1093/nar/gky1114 PMID: 30445541

13. Young J, Westbrook J, Feng Z, Sala R, Peisach E, Oldfield T, et al. PDBx/mmCIF: the foundation for

the wwPDB onedep system. Foundations of Crystallography. 2017; 70:C1361.

14. Abola EE, Sussman JL, Prilusky J, Manning NO. [29] Protein data bank archives of three-dimensional

macromolecular structures. Methods Enzymol. 1997; 277:556–71. https://doi.org/10.1016/s0076-6879

(97)77031-9 PMID: 9379928

15. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;

372:774–97. https://doi.org/10.1016/j.jmb.2007.05.022 PMID: 17681537

16. Hamelryck T, Manderick B. PDB file parser and structure class implemented in Python. Bioinformatics.

2003; 19(17):2308–10. https://doi.org/10.1093/bioinformatics/btg299 PMID: 14630660

17. McKinney W, editor Data structures for statistical computing in python. Proceedings of the 9th Python in

Science Conference; 2010: Austin, TX.

18. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. Jupyter Notebooks-a

publishing format for reproducible computational workflows 2016.

19. Abhinandan K, Martin AC. Analysis and improvements to Kabat and structurally correct numbering of

antibody variable domains. Mol Immunol. 2008; 45(14):3832–9. https://doi.org/10.1016/j.molimm.2008.

05.022 PMID: 18614234

20. Xu Q, Dunbrack RL. ProtCID: a data resource for structural information on protein interactions. Nature

communications. 2020; 11(1):1–16.

PLOS ONE PDBrenum: Renumbering PDB files with UniProt

PLOS ONE | https://doi.org/10.1371/journal.pone.0253411 July 6, 2021 15 / 15

https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1093/nar/gky1114
http://www.ncbi.nlm.nih.gov/pubmed/30445541
https://doi.org/10.1016/s0076-6879%2897%2977031-9
https://doi.org/10.1016/s0076-6879%2897%2977031-9
http://www.ncbi.nlm.nih.gov/pubmed/9379928
https://doi.org/10.1016/j.jmb.2007.05.022
http://www.ncbi.nlm.nih.gov/pubmed/17681537
https://doi.org/10.1093/bioinformatics/btg299
http://www.ncbi.nlm.nih.gov/pubmed/14630660
https://doi.org/10.1016/j.molimm.2008.05.022
https://doi.org/10.1016/j.molimm.2008.05.022
http://www.ncbi.nlm.nih.gov/pubmed/18614234
https://doi.org/10.1371/journal.pone.0253411

