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ABSTRACT

We have proposed a computer-assisted framework for machine-learning–based delineation of gross tumor
volumes (GTVs) following an optimum contour selection (OCS) method. The key idea of the proposed frame-
work was to feed image features around GTV contours (determined based on the knowledge of radiation oncol-
ogists) into a machine-learning classifier during the training step, after which the classifier produces the ‘degree
of GTV’ for each voxel in the testing step. Initial GTV regions were extracted using a support vector machine
(SVM) that learned the image features inside and outside each tumor region (determined by radiation oncolo-
gists). The leave-one-out-by-patient test was employed for training and testing the steps of the proposed frame-
work. The final GTV regions were determined using the OCS method that can be used to select a global
optimum object contour based on multiple active delineations with a LSM around the GTV. The efficacy of the
proposed framework was evaluated in 14 lung cancer cases [solid: 6, ground-glass opacity (GGO): 4, mixed
GGO: 4] using the 3D Dice similarity coefficient (DSC), which denotes the degree of region similarity between
the GTVs contoured by radiation oncologists and those determined using the proposed framework. The pro-
posed framework achieved an average DSC of 0.777 for 14 cases, whereas the OCS-based framework produced
an average DSC of 0.507. The average DSCs for GGO and mixed GGO were 0.763 and 0.701, respectively,
obtained by the proposed framework. The proposed framework can be employed as a tool to assist radiation
oncologists in delineating various GTV regions.

KEYWORDS: gross tumor volume (GTV), planning computed tomography, 18F-fluorodeoxyglucose (FDG)-
positron emission tomography (PET), machine learning, image segmentation

INTRODUCTION
The uncertainties of gross tumor volume (GTV) regions have a
great impact on the precision of entire radiation treatment courses,
including treatment planning and patient positioning [1]. Target
volumes such as the clinical target volume (CTV) and the planning

target volume (PTV) in treatment planning are determined based
on the GTV region. In particular, the uncertainty of the GTV is crit-
ical in the setting of stereotactic body radiation therapy (SBRT),
because precise positioning is required for delivering a higher dose
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per fraction to a tumor rather than to the surrounding normal
tissue. In this study, we focused on computer-assisted frameworks
for automated delineating the GTV.

The first reason for the necessity of computer-assisted delinea-
tion is the intra- and interobserver variability of GTV contours
determined by radiation oncologists, which indicates low reproduci-
bility [2, 3]. Chao et al. reported that the variation in delineating
CTVs from scratch among radiation oncologists is significant and
that using computer-assisted methods reduces volumetric variation
and improves geometric consistency [3]. The second reason is that
manual contouring is tedious and time-consuming. According to
Chao’s study [3], the average percentage of time saved for contour-
ing using a computer-assisted method is 26–29% for experienced
physicians and 38–47% for less experienced physicians.

A number of automated contouring approaches for determining
the GTV have been proposed to reduce the inter- and intraobserver
variability and planning time, and to increase the segmentation
accuracy of the GTV [4–13]. Conventional methods can be categor-
ized into two major types: positron emission tomography (PET)-
based and PET/computed tomography (CT)-based approaches.
PET-based approaches are based on model-based methods [4],
thresholding of the standardized uptake value (SUV) [5], region-
growing methods using the SUV [6], Gaussian mixture model–
based segmentation [7], gradient-based segmentation methods [8],
the fuzzy locally adaptive Bayesian approach [9], the fuzzy c-means
algorithm [10], and a total lesion glycolysis (TLG) algorithm of
PET Response Criteria in Solid Tumors (PERCIST) [11]. Kerhet
et al. developed a machine-learning framework to assist in the
threshold-based segmentation of non–small-cell lung cancer tumors
in PET/CT imaging for use in treatment planning [12].
18F-fluorodeoxyglucose (FDG) PET directly shows biological infor-
mation on higher metabolic rates of radiolabeled glucose compared
with that observed in normal tissues, a phenomenon associated
with malignant neoplasms. El Naqa et al. developed a multimodality
segmentation method using a multivalued level set method (LSM)
that provides a feasible and accurate framework for combining
imaging data obtained from various modalities (PET/CT) [13].
This method is a promising tool for delineating biophysical structure
volumes for radiotherapy treatment planning. However, there are no
studies regarding GTV segmentation approaches using pixel-based
machine-learning techniques, which have the potential to learn the
contours (delineated by radiation oncologists) for assessing GTV
regions based on datasets of planning CT and PET/CT images,
including biological as well as morphological information.

In this study, we attempted to feed PET biological and CT mor-
phological information of GTV contours determined by radiation
oncologists into a machine-learning classifier during the training
step, after which the classifier produced the ‘degree of GTV’ for
each voxel in the testing step. The aim of this study was to develop
a computer-assisted framework for delineation of the GTVs of lung
tumors using a machine-learning classifier, i.e. a support vector
machine (SVM) (in this study) that can learn biological and
morphological information (PET and CT image features) regarding
various contours determined by radiation oncologists, and an opti-
mum contour selection (OCS) method that was developed in the
previous study [14].

MATERIALS AND METHODS
This study was performed with the approval of the institutional
review board of our university hospital. Figure 1 shows the overall
scheme of the proposed framework. The overall procedure of the
proposed framework is described below.

(i) The PET and diagnostic CT images were registered to the
planning CT images based on the centroid of the lung
regions in two CT images.

(ii) The biological and morphological image features were
calculated from the planning CT, PET and diagnostic CT
images, respectively.

(iii) The initial GTV regions were estimated using a SVM that
learned the image features inside and outside each GTV
region determined by radiation oncologists.

(iv) Final GTV regions were determined by thresholding the
SVM outputs and/or the OCS method [14] that can be
used to select a global optimum object contour based on
multiple active delineations with a LSM around the GTVs.

Clinical cases
Datasets consisting of planning CT and PET/CT images of 14 lung
cancer patients (mean age: 76 years; range: 65–86 years; female: 7;
male: 7; mean effective diameter of GTV: 20.4 mm; range: 13.8–
29.4 mm) who had undergone SBRT were selected for this study.
Table 1 shows a summary of the patient characteristics. A four-slice
CT scanner (Mx 8000; Philips, Amsterdam, The Netherlands) was
employed to acquire planning CT images with dimensions of
512 × 512 pixels, an in-plane pixel size of 0.977 mm and a slice thick-
ness of 2 mm. The planning CT images with anisotropic voxels were
transformed to images with matrix sizes of 512 × 512 × 266–378
and an isovoxel size of 0.977 mm, using a cubic interpolation
method.

The 14 lung cancers were classified into the three types of lung
tumor, which were solid (6), ground glass opacity (GGO) (4) and
mixed GGO (4), as shown in Table 1. The lung window (window
level and width were set at −600 and 1500 Hounsfield units [HU],
respectively) and the mediastinal window (window level and width
were set at 50 and 400 HU, respectively) were used to determine
the tumor types on the planning CT image by a radiologist (H.Y.).

Fig. 1. An overall scheme of the proposed framework.
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Each patient was scanned on an integrated PET/CT scanner
(Discovery STE; General Electric Medical Systems, Milwaukee, WI,
and Biograph mCT; SIEMENS, Berlin, Germany) with their arms
down while free breathing 60 min after the FDG injection, because
PET images could help treatment planners to delineate GTV
regions with relevant biological information. The PET data were

acquired in the 3D mode and reconstructed with correction for
attenuation, scatter, decay, random and dead time using a 3D
ordered subset–expectation maximization (OS-EM) algorithm
(VUE Point Plus; GE Healthcare, and ultraHD; SIEMENS). The
number of iterations, the number of subsets, and the full width at
half maximum of a Gaussian filter were set as 2, 21 and 6 mm,

Table 1. Summary of patient characteristics

Case no. Gender Age (years) GTV sizea (mm) Tumor location SUVmax
b Tumor type Tumor CT imaging characteristics

1 Fc 71 17.7 RULe 8.43 Solid Homogeneous
Irregular

2 F 67 24.2 RUL 12.2 Solid Homogeneous
Irregular
Vascular

3 Md 65 25.3 RUL 6.79 Solid Inhomogeneous
Irregular

4 M 75 20.2 LULf 8.74 Solid Inhomogeneous
Irregular
Adjacent Pleural

5 M 86 29.4 LUL 9.68 Solid Cavity
Irregular

6 F 81 25.8 RUL 4.43 Solid Homogeneous
Irregular
Pleural Indentation

7 M 76 17.8 LUL 1.73 GGO Irregular
Pleural Indentation
Vascular

8 F 74 16.4 RLLg 1.29 GGO Regular

9 M 81 18.5 LUL 2.56 GGO Regular

10 F 79 21.2 RUL 1.45 GGO Irregular

11 M 77 20.5 LLLh 6.5 Mixed GGO Inhomogeneous
Irregular
Cavity

12 F 85 13.8 RUL 1.72 Mixed GGO Irregular

13 M 65 18.3 RUL 1.29 Mixed GGO Regular
Inhomogeneous

14 F 84 16.3 LLL 1.39 Mixed GGO Irregular
Pleural Indentation
Vascular

aEffective diameter.
bMaximum standardized uptake value.
cFemale.
dMale.
eRight upper lobe.
fLeft upper lobe.
gRight lower lobe.
hLeft lower lobe.
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respectively. The PET images consisted of 128 × 128 pixels with an
in-plane pixel size of 5.47 mm and a slice thickness of 3.27 mm, or
256 × 256 pixels with an in-plane pixel size of 3.18 mm and a slice
thickness of 3.0 mm. In addition, diagnostic CT images were
acquired using a 16-slice CT scanner (512 × 512 matrix, in-plane
pixel size of 0.977 mm and slice thickness of 3.27 or 3 mm) in the
PET/CT system.

The PET and diagnostic CT images were converted into iso-
tropic images with a voxel size of 0.977 mm by using a linear and
cubic interpolation method, respectively. The matrix sizes with an
isotropic voxel of 0.977 mm were 716 × 716 × 793–920 or
834 × 834 × 811–992 for PET images, and 512 × 512 × 811–992
for diagnostic CT images. The edge portions in the PET images
were likely to be enhanced by a cubic interpolation method. To
avoid this problem, the linear interpolation method was applied to
the PET images. The isotropic PET images were larger than the iso-
tropic diagnostic CT images, but the matrix size of both images
should be the same size to obtain image features at the same voxels
in both images. Therefore, the isotropic diagnostic CT images were
put on the centers of the isotropic PET images, and then isotropic
PET images were cropped by the same sizes as the isotropic diag-
nostic CT images.

The SUV was employed as one of the features of PET images to
be input to the SVM. The SUV was calculated as the ratio of the
radioactivity concentration of the tissue at one time-point to the
injected dose of radioactivity concentration at that time-point
divided by the body weight:

=
( )

( ) ( ) 
  ( )SUV

C
D W

kBq/ml
MBq / kg

, 1

where C represents the radioactivity concentration in kBq/ml
obtained from the pixel value in the PET image multiplied by a
cross-calibration factor, D is the injected dose of 18FDG adminis-
tered in MBq (decay corrected) and W is the body weight of the
patient in kilograms.

Radiation treatment plans were approved by two experienced
radiation oncologists using a commercially available radiation treat-
ment planning (RTP) system (Eclipse version 6.5 and 8.1; Varian
Medical Systems Inc., Palo Alto, USA). GTV contours were deli-
neated based on a consensus between two experienced radiation
oncologists by using the RTP system on the planning CT images
with reference to fusion images of the PET and diagnostic CT
images.

Registration of PET and diagnostic CT images
to planning CT images

In order to utilize both the biological and morphological informa-
tion of the PET, diagnostic CT and planning CT images in the
same coordinate system, the PET and diagnostic CT images were
registered to the planning CT images. Each patient body region was
extracted from the planning CT and diagnostic CT images for the
image registration [15].

A diagnostic CT image was aligned with a planning CT image
using centroid matching of lung regions with bronchus. Lung

regions with bronchus were extracted from a diagnostic CT and
planning CT images. (The algorithm for extraction of the lung
regions with bronchus is explained in Appendix 1.) The centroids of
the lung regions in the two images were calculated. The diagnostic
CT image was registered to the planning CT image using lung-
region-centroid matching. Finally, the diagnostic CT and PET
images were cropped by the matrix size of the planning CT image,
so that the matrix sizes of the PET and diagnostic CT images in the
PET/CT datasets agreed with those of the planning CT image, as
described in the previous section.

After the lung-region-centroid matching, the displacement of a
lung tumor was corrected by aligning an extracted tumor region
in a PET image with a center of a volume of interest (VOI). A
rectangular VOI that was slightly larger than a circumscribed par-
allelepiped of the tumor was determined on the planning CT
image by manually selecting the minimum and maximum coordi-
nates of the circumscribed parallelepiped and calculating three
widths in x, y and z directions. The size of the VOI was deter-
mined by adding an isotropic margin of 10 mm to the circum-
scribed parallelepiped of the tumor. The tumor region was
extracted by binarizing the PET image based on a threshold value
of 80% of the maximum SUV (SUVmax) within the VOI. Finally,
the centroid of the extracted tumor region was aligned with the
center of the VOI.

Biological and morphological image features inside
and outside the tumor regions

Voxel values and the magnitudes of image gradient vectors were
obtained as the biological and morphological image features at each
voxel on the planning CT, diagnostic CT and PET images of the
PET/CT dataset. The six image features were given to the machine-
learning system, i.e. the SVM in this study. The image gradient
image was calculated from the following first-order polynomial
within a 5 × 5 × 5 voxel region obtained by use of the least squares
method [16]:

( ) = + + + ( )f x y z ax by cz d, , , 2

where x, y and z are the coordinates of one of the three types of
images, f (x, y, z) is the first-order polynomial and a, b, c and d are
constants. The gradient magnitude G was calculated by
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Support vector machine
The SVM [17] is one of the machine-learning techniques that
can classify data into several (generally two) categories based on
the output of a discriminant function. The SVM constructs a dis-
criminant function in a linearly separable space by applying a
non-linear kernel function to given training dataset. We con-
sider a training dataset of training data and teacher signals,
[x i , yi] ( ∈         =  R i n i l lx , : data number, : dimension, 1, ... , , :i

n

   number of data, ∈ {− }y 1, 1i ), that we would like to classify.
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The discriminant function ( )f x constructed by the SVM is
expressed by [17]:

∑ α( ) = ( ) + ( )
=

f y K bx x x, , 4
i

N

i i i
1

where x i ( = …  i N N1, , , : number of support vectors) is the sup-
port vector, b and αi, are parameters that determines the discriminant
function, ( )K x x, i is the non-linear kernel function, which can map a
linearly non-separable dataset to a linearly separable dataset. The
training procedure for construction of the SVM is shown as follows:

Step 1: A training dataset of image features and teacher signals
[x i , yi] is prepared, where = (    … )x x xx , , ,i i i Fi1 2 (F : number of
image features). In this study, F is 6 or 4, which depends on lung
tumor type (see subsection ‘Extraction of initial GTV regions
using SVM’).
Step 2: All parameters of the discriminant function are optimized
by repeatedly calculating the parameters using image features of
the training dataset based on a quadratic programming approach
[17]. For this step, an open source software package SVMlight

[18] was employed for this study.

Figure 2 illustrates the structure of an SVM constructed using
six image features, which are explained in a subsection ‘Biological
and morphological image features inside and outside the tumor
regions’ of this report. The image voxels of unknown cases, which
were not used for the training, were classified into inside GTV and
outside GTV voxels, based on the output ( ( )xf in Fig. 2) of the
discriminant function. The output was referred to as ‘degree of
GTV’ in this study.

Extraction of initial GTV regions using SVM
The basic idea of this study was to feed image features around GTV
contours determined based on the knowledge and experience of
radiation oncologists into a machine-learning system during the

training step, after which the classifier produced the ‘degree of
GTV’ for each voxel in the testing step. The initial GTVs were
extracted using a SVM that learned four or six image features inside
and outside each true GTV region (ground truth). Six image fea-
tures, i.e. the voxel value and the magnitude of the image gradient
vector on the planning CT and PET/CT image datasets, were used
for the solid type of lung tumor. Four image features, i.e. the voxel
value and the magnitude of the image gradient vector on the plan-
ning CT and the diagnostic CT images, were used for GGO and
mixed GGO types of lung tumor. The reason why the image feature
sets were changed according to tumor types was that the proposed
framework with the four image features provided better results than
that with the six features, as mentioned in Discussion (Table 3).

The teacher signal was plus one if the voxel was inside the GTV
region, and it was minus one if the voxel was outside the GTV
region. The area outside the GTV region was defined as the region
dilated six times by a circle kernel with a radius of 1.0 mm. The
training voxels were selected at various sampling intervals, depend-
ing on the ratio of the numbers of inside and outside voxels, so that
the number of inside voxels was the same as that of outside voxels.
We constructed an SVM classifier with a Gaussian kernel, i.e.

γ( − || − || )x yexp 2 using the open source software package SVMlight

[18]. In this study, the value γ and soft margin parameter C were
set at 0.001 and 10 for solid, at 0.001 and 0.01 for GGO and at
0.00001 and 10 for mixed GGO, respectively, and the average num-
ber of support vectors was 37 070 for solid, 18 941 for GGO and
7 119 for mixed GGO. Finally, the initial GTV region was deter-
mined by successively applying the following post-processing to the
rough GTV region obtained with the SVM.

Figure 3 depicts the post-processing technique applied for the
original SVM-output images. First, the original SVM-output
images were linearly converted into the voxel value of 0 to 2.

Fig. 2. An illustration of the structure of a support vector
machine constructed using six image features. In this figure,

 ( =           )x i N N number of support vectors1, ... , , :i indicates
the support vector, and αyi i refers to the weight that
determines the discriminant function ( )f x .

Fig. 3. A post-processing algorithm to apply for an
original SVM-output image.
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Second, false-positive pixels outside the lung regions were removed
by masking the SVM-output image with the corrected lung region.
We assumed that the proposed framework could detect GTV
regions that attach to chest wall even if the chest wall is included in
the VOI. The algorithm for the correction of the lung region was
explained in Appendix 2. Third, the SVM-output images were
smoothed by applying a Gaussian filter with a standard deviation of
3 pixels. Finally, the initial GTV regions were obtained by thresh-
olding the smoothed SVM-output images at an α value. In this
study, the αvalues were 75% of the maximum smoothed SVM-
output value (SVMmax) for solid type, 56% for GGO type and 25%
for mixed GGO type. In the preliminary study, the suitable threshold
percentages of the SVMmax for initial regions on the SVM-output
images were determined for all cases by changing the percentage of
SVMmax from 20 to 80%, so that the average Dice similarity coeffi-
cient (DSC), which was explained in a subsection ‘Evaluation of the
proposed framework’, can achieve the maximum value.

As for the solid type of lung tumor, the final GTV regions were
estimated by applying the OCS method to the initial regions, which
were determined on the SVM-output images, whereas the initial
GTV regions for GGO and mixed GGO types of tumors were
regarded as the estimated final GTV regions.

Estimation of final GTV regions using the OCS method
The final GTV regions for solid type tumors were estimated by
applying the OCS method to initial regions determined on the
SVM-output images. The basic concept of the OCS method is to
retrospectively select a global optimal object contour from among
multiple active delineations with a LSM around the tumor according
to the relationship between the evolution time and the average
speed function value on an evolving contour [14]. In the OCS
method, the LSM [19] is employed to obtain object contours and
the relationship mentioned above.

In the first step, the GTV contour and speed function value
obtained with the LSM were recorded at each evolution time until
the evolution time reached 10 000 or the evolving curve reached
the edge of the VOI on the planning CT image. The level set
function φ( )x y t, , was iteratively updated from the initial GTV
contour in accordance with the following discrete partial differential
equation:

φ ( ) = φ ( ) − Δ ( ) ∇φ ( ) ( )+ x y t x y t tF x y t x y t, , , , , , , , , 5n n n1

where n is the evolution number, t is the evolution time (iteration
time), Δt is the evolution time interval and ( )F x y t, , is the speed
function, which is inversely proportional to the gradient of the plan-
ning CT image to be processed. The speed function ( )F x y t, , is
relatively larger in homogeneous regions around the object, whereas
the speed function becomes smaller when the evolving curve
approaches the object edge.

In the second step, the optimal GTV contour was determined
from among multiple active contours derived using the LSM by
searching for the minimum point in the relationship between the
average speed function value on an evolving curve and the evolution
time. Figure 4 illustrates the relationship on the LSM between the

evolution time and the average speed function on a moving
contour.

Evaluation of the proposed framework
The leave-one-out-by-patient cross-validation test was employed for
training and testing of the SVM in this study [20]. In this test, the
one case was left out for the testing, and then the parameters of a
discriminant function in the SVM were determined based on the
remaining cases, not including the left-out case. Finally, the left-out
case was tested by using the discriminant function. This procedure
was repeatedly performed for all cases. The performance of the pro-
posed framework was evaluated using a 3D DSC [21]. The DSC
denotes the degree of region similarity between the GTV ground
truth region and the GTV region estimated using the proposed
framework. The DSC was calculated according to the following
equation:

=   ( ∩ )
( ) + ( )

  ( )n T D
n T n D

DSC
2

, 6

where T is the GTV ground truth region determined by two radi-
ation oncologists (Y.S., T.S.), D is the GTV region estimated using
the proposed framework, n(T) is the number of pixels in the region
T, n(D) is the number of pixels in the region D and n(T ∩ D) is
the number of logical AND pixels between T and D. The DSC
ranges from 0 (no overlap between T and D) to 1 (T and D are
identical). The GTV regions were obtained from the Digital
Imaging and Communications in Medicine (DICOM) for radiation
therapy (DICOM-RT) files. The isotropic GTV regions were used
as ground truths, which were produced using shape-based interpol-
ation [22] to match with the isotropic planning CT images with an
isovoxel size of 0.977 mm.

Fig. 4. Illustrations of the relationship on the LSM between
the evolution time and the average speed function on a
moving contour. The inserted images in this figure show the
resulting contours on a lung tumor image at evolution times
of 0, 1500, 3000 and 4500.
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RESULTS
The proposed framework is referred to as the SVM-based frame-
work because the SVM-output images were used as initial regions
for the OCS method. Figure 5 shows the original images and gradi-
ent vector magnitude images obtained from the planning CT and
PET/CT image datasets for a Case 5 (solid type) that were fed as
image features to the SVM. Three kinds of images included the
edge and surrounding information of the GTVs.

Figure 6 shows the planning CT, PET and SVM-output images
for three types of lung tumors (Cases 5, 7, 14). A tumor of the solid
type has high intensity with an SUVmax of 7.84, but the GGO and

Fig. 5. Original images and gradient vector magnitude
images obtained from the planning CT and PET/CT image
datasets that were fed as image features to the SVM.

Fig. 6. Illustrations of the original planning CT, the PET
and SVM-output images for solid, GGO and mixed GGO
types of lung tumors.

Fig. 7. Relationship between the six image features and SVM-output value. The gradient refers to the magnitude of a gradient
vector.
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mixed GGO types of tumors show low intensities with an SUVmax

of 0.78 and 1.29, respectively. On the other hand, the SVM
enhanced not only the solid type of tumor, but also the GGO and
mixed GGO types of tumors, in spite of low SUVmax.

Figure 7 shows the relationship between the six image features
and the SVM-output value. According to Fig. 7, the correlation
between the SUV and SVM-output value was the largest, with 0.449
of the correlation coefficient.

Table 2 shows a comparison between the DSCs of the proposed
framework (SVM-based framework) and the conventional frame-
work (OCS-based framework) in the 14 cases. The conventional
framework was the OCS-based framework developed in a previous
study [14]. In this previous study, 80% of the SUV regions were
employed as initial GTV regions for the OCS method. The average
3D DSC between the GTV ground truths contoured by the radi-
ation oncologists and the GTV regions obtained using the proposed
framework was 0.777 in the 14 cases, which was higher than the

average DSC of 0.507 obtained using the conventional OCS-based
framework.

Figure 8 compares the segmentation results of the proposed
(SVM-based) framework and the conventional (OCS-based) frame-
work for six cases. For Case 2, the proposed framework provided
the superior segmentation of a homogeneous and irregular tumor
with vascularization to the conventional frameworks. For Case 4,
the results of both the proposed framework and the conventional
framework were comparable for an inhomogeneous and an irregular
tumor connected to a chest wall. For Case 5, the GTV region was
not segmented well by using the conventional framework at a global
minimum point. Although brighter tumor regions on PET images
indicate regions in which tumor cells may be active, SUV regions
were not appropriate as initial regions for the OCS method. On the
other hand, in the proposed framework, the initial regions were
properly extracted by the SVM, which learned the ‘degree of GTV’
according to the knowledge of radiation oncologists. For Case 6,
the DSC of the proposed framework was lower than that of the
conventional framework, because the SVM extracted the tumor
region as well as the blood vessels around the tumor. For Case 10,
the proposed framework more correctly segmented even a GGO
type of lung tumor than the conventional framework. For Case 14,
the proposed framework produced a GTV region of the mixed
GGO type of lung tumor that was irregular and connected to a
chest wall.

DISCUSSION
An SUVmax smaller than 2.5 may indicate a lower malignancy of
non–small cell lung cancer [23]. The GGO types of GTV regions
were not able to be extracted by using the conventional OCS-based
framework because the GGO types of lung tumors showed the
SUVmax as <2.5. On the other hand, the proposed framework
enabled us to extract the GGO-type GTV regions with low SUVmax.

Table 3 shows the comparisons of DSCs for the three types
obtained by the proposed framework using four and six features
with and without the OCS method. For solid types of tumors, the
average DSC of 0.836 obtained using six features with the OCS
method was larger than the average DSC of 0.829 obtained without
the OCS method. For GGO types of tumors, the framework using
four features without the OCS method reached the DSC of 0.763
(higher than the 0.674 obtained with the OCS method). For mixed
GGO types of tumors, the framework using four features without
the OCS method achieved the highest DSC of 0.701, but that with
the OCS method produced a DSC of 0.553. In the proposed frame-
work, therefore, six features and the OCS method were necessary
for solid types, and four image features were applied for GGO types
and mixed GGO types without using the OCS method. According
to these results, we developed the post-processing algorithm in the
proposed framework shown in Fig. 3.

There are two main types of errors in registration with respect to
the lung tumor region, i.e. translation errors and shape variation errors.
After the lung-region-centroid matching, the displacements of lung
tumors were corrected to reduce the translation errors by aligning an
extracted tumor region in a PET image with a center of a VOI.
However, shape variation errors could remain residual errors and

Table 2. Three-dimensional Dice similarity coefficients
(DSCs) of the proposed framework (SVM-based framework)
and conventional framework (OCSa-based framework) for
14 cases

Case no. Tumor type OCSa-based
framework

SVM-based
frameworkb

1 Solid 0.788 0.841

2 Solid 0.758 0.835

3 Solid 0.801 0.799

4 Solid 0.832 0.897

5 Solid 0.778 0.870

6 Solid 0.791 0.778

7 GGO 0.000 0.793

8 GGO 0.000 0.751

9 GGO 0.000 0.706

10 GGO 0.438 0.800

11 Mixed GGO 0.419 0.487

12 Mixed GGO 0.444 0.729

13 Mixed GGO 0.516 0.795

14 Mixed GGO 0.620 0.791

Mean 1c 0.645 0.784

Mean 2d 0.507 0.777

aOptimum contour selection.
bSolid: SVM with six features using OCS method, and GGO and mixed GGO:
SVM with four features.
cMean for 11 cases excluding 3 cases of Cases 7, 8 and 9, whose GTV regions
were not segmented
dMean for 14 cases.

130 • K. Ikushima et al.



affect the segmentation accuracy. Therefore, deformable registration
techniques should be applied to reduce the shape variation errors.

There have been several studies [13, 24, 25] on development of
computerized segmentation methods for lung tumors, which have
evaluated the segmentation accuracy using the DSC. El Naqa et al.
(2007) developed a segmentation method based on a multivalued
LSM using multimodalities, such as CT, PET and magnetic reson-
ance (MR) imaging. The average DSC was 0.90 for a phantom
study with CT/PET/MR images, although MRI was not applied for
lung cancer patients. Wanet et al. (2011) validated a gradient-based
segmentation method for performing GTV delineation on FDG-

PET of non–small cell lung cancer patients using surgical specimens
in comparison with threshold-based approaches and CT. The aver-
age DSC was 0.58 to 0.62 on the CT images and 0.62 to 0.68 on
the PET images. Cui et al. (2012) developed an automated localiza-
tion and segmentation method for assessing lung tumors based on
PET/CT lung volumes using image feature analysis. They dealt
with lung tumors adjacent to the chest wall or the mediastinum, but
did not mention types of lung tumors. Their method reached an
average DSC of 0.89 in 20 lung cancer patients.

Three limitations can be raised with respect to this study. The first
limitation is false extraction of the blood vessels around the tumor. In

Fig. 8. A comparison between results of the proposed framework and the conventional framework in terms of tumor CT
imaging characteristics.

Table 3. Comparisons of DSCs for three types obtained by the proposed framework using four and six features with and
without the OCS method

Tumor type Four featuresa Six featuresb

Without OCSc method With OCS method Without OCS method With OCS method

Solid 0.834 ± 0.034 0.822 ± 0.049 0.829 ± 0.024 0.836 ± 0.044

GGO 0.763 ± 0.043 0.674 ± 0.051 0.758 ± 0.043 0.636 ± 0.169

Mixed GGO 0.701 ± 0.145 0.553 ± 0.092 0.699 ± 0.145 0.591 ± 0.058

aThe voxel values and the magnitudes of the image gradient vector on the planning CT and the diagnostic CT images.
bThe voxel values and the magnitudes of the image gradient vector on the planning CT, PET and diagnostic CT images.
cOptimum contour selection.
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Case 6 in Fig. 8, the blood vessels were extracted as false positives,
because they had a similar CT value to the lung tumor due to the par-
tial volume effect. The second limitation is that the proposed frame-
work depends on the knowledge of radiation oncologists. Therefore,
contour data based on some guidelines for delineation of GTV should
be collected from experts in radiation oncology in Japan by organizing
clinical trials. The third limitation is the number of cases that was
used for this study. Fourteen patients with various types of tumor CT
imaging characteristics were selected for this study; however, the pro-
posed framework should be applied to various types of lung tumors in
future work in order to improve the segmentation accuracy, particu-
larly mixed GGO types of lung tumors. In addition, independent data-
bases obtained from various institutions should be used to improve
the robustness of the proposed framework.

We herein have proposed an automated framework for extract-
ing GTVs using a machine-learning classifier that has learned from
the knowledge of radiation oncologists using datasets for planning
CT and FDG-PET/CT images. The proposed framework achieved
an average DSC of 0.777 in 14 lung cancer patients, while the OCS-
based framework was 0.507. The framework proposed in this study
can therefore be employed as a tool to assist radiation oncologists
in delineating tumor regions.
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APPENDIX 1: ALGORITHM FOR EXTRACTION
OF THE LUNG REGIONS AND BRONCHUS

The algorithm for extraction of the lung regions and bronchus is
elaborated in this Appendix 1. Figure A1 illustrates the extraction of
the lung region and bronchus from the CT image. First, pixel values
in an original image (Fig. A1a) were normalized from 0 to 1023.
Second, the CT image was binarized by thresholding using an
Otsu’s method (Fig. A1b), and then pixel values were inverted
(Fig. A1c). Third, the opening processing and labeling processing
were performed (Fig. A1d), then the largest, the second largest, and
the third largest regions in the labeled image were determined.
Fourth, the ratio of the third largest to the second largest regions

was calculated to identify the connection of right and left lung
regions, one of which was connected with the bronchus region. In
this study, the largest region in the labeled image was considered
background. The second largest and the third largest regions were
regarded as separated lung regions if the ratio was >0.26 and as a
jointed lung region if the ratio was ≤0.26, which was determined by
using 50 CT images. Finally, both lung and the bronchus regions
were extracted (Fig. A1e).

APPENDIX 2: CORRECTION OF LUNG
REGIONS WITH CONCAVE REGIONS USING
SELECTIVE DILATION FOR LUNG PLEURAL

ADJACENT TUMORS
The correction of lung regions with concave regions using selective
dilation for lung pleural adjacent tumors is elaborated in this
Appendix 2. Concave regions on the planning CT images, which
were caused by lung tumors adjacent to the lung pleura (i.e. lung
pleural adjacent tumors), were filled by using a 3D selective dilation
method proposed in this study (because extracted lung regions may
not contain a pleural adjacent tumor region), which could result in
a concave area in the lung region. First, a rectangular VOI that was

Fig. A1. Illustrations of (a) an original CT image, (b) a binary image obtained by using an Otsu’s method after the normalization
of pixel values, (c) an image inverted pixel values, (d) the labeled image after the opening processing and (e) an extracted lung
region including the bronchi from CT image.

Fig. A2. Illustrations of (a) an original CT image with a lung pleural adjacent tumor in the VOI (white line box), (b) the
lung region enlarged in the VOI, (c) an initial lung region (white color region) with concave regions in which the tumor
region is not included and (d) the lung region (red color region) corrected according to the selective dilation method.
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slightly larger than a circumscribed parallelepiped of the tumor was
determined on the planning CT image by manually selecting the
minimum and maximum coordinates of the circumscribed parallel-
epiped and calculating its width in the x, y and z directions.
Figure A2a shows an original CT image with a lung pleural adjacent
tumor in the VOI (white line box). Figure A2b shows the lung
region enlarged in the VOI. Second, the initial lung regions in the

VOI were extracted by thresholding the CT image at a certain value
that was empirically determined as a CT value of −300 on the gray
level histogram of the same VOI image, as mentioned above.
Figure A2c shows an initial lung region (white color region) with
concave regions, in which the tumor region is not included.
Therefore, the concave region was filled by using the selective
dilation method in order to correct the lung region. In this method,
binary dilation is repeatedly performed in a concave volume, which
was identified using a selective dilation kernel until no concave areas
exist in the lung region. Figure A2d shows the lung region (red col-
or region) corrected using the selective dilation method.

The algorithm of the selective dilation method is elaborated.
Figure A3 shows an illustration of the definitions of lung region vox-
els and two types of background voxels (refer to Step 2). In add-
ition, examples of concave and convex regions are shown in a
selective dilation kernel of solid and dotted line boxes, respectively,
as depicted in Fig. A3. The concave region was defined as the
region, in which the number of objective pixels was larger than that
of background pixels, as shown in a 3 × 3 solid line square. The
convex region was defined as the region, in which the number of
objective pixels was smaller than the number of background pixels,
as shown in a 3 × 3 dotted line box.

Step 1: The initial lung region is segmented by thresholding a
certain voxel value, with the lung region voxels set s 1.
Step 2: Background voxels nearest to the lung region detected
using six neighborhood voxels are set s 2; the other background
pixels are set s 0.
Step 3: If there are no nearest background voxels, the algorism
stops. Otherwise, go to Step 4.
Step 4: If the selective dilation kernel includes a concave area,
the center of the kernel is filled with a 1-value voxel as a lung
voxel. Go to Step 2.

Fig. A3. An illustration of the definitions of lung region
voxels and two types of background voxels. Examples of
concave and convex regions are shown in a selective
dilation kernel of solid and dotted line boxes, respectively.
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