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Abstract

The past few years have seen an emergence of approaches that leverage temporal changes in 

whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, 

we investigate the replicability of the human brain’s inter-regional coupling dynamics during rest 

by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks 

using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to 

which the emergent functional connectivity (FC) patterns are reproducible, we characterize the 

temporal dynamics by deriving several summary measures across multiple large, independent age-

matched samples. Reproducibility was demonstrated through the existence of basic connectivity 

patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of 

the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate 

datasets revealed that some of the studied state summary measures were indeed statistically 

significant and also suggested that this class of null model did not explain the fMRI data fully. 

This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC 

states are robust against variation in data quality, analysis, grouping, and decomposition methods. 

We conclude that future investigations probing the functional and neurophysiological relevance of 

time-varying connectivity assume critical importance.
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1. Introduction

More than two decades ago, the pivotal discovery of intrinsic low frequency fluctuations of 

blood flow and oxygenation levels in the functional magnetic resonance imaging (fMRI) 

modality was heralded as a neurophysiological index, and more specifically a manifestation 

of the intrinsic functional connectivity (FC) of the human brain (Biswal et al., 1995). This 

finding facilitated the study of FC in the neuroimaging research community, and since then 

numerous studies investigating characterization of partial-brain or whole-brain interactions 

stimulated by specific tasks or merely from spontaneous resting state activity have laid the 

foundation of our basic understanding of FC in the healthy and the diseased human brain. In 

an effort to boost discovery science in the functional neuroimaging community, traditional 

hypothesis-driven task-based studies paved the way for resting state fMRI approaches. 

Despite the unconstrained nature of the resting state experiments, the distributed networks or 

signal variations exhibiting temporal correlation in resting state fMRI decompositions, 

referred to as resting state networks (RSNs), were proven to have high levels of 

reproducibility thus suggesting a common architecture for the functional connectome 

(Damoiseaux et al., 2006; Fox and Raichle, 2007; Margulies et al., 2007; Shehzad et al., 

2009; Smith et al., 2009; Van Dijk et al., 2010, Zuo et al., 2010; Dansereau et al., 2017). 

Additionally, consistency in the baseline functional activity of the brain (Damoiseaux et al., 

2006) and reliability in some rest-fMRI measurements (Zuo and Xing, 2014) has been 

suggested. Although there is a low degree of consensus on linkage of fMRI fluctuations with 

neural activity, there is rapidly growing literature providing evidence of association of the 

decomposed ICNs to underlying neuronal connectivity (Mantini et al., 2007; He et al., 2008; 

Shmuel and Leopold, 2008; Britz et al., 2010; de Pasquale et al., 2010) which motivates 

investigations of spontaneous FC with great optimism.

Studies assessing FC primarily leverage seed-based correlation analysis (SCA) and spatial 

independent component analysis (ICA) to decompose brain signals into distributed networks 

exhibiting high temporal correlation in intrinsic activity (Joel et al., 2011). SCA 

decompositions feature computation of pairwise correlation in time-courses corresponding 

to the predefined brain regions of interest (Biswal et al., 1995; Fox et al., 2005). Several pre-

defined ROI atlases such as the automated anatomical labeling atlas (Tzourio-Mazoyer et al., 

2002), the Talairach and Tournoux atlas (Lancaster et al., 2000), the Eickhoff-Zilles 

(Eickhoff et al., 2005), the Harvard-Oxford atlas (Makris et al., 2006), and the Craddock 

atlas (Craddock et al., 2012) are leveraged to set up seeds for which pairwise functional 

connectivity is estimated. These seed based approaches have been largely successful in 

revealing useful information on brain-wide FC. Another widely used method in estimating 

seeds is the spatial ICA decomposition method (McKeown et al., 1998; McKeown and 

Sejnowski, 1998) that allows for measurement of network connectivity in multiple data-

driven regions of interest. This method yields consistent spatially segregated and 

functionally homogeneous RSNs by exploiting independence in the spatial domain as 

opposed to assessment of fixed brain voxels. Consequently, current multi-subject studies 

frequently make use of the group ICA (gICA) technique (Calhoun et al., 2001) for extracting 

brain networks while retaining individual subject variability (Erhardt et al., 2011; Allen et 

al., 2012a,b).
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More recently, there has been a major paradigm shift from measuring the whole-brain FC in 

the form of time averaged connectivity metrics (e.g. correlation, coherence, mutual 

information, etc.) to additional exploration of the time-varying (referred to as non-stationary, 

non-static or dynamic in previous literature) nature of the underlying fluctuations (Chang 

and Glover, 2010; Musso et al., 2010; Sakoglu et al., 2010; Liu et al., 2011; Cribben et al., 

2012; Yuan et al., 2012; Hutchison et al., 2013a,b; Lindquist et al., 2014; Leonardi and Van 

De Ville, 2015) in both task based and resting state fMRI. Notably, such studies evaluate 

timevarying FC between different brain regions (second order time-varying statistics) as 

compared to studying the coherent instantaneous fluctuations in the fMRI signal (first order 

time-varying statistics) that have been shown to account for variability in task-based BOLD 

responses as extensively reviewed in Fox and Raichle (2007). Similar to the static resting 

state FC literature, the ultimate objective of the time-varying resting state FC studies is to 

understand the driving mechanisms and cognitive implications of the observed fluctuations 

in FC of the brain regions. Studies (Chang et al., 2013; Tagliazucchi and Laufs, 2014; Allen 

et al., 2017) have reported identification of potential electrophysiological correlates of 

fluctuations in BOLD FC thus suggesting the neurophysiological origin of FC and linkage to 

cognitive as well as vigilance states of the brain. Increasingly, information in the temporal 

variability of the correlation structure between RSNs is being leveraged to identify group 

differences between the diseased and healthy controls (Damaraju et al., 2014; Rashid et al., 

2014; Miller et al., 2016). Analysis of the temporal dynamics of network time-courses, also 

referred to as dynamic functional network connectivity (dFNC), is generally carried out by 

applying a sliding window correlation (SWC), dynamic conditional correlation (DCC), 

phase synchronization (PS), co-activation patterns (CAPs) or a time-frequency coherence 

(TFC) approach. The SWC method (Sakoglu et al., 2010; Allen et al., 2012a,b) evaluates 

temporal FC by calculating the correlation between the time-courses of the components of 

interest at all time-points within a chosen window, and repeating the process by gradually 

moving the window through the scan length. Recently introduced to the neuroimaging 

community, the DCC method (Lindquist et al., 2014; Choe et al., 2017) is a multivariate 

volatility model that estimates model parameters through quasi-maximum likelihood 

methods and is widely used in the finance literature to estimate time-varying variances and 

correlations. The PS method (Glerean et al., 2012) involves comparison of two signals by 

separating the amplitude and phase information parts, and has been reported to have 

maximal temporal resolution; however, its use is limited to narrow band signals. The focus 

of the CAPs method (Liu et al., 2013; Liu and Duyn, 2013) is to identify and study 

instantaneously co-activating patterns. Lastly, the TFC approach is an extension of the 

coherence and time-domain approaches that features connectivity pattern estimation using 

the frequency and phase lag information, and has been successfully used in studying 

connectivity in a few brain regions of interest (Chang and Glover, 2010) or whole-brain 

connectivity (Yaesoubi et al., 2015a,b). In this paper, we will focus on using the sliding 

window method as it applies minimal assumptions and few data transformations. FC 

analysis using sliding window is often proceeded by a rigorous FC “state” profile estimation 

and characterization process (Allen et al., 2012a,b), wherein the FC states are referred to the 

distinct discrete, transient patterns of FC, conceptually analogous to the quasi-stable EEG 

microstates. The estimated state profiles represent transient patterns of functional 

connectivity that vary over time; it was found in Allen et al. (2012a,b) that subjects tend to 
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remain in the same state profile for long periods of time before transitioning to one of the 

other state profiles (after multiple TRs).

The term “chronnectome” was recently introduced at the Mind Research Network to 

describe a focus on identifying dynamic i.e. timevarying, but reoccurring, patterns of 

coupling among brain regions. The chronnectome could be thought of as a brain model in 

which connectivity patterns as well as nodal activity varies in fundamental modes through 

time. The chronnectome project, aimed at standardizing methods evaluating dynamic FC 

with an ultimate goal of working towards evaluation of association of FC to physiologically 

meaningful changes, had hypothesized the existence of canonical patterns of dFNC 

associated with the resting state of the human brain. Multiple dFNC frameworks in the 

chronnectome project have evaluated dynamics of the FC SPs through different methods, but 

have commonly reported the FC SPs to be stably present in the data, highly structured, and 

reoccurring over time (Allen et al., 2012a,b; Miller et al., 2016).

The need to examine the reliability of the emergent discrete FC patterns has been mentioned 

in several reviews on this emerging field (Hutchison et al., 2013a,b; Calhoun et al., 2014; 

Calhoun and Adali, 2016). Our initial work published as a short conference paper (Abrol et 

al., 2016) evaluated replicability of the FC patterns emergent in the hard-clustering dFNC 

framework (Allen et al., 2012a,b) over numerous large, age-matched and independent data 

samples from a huge dataset of 7 500 human brain resting state fMRI scans. We found high 

levels of correlation in the SPs across these independent samples, which motivated us to 

further evaluate replicability in the dynamic FC. In the current paper, we test the replicability 

of the FC SPs by two frameworks: (1) building on our initial work in hard-clustering dFNC 

approach by additional testing for consistent clustering for a range of clusters, conducting 

surrogate dataset analysis to verify the driving factor of clustering, and examining additional 

separate-state summary measures such as fractional times and percentage occurrence time, 

and (2) extensively evaluating similarity in the derived across-state dynamic measures in the 

fuzzy meta-state dFNC framework (Miller et al., 2016), conducting an extensive battery of 

validation tests for this approach as well. The overall approach undertaken for this study is 

summarized below; detailed methodology can be found in the materials and methods 

section.

1.1. Summary of the analytic approach

Anomaly detection in the form of a correlation analysis on the five upper and lower slices of 

the preprocessed functional images was performed on all 7 500 resting fMRI datasets in 

order to detect the scans that failed the reorientation process, or had any missing slices. To 

test our hypothesis, we pursued a data-driven approach (Fig. 1) performing a high model 

order group-level spatial independent component analysis (gICA) on the subset of 7 104 

datasets (about 95% of the total data) that passed the above analysis, thus resulting in 

maximally spatially independent functional networks or RSNs corresponding to different 

anatomical and functional segmentations of the brain. Using a higher model order for spatial 

gICA enables us to extract multiple focal network nodes within multiple network domains 

(Allen et al., 2011; Allen et al., 2012a,b) viz. sub-cortical, temporal, frontal, parietal, etc. 

The components emergent from this decomposition were used only as a spatial sorting 
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template for the subsequent independent analyses. In the next phase, the first 7000 scans of 

the subset of 7104 datasets were partitioned into 28 age-matched independent samples of 

250 subjects each, enabling us to evaluate replication on multiple independent datasets each 

with a relative large number of subjects. Each independent sample (referred hereon as 

group) was decomposed using the same gICA parameters, and subject time-courses and 

maps for all groups were subsequently back-reconstructed to perform functional 

connectivity analysis. Components across the multiple decompositions were mapped onto 

the template RSNs using a greedy spatial correlation analysis. The reconstructed time-

courses went through additional processing to remove probable noise sources and outliers, 

and subsequently the processed time courses underwent dFNC analysis with a sliding 

window method thus resulting in emergence of inter-ICN covariance patterns for the 

different time windows. To explore structure and frequency of these estimated windowed 

connectivity patterns (CPs), a state estimation and characterization process was implemented 

using a hard clustering approach (Allen et al., 2012a,b) as well as a fuzzy meta-state 

approach (Miller et al., 2016).

We first applied the hard-clustering approach on the windowed CPs to identify the 

reoccurring basic SPs. This approach makes use of a clustering algorithm to assign the high 

dimensional CPs to one of the clusters, and has been successful in classifying patients from 

healthy controls (Rashid et al., 2014). However, this approach maps the high-dimensional 

CPs to one dimension i.e. they are allocated membership of one of the clusters. With 

existence of hard defined boundaries, distant CPs may still be assigned the same centroid, 

whereas lesser dynamically different CPs may be assigned two different clusters. Such an 

approach is complemented by a more flexible, fuzzy framework of expressing connectivity 

in the state estimation and characterization process. So, our second approach is based on a 

meta-state framework proposed recently to allow a subject’s state to be represented by 

varying degrees of multiple states, and is claimed to exhibit lesser distortion in the CPs and 

other features under investigation since contributions of all overlapping states are recorded 

(Miller et al., 2016).

For each independent group, state measures were summarized separately using k-means 

clustering for a range of clusters in the hardclustering approach, whereas state measures 

were summarized across all states using multiple decomposition techniques including 

temporal ICA (tICA), spatial ICA (sICA) and principal component analysis (PCA) in 

addition to (fuzzy) k-means clustering in the meta-state approach. Furthermore, extensive 

group analysis was carried out on synthesized surrogate datasets to test whether the 

covariance structures in the RSN time-courses were indeed the actual cause of the state 

profiles and different from the covariance structures of the randomly shuffled RSN time-

courses. Finally, we studied the impact of head motion in our analyses by making a 

comparison of the replicability metrics in observed dynamic measures with the replicability 

metrics from de-spiked and motion-regressed dynamic measures. Overall, results from this 

study strongly suggest faithful reflection of dFNC properties and reproducibility of the 

derived statistical measures across the independent partitions.
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2. Materials and methods

2.1. fMRI data acquisition and preprocessing

This study worked with resting state data that was previously collected, anonymized, and 

had informed consent received from subjects, both healthy and patients (aged between 13 

and 75 years), as per the institutional guidelines practiced at the University of New Mexico 

(UNM) and the University of Colorado Boulder (UC, Boulder).

All 7500 resting state scans chosen for this analysis were acquired using 3-T Siemens TIM 

Trio MRI scanners with 12 channel radio frequency coils at the Mind Research Network 

(MRN) in association with UNM, or using the same hardware scanner at UC, Boulder. Both 

scanners used the exact same acquisition parameters (except for the repetition time) for most 

of the subjects. T2*-weighted functional images were acquired using a gradient-echo EPI 

sequence with TE = 29 ms, TR = 2s (6992 scans) or 1.3s (8 scans), flip angle = 75°, slice 

thickness = 3.5 mm, slice gap = 1.05 mm, field of view = 240 mm, matrix size = 64 × 64, 

voxel size = 3.75 mm × 3.75 mm × 4.55 mm. The sampling rates of the scans were matched 

before the dFNC analysis. The scans had variable length with the minimum scan length 

being 150 TRs; however, only the first 150 time-points of all scans were studied. This data 

was a deidentified convenience dataset for which we do not have access to the health and 

identifier information. While it would be useful to have that information and evaluate 

possible subgroups and additional variables of interest, our perspective was that having this 

additional variability should, if anything, make the possibility of replicating the state 

patterns even less likely.

The functional data were preprocessed using MRN’s automated preprocessing pipeline 

based on the SPM software. The data pre-processing pipeline integrated removal of the first 

three images in the scans to avert T1 equilibration effects, realignment using INRIalign, 

timing correction of slices with the middle slice fixed as reference, spatial normalization of 

data into the Montreal Neurological Institute (MNI) space, re-slicing of data into cubic 

voxels of side 3 mm, and data smoothing using a Gaussian Kernel with the full-width at 

half-maximum (FWHM) set to 10 mm.

Anomaly detection in the form of a correlation analysis on the five upper and lower slices of 

the functional images was performed on all 7500 scans in order to detect scans that failed the 

reorientation process, or had any missing slices. This outlier detection removed 396 subjects, 

thus leaving behind a total number of 7104 subjects corresponding to approximately 95% of 

the available data.

2.2. Group ICA and postprocessing

The built-in auto-masking function in the AFNI software was leveraged to create an average 

mask to be used as the template mask input while running group ICA on the data that passed 

the anomaly detection analysis. In a multistep procedure to identify the RSNs, data was 

decomposed into maximally spatially independent components using functions from the 

Group ICA of fMRI Toolbox (GIFT). With a higher model of 100 (aiming at finer 

parcellation), this group decomposition used only the initial 150 time-points of all scans.
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Choosing a higher number of principal components at the subject level stabilizes back-

reconstruction and retains maximum variance in the data as shown in (Erhardt et al., 2011). 

So, in the group ICA analysis, the entire dataset was transformed into 130 principal 

components using standard principal component analysis (PCA) at the subject level in the 

first data reduction step retaining maximum subject-level variance (greater than 99.99%), 

and further down to 100 components by implementing group level PCA in the second data 

reduction step. ICASSO (Himberg et al., 2004) was used to investigate reliability of the 

estimated independent components, and it was found that the estimates exhibited tight 

clustering, hence converging consistently amongst several runs. The spatial maps and time-

courses of the individual subjects did not undergo backward reconstruction since it was not 

required for this specific analysis. Careful analysis on the emergent decomposition patterns 

confirmed 61 components having no correspondence to any known imaging, physiological, 

movement-related artifacts. Component map templates for these shortlisted components 

were assessed and distributed into the somatomotor, parietal, frontal, default mode, visual, 

temporal and cerebellar networks (Fig. 2).

In an effort to set up the maximum possible number of independent samples each having a 

large partition size, the first 7000 of the 7104 scans were partitioned into 28 age matched 

groups each having 250 scans. These age-matched groups were a mix of subjects from both 

sites (UNM: a total of 6472 subjects, with 231.1 +- 4.3 subjects per group, all subjects with a 

TR of 2 s; UC: a total of 528 subjects with 18.9 +- 4.2 subjects per group, 520 subjects with 

a TR of 2 s), and had an average age of 31.65 years with an average standard deviation of 

13.8 years for subjects within the groups.

With a focus on evaluating repeatability of the dFNC metrics corresponding to the 

partitioned samples, all the samples underwent separate group ICA decompositions. Similar 

to the entire dataset group ICA decomposition, standard PCA was performed at subject level 

for reducing data down to 130 components in the first step, and further down to 100 

components by using group level PCA in the second step. Again, alike the entire dataset 

decomposition, ICASSO (Himberg et al., 2004) was used to verify consistency of the 

estimated independent components in all 28 group decompositions. However, subject 

specific time courses and spatial maps were also back reconstructed for these group 

decompositions since they were required for the inter-component correlation analysis.

The reconstructed component time-courses went through additional processing steps to 

remove any residual noise sources mostly including low frequency trends originating from 

the scanner drift, motion related variance emerging from spatial non-stationarity caused by 

movement, and other non-specific noise artifacts unsatisfactorily decomposed by the 

implemented linear mixed model. More specifically, the post-processing steps featured de-

trending existing linear, quadratic and cubic trends, multiple linear regression of all 

realignment parameters together with their temporal derivatives, outlier detection using 3D 

spike removal, and low pass filtering with high-frequency cut-off being set to 0.15 Hz. 

Lastly, the time courses were variance normalized which meant the covariance structures 

from the sliding window approach were equivalent to the correlation structures.
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2.3. Component selection

An extensive evaluation of the spatial maps and spectral composition of the components 

resulting from the entire dataset gICA decomposition was carried on to identify 

physiological non-artifactual, previously established networks. Specifically, 61 template 

components with local peak activations in gray matter, time-courses dominated by low-

frequency fluctuations, and high spatial overlap with known RSNs were selected for further 

analysis. For each of the 28 group decompositions, respective components were mapped to 

the identified 61 non-artifact template components from the entire dataset decomposition by 

finding best unique matches through a greedy correlation analysis. The 37 components with 

highest correlation values or more specifically above the first quartile correlation threshold 

value of 0.65 and global correlation threshold value of 0.4 for all sample decompositions 

were retained for the dynamic FNC analysis.

2.4. FC estimation and temporal variability

Dynamic FNCs between all  RSN pairs in each of the 28 group decompositions 

were estimated using a tapered sliding window featuring convolution of a rectangular 

window (width = 30 TRs = 60 s) with a Gaussian (σ = 3 TRs), and subsequently sliding this 

tapered window in gradual steps of 1 TR, finally resulting in as many as W = 120 windows. 

Hence, for each group, dFNC was estimated subject wise to get a series of 120 correlation 

vectors corresponding to the series of windowed partitions of the subject specific time-

courses.

2.4.1. Approach 1: hard clustering—In this approach, the frequency and structure of 

the reoccurring  dimensional dynamic windowed CPs emerging from all subjects in 

a specific group was modularized by implementation of the classical hard k-means 

clustering. The clustering algorithm was implemented using the Manhattan (cityblock) 

distance as the similarity measure since the L1 norm has been suggested to be a more 

effectual similarity measure than the L2 norm for high dimensional data.

The elbow criterion was used to derive the number of clusters input to the clustering 

algorithm. In this method, the central idea is to run kmeans for different values of a specified 

number of clusters (k), and determine the case that maximizes within-cluster similarity and 

betweencluster dissimilarity concurrently. More specifically, we measured the ratio of within 

cluster sum of squared distances (dispersion in the cluster) to the sum of squared distances 

for all other observations (total variability outside that cluster). Finally, we evaluated this 

measure averaged over all clusters with respect to the number of clusters, and validated the 

case after which the gain in explanation of variation in data made only a marginal difference.

Furthermore, a two-level clustering was implemented in an effort to reduce the clustering 

error where an initial point input to the second level clustering was estimated in the first 

level clustering, and all windowed FNC data was clustered in the second level clustering. 

The initial point input was found by estimating and clustering the subject exemplars 

(corresponding to subject FNC windows featuring highest variance in FNC). More 

specifically, for each subject time-point (window), the standard deviation in FNC was 

computed, and windows at the time-points exhibiting local maxima were retained as subject 

Abrol et al. Page 8

Neuroimage. Author manuscript; available in PMC 2018 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exemplars and subsequently clustered. The centroid connectivity patterns resultant from this 

first level clustering were then set as the initial point input to the second level clustering of 

all FNC data. This two-level clustering process is similar to EEG microstate analysis 

(Pascual-Marqui et al., 1995), and was thoroughly tested for consistency for fMRI data in 

Allen et al. (2012a, b). Repeating the initial as well as final clustering 150 times to increase 

the likelihood of escaping local minima, stable connectivity SPs were obtained for each of 

the groups.

Connectivity SPs emergent from the group-wise clustering analysis contain information on 

inter-RSN connectivity strength and variation in a particular group, and can be thought of as 

states that the subjects repeatedly transit into through the course of the scan. To evaluate 

replicability of state measures across groups, all sets of SPs were first sorted across groups 

in a multiple step greedy similarity analysis using Manhattan distance as the similarity 

measure. In each step, a new group was fixed as a reference to which the remaining groups 

where evaluated for similarity and then sorted according to the similarity distance thus 

eventually resulting in 28 sets of sorting orders. In the final step, the statistical mode over 

this structure of best matches of SPs was validated as the final sorting order. The least 

frequency of any of the modes was observed to be 22 out of the 28 groups, and similar 

results were achieved by using other L1 and L2 (Euclidean, squared Euclidean, correlation 

distance) similarity measures in the clustering algorithm, thus confirming reliability in the 

sorting process. Summary measures as discussed in the results sections were computed and 

compared across the sorted SPs in this clustering approach.

Visualizing data is considered important for quality control in any field, and hence we made 

an attempt to visualize the projections of the high dimensional CPs onto a two dimensional 

space by using the tSNE algorithm (Maaten and Hinton, 2008). In the tSNE projection 

analysis, Euclidean distance between points is computed, and modelled as conditional 

probabilities with which one point would pick another as its neighbor such that more similar 

points are located nearby. Data is pre-processed with PCA reducing dimensionality to initial 

number of dimensions at the start of the learning. Perplexity of Gaussian distributions in 

higher dimensional space can be interpreted as the smoothing measure of number of 

effective neighbors. In this projection analysis, the initial number of dimensions = 50, initial 

learning rate = 500, number of iterations = 1000, and Gaussian perplexity was set to 50.

2.4.2. Approach 2: fuzzy meta-states—Computation of meta-states involves derivation 

of the windowed connectivity correlation data in a similar fashion as in the hard-clustering 

approach. In this approach, the  dimensional windowed FNC covariance structures 

were decomposed into fewer dimensional (o) connectivity patterns (CPs) using one of the 

commonly used data-driven approaches viz. temporal ICA, spatial ICA, k-means and PCA. 

The lower dimensional CPs are maximally mutually independent time-courses with 

overlapping connectivity profiles in case of temporal ICA decomposition, maximally 

independent spatial patterns in case of spatial ICA decomposition, and orthogonal 

projections capturing maximal variance for the PCA decomposition. In case of the k-means 

clustering approach, cluster memberships are assigned to get low within cluster distances 
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and high between cluster distances with the cluster centroids being treated as basis 

correlation patterns.

The windowed data decomposition was followed by assessment of contributions of the 

emergent, maximally independent patterns to the actual windowed correlation CPs. Finally, 

the real-valued weights associated with these states were estimated for every windowed FNC 

pattern, and the discretized version of this lower dimensional (o = 5 for main discussion, and 

o = 2 through o = 5 for comparison of results) characterization of the 666-dimensional CPs 

was achieved with a signed quartile transformation which resulted in meta-states. In our 

work, we compare results from the different decomposition methods, but mainly focus on 

the temporal ICA decomposition throughout the meta-state analysis discussion. The overall 

objective in this approach is again to calculate and compare group wise statistics from the 

meta-state profiles derived from all time windows of all the subjects in a given group.

3. Results

In this section, we first describe results from the feature (or component) selection process 

following the group level ICA decompositions, and subsequently discuss findings from both 

dFNC approaches used in this study.

3.1. Feature selection

The spatial maps of the 37 retained RSNs were thresholded (tc) by using mean (μc) and 

standard deviation (σc) parameters estimated using a normal-gamma-gamma (NGG) model 

(tc > μc + 8σc) to show regions contributing to the networks (Allen et al., 2011). The 

thresholded spatial maps of the RSNs at the most activated sagittal, coronal and axial slices 

are plotted in Fig. 2. Co-ordinates of peak activations in MNI space, maximum activation 

level, activation region voxel volume, and associated Brodmann areas for the retained 37 

RSNs are summarized in Supplementary Information (SI) Table 1. It can be easily confirmed 

that the retained RSNs demonstrate high similarity to RSNs from previous high-order 

decomposition studies (Allen et al., 2011; Allen et al., 2012a,b).

3.2. Approach 1: hard clustering

3.2.1. Optimal clustering analysis—The elbow criterion used to derive the optimal 

number of clusters suggested an optimal number of five clusters for all groups (Fig. 3a). For 

all groups and each k, the method was repeated 10 times as a consistency check. The group-

wise boxplots of the validated number of clusters over the different runs are shown in Fig. 

3b.

3.2.2. State summary measures—Characterizing states and summarizing state metrics 

provides important and useful information e.g. the time spent in a particular state, the 

directional probability of transitions between two particular states, etc. that help us quantify 

replicability between the independent group decompositions. The state summary measures 

and similarity statistics evaluated in the hard-clustering approach are shown in Fig. 4, and 

their relevance and contribution in eventually investigating replicability of the temporal 

dynamics is discussed subsequently.
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The average state metric (Fig. 4A) provides information on averaged connectivity and the 

percentage of occurrence considering all independent samples as one large sample, whereas 

the one-sample t-statistic metric (Fig. 4B) highlights regions with high mean and smaller 

standard deviations, and hence the connections in the region can be considered to be more 

reliable. The 1-sample t-test statistics averaged over pairs of network domains can be seen in 

Fig. 4C to highlight the most reliable network domain pairs in a particular state. Fig. 4D 

shows the pairwise linear correlations of the mapped SPs across all the groups. Evidently, 

states 1 to 4 have high correlation numbers (first quartiles greater than 0.8) suggesting these 

states are highly reproducible across the independent samples, whereas state 5 with higher 

spread is not as fully reproducible as the other states. The considerably larger spread of state 

5 in the correlation boxplot is explained in the t-distributed Stochastic Neighbor Embedding 

(tSNE) projection analysis (Maaten and Hinton, 2008) in the coming sub-section where state 

5 is actually observed as mixture of states 1 and 2. We also compare the state occurrence 

percentage, mean dwell time spent in each of the states, and fractional times for each of the 

states for all groups as shown in the boxplots in Fig. 4E–G. For each of the boxplots, the 

group-wise state measures are well concentrated within their respective ranges with state 2 

consistently observed as the most frequent (39.5% average occurrence time), and hence with 

higher dwell and fractional times. The number of occurrences of the states is next modelled 

as a function of time (Fig. 4H) so as to observe how the state occurrence frequencies 

increase or decrease with time. Due to the unconstrained nature of resting state, it is unlikely 

to obtain consistent temporal trends in the cognitive states of the brain. However, we could 

investigate existence of any consistent temporal trends in occurrence of the FC state profiles 

to motivate theories on their relation to vigilance, sleep or arousal states. Similar to earlier 

work (Allen et al., 2012a,b), we observe a state with increased thalamocortical anti-

correlation probably related to drowsiness (State 3) for which frequency of occurrence 

increases with time spent in the scanner and that occurs about 10% of the time in all groups. 

This observation is consistent with Tagliazucchi and Laufs (2014) who report reliable drifts 

between wakefulness and sleep during typical waking rest fMRI scans. Furthermore, EEG 

correlates suggest that this state corresponds to increase in low frequency delta and theta 

power suggestive of reduced vigilance (Allen et al., 2017).

Finally, state transition behavior is captured by a first order Markov model which helps in 

understanding the propagation of probability transitions through the network i.e. 

probabilities associated with entering or exiting a given state. For readability of this model, 

the average values of probabilities (p) of group-averaged state transitions across all groups 

have been transformed through a − log10p transformation. Hence, smaller values in the 

averaged state transition matrix (on the left in Fig. 4I) correspond to high probabilities of 

transition from one state to another. The standard deviations in the averaged state transition 

matrices across all groups are shown to the right in Fig. 4I. It can be observed that there is a 

high probability of being in the same state at the next time instant (high probability along the 

diagonals), as well as a high reliability of transition to and from state 2 as compared to other 

states as they tend to have higher mean transition probabilities and smaller standard 

deviations. However, transition probabilities, with high standard deviations in some cases, 

can also be highly variable.
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3.2.3. Visualizing state profiles—The tSNE algorithm is known to preserve the local 

structure of the data by projecting similar higher dimensional structures (with smaller 

pointwise distance) closer in the 2D space than the relatively distinct ones as the algorithm 

learns at a predefined learning rate while the data is being processed over a predefined 

number of iterations. The exemplar high-dimensional windowed FNC data from all of the 28 

groups were projected onto a two-dimensional space using tSNE. The final projection of the 

exemplar data can be visualized in Fig. 5A which suggests states 1, 2, 3 and 4 to be 

clustering consistently, whereas state 5 showed high variance and appeared more similar to 

states 1 and 2. This observation suggests that the 5th state is not fully reproducible as the 

other states. Fig. 5B shows the data for states 1 to 4 only (for all groups), and these 4 classes 

can be seen to be clustered in distinct, but touching regions. An assessment of the class 

conditional density peaks for these states in 2 dimensions (Figure 5C) and 3 dimensions 

(Fig. 5D) revealed distinct density peaks for all 4 classes thus further supporting the 

existence of structure in the clustered data. Replicability of the states can be visualized from 

a different angle in SI Video 1 in which CPs from all data windows are projected a group at 

a time on top of data from groups already projected.

Supplementary video related to this article can be found at https://doi.org/10.1016/

j.neuroimage.2017.09.020.

3.2.4. Internal validation: clustering for a range of k—With an objective of using the 

same dataset to internally validate results from the hard-clustering approach, additional 

analysis was carried out for a range of number of clusters (k = 2 to 10). Fig. 6 plots the state 

profiles over this range for the first group, whereas results for all the groups are presented in 

SI Video 2. It must be noted that within every group, the state connectivity profiles had to be 

sorted since the order of the centroids or clusters emergent from the k-means algorithm is 

not unique. After sorting through a greedy algorithm as defined in the methods section, it 

can be clearly seen that clustering results for different clustering indices are consistent.

Supplementary video related to this article can be found at https://doi.org/10.1016/

j.neuroimage.2017.09.020.

3.2.5. External validation: clustering surrogate data—To verify the driving factor of 

the emergent discrete FC state profiles (SPs), we explored surrogate data testing by phase 

randomization (Prichard and Theiler, 1994) of the RSN time-courses. Similar to the phase 

randomization procedure used in Damaraju et al. (2014), Handwerker et al. (2012) and 

Hindriks et al. (2016), the surrogate RSN time-courses were generated by Fourier 

transforming the RSN time-courses estimated from real fMRI data, adding a uniformly 

distributed random phase to each frequency in this frequency domain data, and finally 

inverse Fourier transforming the frequency domain data back to the time-domain. Adding 

the same random phase to the same frequency components of the RSNs preserves the static 

FNC and the lagged cross-covariance structure in the surrogates. This class of surrogates, 

hereinafter referred to as “consistent” phase randomized (CPR) surrogates, correspond to the 

null hypothesis that the real RSN time-courses are explained by a linear, stationary Gaussian 

process (Schreiber and Schmitz, 2000; Borgnat et al., 2010; Richard et al., 2010; Liegeois et 

al., 2017). Alternatively, adding different random phases to the same frequency components 
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of the RSNs disrupts the static FNC and the lagged cross-covariance structure in the 

surrogates. This alternate class of surrogates, hereinafter referred to as “inconsistent” phase 

randomized (IPR) surrogates, instead correspond to the null hypothesis that the real RSN 

time-courses are explained by a linear Gaussian process with static FNC approximately 

equal to zero (Hindriks et al., 2016). In this initial part of the analysis, we will be using the 

IPR surrogates only to seek an explanation to clustering as the null generated from this class 

is not appropriate to make inferences about stationarity of the observed data since lesser than 

required properties of the observed data are preserved by construction. It must also be noted 

that by construction of surrogate RSN time-courses, the mean, variance and power spectrum 

of both surrogate classes are identical to that of the real RSN time-courses, and subsequently 

by the Weiner-Khintchine theorem, both surrogate classes will have the same temporal 

autocorrelation as the real RSN time-courses.

100 CPR and 100 IPR surrogate datasets for the real RSN time-courses were generated each 

of which underwent dFNC analysis and subsequent clustering individually. The SPs 

emergent from the different surrogate datasets were mapped to the SPs in the real fMRI 

dataset, and finally a scalar correlation distance (averaged across the SPs) was computed for 

each surrogate dataset. Fig. 7A illustrates the distributions corresponding to the two 

surrogate classes where it can be seen that the CPR surrogates show a very small correlation 

distance (very high correlation), and the IPR surrogates show very large correlation distance 

(very low correlation) as compared to the real data SPs. This observation suggests that 

clustering is substantially driven by the lagged cross-covariance structure of the RSN time-

courses and not solely by the linear autocorrelation structure of the RSN time-courses or 

dissimilarities in mean and variance across subjects.

Additionally, the presence of any significant differences in the statistical measures from the 

real and CPR surrogate data was explored by approximating the null distribution for a test 

statistic, namely sum of pair-wise inter-state distances, from the multiple CPR datasets, and 

subsequently comparing the observed value of this statistic for real data against the 

generated null. The CPR null was rejected for this test statistic in all groups which suggests 

presence of non-Gaussianity, non-linearity or non-stationarity, or a combination of these 

properties in the observed time-courses. Unfortunately, further non-trivial testing is required 

to narrow down on the cause of the rejection of the CPR null, a topic out of scope of the 

focus of this study and worth exploring in the future. Nonetheless, the two results in Fig. 7 

jointly suggest that clustering was substantially, but not completely, explained by the lagged 

cross-covariance structure of the RSN time-courses.

3.3. Approach 2: fuzzy meta-states

3.3.1. State summary measures—To evaluate replicability in the group statistics, 

several meta-state metrics such as number of distinct meta-states occupied (n), number of 

switches in meta states (s), longest state span (r: largest L1 distance possible in occupied 

meta-state vectors) and finally the total distance covered by a subject (d: sum of L1 distances 

covered by a subject) are computed from the emergent meta-states. The group-wise 

histograms of subject meta-state metrics from the temporal ICA decomposition method as 

plotted in Fig. 8A show similar spread and distribution across the groups. Fig. 8B, the mean 

Abrol et al. Page 13

Neuroimage. Author manuscript; available in PMC 2018 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stem plots and standard deviation boxplots suggest low variation in the estimated group 

summary metrics (σs = 1.0015; σn = 1.0678; σr = 0.5373; σd = 4.5790). Similar results from 

alternative decompositions such as spatial ICA, PCA, and k-means clustering (Fig. 8C) 

confirm the low variation observed in temporal ICA decomposition metrics. It must be noted 

that k-means clustering uses only 4 discrete states (1–4), and hence has dis-similar numbers 

as compared to the other three decompositions with a maximum 8 possible states (−4 to −1, 

1 to 4). Nonetheless, meta-state metrics from the k-means decomposition are similar across 

the different groups showing low variation for the estimated dynamic measures (σs = 1.3192; 

σn = 1.0840; σr = 0.5033; σd = 1.6242).

3.3.2. Internal validation: testing range of dimensions—Sensitivity of the 

replicability results to the number of dimensions (model order o) in the meta-state approach 

is tested by performing the meta-state analysis with this parameter ranging from 2 to 5. As 

evident from the bar graphs and low standard deviations in Fig. 9, there is great similarity in 

all meta-state summary metrics in all model orders, which further substantiates evidence of 

the replicability of the meta-state approach summary metrics across the independent 

samples. Notably, the averaged meta-state statistics for the entire dataset increase with the 

number of dimensions since the range of possible meta-states in the state space increases 

with the model order; however, within a given model order, high group-wise similarity in the 

dynamic measures is observed.

3.3.3. External validation: decomposing surrogate data—Correspondence of the 

meta-state summary metrics to the RSN time-courses corresponding to real fMRI data was 

tested by meta-state permutation testing on a set of 100 CPR surrogate datasets of RSN 

timecourses. For all meta-state metrics, the outcome from the real dataset was determined 

and compared against the null distribution for the respective meta-state metrics generated 

from the different surrogate datasets. Fig. 10 shows that all summary metrics for the real 

dataset are located completely outside the synthesized null distribution for the temporal ICA, 

spatial ICA and PCA decomposition methods. Similar results were observed for the k-means 

decomposition method as well. This rejection of the CPR null model for the studied meta-

state metrics for different decomposition methods adds further evidence to presence of non-

Gaussianity or non-linearity or non-stationarity, or any combination of these three properties 

in the observed RSN time-courses. Spotting the specific cause of rejection of the CPR null 

hereon is non-trivial and an interesting topic for future.

4. Discussion

Prior studies on assessment of spatiotemporal dynamic FC in the human brain have made 

use of similar dFNC approaches to characterize pathophysiology i.e. identification of disease 

states, thus corroborating the utility of the undertaken dFNC approaches (Damaraju et al., 

2014; Rashid et al., 2014; Yu et al., 2015; Du et al., 2016; Miller et al., 2016). These studies 

found extensive additional information through use of these dynamic approaches as 

compared to that from static assessment of FC, hence advocating the use of dynamic 

analyses for better understanding of functional connectivities in the brain. Furthermore, the 

dFNC measures have been reported to relate to demographic characterization (Hutchison 

and Morton, 2015; Yaesoubi et al., 2015a,b; Preti et al., 2016), consciousness levels 
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(Hutchison et al., 2013a,b; Amico et al., 2014; Hudson et al., 2014; Barttfeld et al., 2015; 

Wang et al., 2016) and cognition (Kucyi and Davis, 2014; Schaefer et al., 2014; Yang et al., 

2014; Madhyastha et al., 2015). Despite fundamental evidence of availability of 

considerable, interesting spatiotemporal dynamic connectivity information through these 

dFNC approaches, no prior study has yet evaluated the canonical utility of the dynamic 

measures; in other words, are there certain connectivity patterns that tend to recur across 

different subjects, i.e. a chronnectome.

To resolve this important issue, we tested two specific dFNC frameworks used in 

chronnectomic studies over multiple age-matched, large and independent resting state 

datasets. From group analysis in our first approach, we confirmed high correlation in sorted 

state profiles across the independent decompositions with the first quartiles (25th 

percentiles) of pairwise correlations greater than 0.8 for 4 out of 5 states. We also observed 

consistent clustering results for a large range of clusters both of which clearly suggest 

faithful reflection of high degrees of replicability in the structure of underlying dynamics. 

Surrogate data analysis for this approach confirmed clustering to be substantially (but not 

completely) explained by the lagged cross-covariance structure of the RSN time-courses, 

while also suggesting the presence of non-linearity or non-stationarity, or both non-linearity 

and non-stationarity in this observed data. Using tSNE as a quality control measure, we 

successfully projected the high dimensional state profiles from all independent groups onto a 

two-dimensional space and could confirm existence of structure in the windowed FC data 

from all groups, and infer results consistent with the metrics derived in this approach. 

However, this visualization also suggested possible improvements in the chosen clustering 

algorithm since one of the states appeared as a mixture of two other primary states. Using 

the fuzzy meta-state approach as a second pass analysis, we evaluated multiple 

decomposition methods to explore generic replicability from a different perspective. As 

expected, we found low values of standard deviation for all derived average group-wise 

meta-state metrics through the temporal ICA decomposition method for a range of 

dimensions or model orders. This early identification was found to be consistent with similar 

evidence from replicability analysis using the k-means, spatial ICA and PCA decomposition 

techniques. Finally, validation analysis through permutation testing on the synthesized 

surrogate datasets confirmed evidence of presence of non-Gaussianity, non-linearity or non-

stationarity (or any combination of these properties) in the observed RSN time-courses.

Head-motion has been shown to significantly alter correlations in the FNC (Power et al., 

2014), and so we studied the impact of head motion in the estimated replicability metrics. In 

this particular analysis, we de-spiked the data as well as regressed out the estimated head 

motion parameters from the observed dynamic measures, and derived the replicability 

metrics from these motion regressed dynamic measures. As seen in SI Figs. 3 and 4, the 

regressed dynamic measures in both approaches were found to be very similar to the 

originally estimated dynamic measures and demonstrated similar replicability, suggesting 

head motion does not play a major role in the observed replicability.

Current findings from our analyses provide a substantial and novel advancement on the 

debate of robustness of inferences on temporal dynamics through the undertaken methods. 

Taken together, results from our analyses provide several lines of evidence of substantial 
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reproducibility in the basic connectivity patterns amidst an ensemble of interregional 

connections, and further evidence of robust reproducibility across the independent 

decompositions against variation in data analysis methods, grouping methods, 

decomposition techniques and data quality. This evidence was found in a “probably” mixed 

dataset; however, we expect higher similarity in the dynamic FC measures in data with 

healthy controls only or patients only as could be expected to be obtained from analysis of a 

homogeneous sample. While our work confirms replicability of time-varying FC states (as 

evaluated using the two undertaken approaches) in the BOLD fMRI data, we still need to 

disambiguate variations in FC due to neuronal activity from variations due to other 

nonneuronal related phenomenon, for example, variations due to parametric choices in 

methodology or inherent noise in the BOLD fMRI data. The general points about the 

methodological considerations, parametric choices, need for generative null models to test 

for stationarity and neurological relevance of the observed dynamics as discussed 

exclusively in several recent studies (Lindquist et al., 2014; Zalesky et al., 2014; Leonardi 

and Van De Ville, 2015; Zalesky and Breakspear, 2015; Hindriks et al., 2016; Miller et al., 

2017) are certainly important.

The impact of parametric choices on the estimated dynamic measures or detection 

probabilities of the studied dynamic measures in the sliding window approach has been 

extensively studied (Lindquist et al., 2014; Leonardi and Van De Ville, 2015; Zalesky and 

Breakspear, 2015; Hindriks et al., 2016). Lindquist et al. (2014) focused on the problem of 

estimating temporal variation of bivariate correlations (pair-wise correlations between two 

fMRI time-series), comparing the sliding window (SW) method (for different window 

lengths), the tapered sliding window (tSW) method (for only one fixed window length), and 

two multivariate volatility models commonly used in finance literature, namely the 

exponential weighted moving average (EWMA) model and the dynamic conditional 

correlation (DCC) model. This analysis provides insights into general ability of longer 

window lengths for robust estimation of the correlation coefficients using the sliding 

window method as evident by overall performance and error measurements comparable to 

the claimed best method overall (DCC) in several tests conducted. Generally, a tapered 

sliding window is expected to produce smoother and more efficient correlation estimates 

than a rectangular window of the same window length and other window parameters, and 

hence, has been used in the majority of dFNC studies using the sliding window approach 

(see Table S1 in Preti et al., 2016 for a complete overview); however, from Lindquist et al. 

(2014) nothing much can be directly concluded in regards to performance of the tapered 

sliding window approach as only one configuration was compared to the other models. A 

more recent study (Choe et al., 2017) compared the reliability of the mean and variance of 

the estimated network-pair correlations and FC state measures derived using the SW, tSW 

and DCC methods. This study concluded similar reliabilities in the estimated means across 

all estimated methods, improved reliability in the estimated variance for the DCC method 

(that advocates additional exploration of this alternate method in future FC investigations), 

and lower reliability of a few FC state measures (that is strikingly different to results in this 

paper but could be attributed to important methodological differences between the two 

works, for example, initialization of the clusters with exemplar data which was done in our 

work as well as Allen et al., 2012a, but not used in Choe et al., 2017). Studying dFNC 
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simultaneously with multiple proven methods and focusing on overlapping, more consistent 

results would enhance reliability of the inferences. Furthermore, Leonardi and Van De Ville 

(2015) highlighted the importance of systematic study and practical guidelines for the choice 

and impact of different chosen parameters in a sliding window approach. The authors 

recommended the “1/f rule of thumb” for calculating minimal window length while 

observing underlying frequencies in the fMRI signal. Zalesky and Breakspear (2015) 

reviewed these findings providing statistical support for their proposed rule of thumb, but 

additionally making a point that the proposed lower limit is overly conservative especially in 

moderate SNR conditions. The latter findings are corroborated in several studies where 

varying the window length parameter over a range beyond a certain safety limit did not 

change the overall observed dynamics (Allen et al., 2012a,b; Li et al., 2014; Yaesoubi et al., 

2015a,b; Deng et al., 2016; Liégeois et al., 2016; Preti et al., 2016).

Hindriks et al. (2016) evaluated the ability of the sliding-window correlations in revealing 

dFNC and also highlighted the importance of appropriate statistical tests to detect dFNC. In 

this work, the authors set up a model for the dynamics of the FC time-series using a 

controlled “correlation timescale” (ҭ), “dFNC strength” (η), scan length, sliding-window 

length and sliding-window step-size parameters, and use it to quantify the ability of a linear 

(standard deviation of the windowed FC data) and a non-linear (as proposed in Zalesky et 

al., 2014) test statistic to detect dFNC by estimating a formally defined, statistical measure, 

namely “detection probability”, for a range of the controlled parameters. While this 

particular analysis also suggested higher detection probabilities for increased values of both 

“ҭ” and “η” in the simulated data, one of the major conclusions drawn from this study, 

namely the inability of the sliding-window method to detect dFNC, is based on a particular 

experiment wherein the estimated detection probability was low while assuming fixed values 

for correlation timescale and dFNC strength parameters. Both of these assumed parameters 

are unknown for real fMRI data. Clearly, the observations are not unconditional because of 

their dependence on these unknown parameters, and hence this particular conclusion from 

their experiment cannot be fully generalized to real fMRI data. Additionally, in another part 

of this analysis, the authors mention the absence of any information regarding how to set 

these two parameters and estimate the optimal value of the sliding-window length parameter 

by averaging the observed detection probabilities over all values of correlation timescales 

(ҭ). They conclude the optimal value of sliding-window length strikingly close to the 

commonly chosen duration of 60 s. Our work and most of the studies using the sliding 

window approach use a similar duration for the sliding-window, a point also discussed in 

major reviews in the area (Calhoun et al., 2014; Calhoun and Adali, 2016; Preti et al., 2016). 

Subsidiary methodological variations must also be carefully tested for any major effects; for 

example, clustering the PCA reduced windowed FNC data (reduction on the ROI-pair 

correlation dimension as in Laumann et al. (2017) retains a smaller percentage of variability 

in the data and tends to drive apparent similarity (reduce distance) in the emergent state 

profiles (demonstrated in SI Fig. 2). As a note, despite overall consistency, the methodology 

steps and other parametric choices in the sliding-window method must continually both 

theoretically and empirically be explored to further improve accuracy of the inferences.

Evaluating statistical significance of the estimated dFNC measures assumes similar 

importance as making appropriate methodological and parametric choices. Undoubtedly, it 
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would be highly useful to replicate the behavior of “noiseless” BOLD data by “appropriate” 

simulations; however, an absence of a baseline, i.e. ground truth for resting state, makes this 

very step extremely challenging. Null models must therefore be approximated using the 

available fMRI data. Previous research has used the CPR and vector auto-regressive (VAR) 

models for this purpose. These models allow testing for the hypothesis that the observed 

data is generated by a linear, stationary Gaussian process. In this study, we saw the CPR null 

model being rejected for one test statistic in the hard clustering approach and four test 

statistics in the meta-state approach. A major drawback of this null hypothesis is that it too 

general, and if rejected, it is not possible to conclude the specific cause of rejection to be 

non-Gaussianity, non-linearity, non-stationarity or some combination of these properties, and 

hence there is need for additional analysis. In case of rejection of these null models, it would 

make sense to test for Gaussianity of the observed data as it is more straightforward, and if 

the data is concluded to be Gaussian, subsequent advanced statistical testing, for example 

testing the degrees of non-stationarity and non-linearity, could be explored to further 

comment on the specific property causing the rejection of the null model. Other recently 

used alternatives to the CPR and VAR null models include the amplitude-adjusted phase 

randomization (AAPR) null (Betzel et al., 2016) and the null as used in Laumann et al. 

(2017). The null hypothesis in AAPR model associates to the observed data being a 

monotonic non-linear transformation of a linear Gaussian process (Theiler et al., 1992; 

Schreiber and Schmitz, 2000) and generates data that preserves the amplitude distribution 

exactly but the power spectrum approximately. Finally, the null used in Laumann et al. 

(2017) is matched to the covariance structure exactly i.e. preserves the static FC exactly, but 

to the power spectrum on average i.e. does not preserve the cross-lagged covariance 

structure exactly as in the CPR and VAR models. Since these different models correspond to 

different null hypothesis and preserve different properties of the observed data, exploring 

and utilizing additional knowledge on the nature of the observed data is recommended to 

appropriately choose the null hypothesis in a given study. In nutshell, there is need for 

additional work in the field of null model development for statistical validation by surrogate 

testing, and hopefully more specific null models and/or frameworks to test existing null 

models in literature will emerge and eventually allow for more specific inferences.

Besides, some innovative ways of using null data to draw conclusions about time-varying 

nature and consistency of the FC fluctuations have also been recently explored (Zalesky et 

al., 2014; Betzel et al., 2016; Hindriks et al., 2016). Zalesky et al. (2014) used a novel 

framework to provide evidence of a consistent set of “dynamic” inter-RSN connections that 

exhibited pronounced fluctuations in strength over time. This framework records a non-

linear “excursion” test statistic quantifying the extent of time-varying fluctuations in the 

windowed FNC data for both original data as well as a set of VAR surrogate datasets. In the 

next step, connections that reject the null distributions of this test statistic are retained for 

further analysis wherein binary graphs are constructed for each subject using only the top-

few most “dynamic” connections and degree of each region in these binary graphs is 

evaluated. Finally, this degree is summed across the subjects to frame an “index of 

consistency” of these dynamic connections (i.e. how consistently the regions were dynamic 

across the subjects). Next, Hindriks et al. (2016) reported absence of evidence for dFNC in 

real fMRI data for individual sessions and concluded that using the CPR null model it is 
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difficult to distinguish two test statistics, namely the standard deviation of the windowed 

data and the non-linear test statistic as originally explored in Zalesky et al. (2014). Our 

analysis with the CPR surrogate datasets generated from fMRI data used in our study 

suggests the presence of significant “dynamic” inter-regional connections which we also 

evaluated for consistency through the “index of consistency” metric for both the standard 

deviation of windowed FNC data and the excursion test statistics (SI Fig. 1). Evaluating 

consistency of these significantly “dynamic” inter-regional connections across numerous 

independent samples similar to this study is definitely an interesting work for future.

Recently, Laumann et al. (2017) suggested stability of the FC structure observed in resting 

state BOLD fMRI data over tens of seconds. The authors clearly mention in their work that 

this demonstrated stability of the FC structure, computed by integrating over time, did not 

cross paths with time-varying studies analyzing shorter time-scales. Furthermore, recent 

collaborative work from the same authors has formally demonstrated that even statistically 

stationary data does not imply absence of brain states (Liegeois et al., 2017). The authors 

also suggested the emergence of the observed states mostly due to sampling variability and 

physiological confounds in the fMRI data. Our perspective on sampling variability is that 

such variability (between subjects) is certainly possible but does not by itself argue for or 

against the presence of dynamic states any more than sampling variability visible in an 

analysis of GLM maps enables us to detect the presence of the widely studied resting 

networks in second level task-based fMRI data (Smith et al., 2009; Calhoun and Allen, 

2013) argues against the presence of resting fMRI networks. In addition, there does appear 

to be agreement that the FC fluctuations in the data ‘indistinguishable’ from statistically 

stationary null data could demonstrate behavioral relevance (Shine and Poldrack, 2017) and 

electrophysiological correlates as discussed in the concluding paragraph.

A straightforward implication of rejection of the CPR null model by the summary metrics as 

seen in this work would be the inability of the CPR null model to fit all of the statistical 

properties of the resting state fMRI data. This provides support for time-varying connectivity 

models to study functional connectivity; however, the best model of functional connectivity 

data (i.e. by “states” or “meta-states” as used in this paper or with other proposed dynamic 

models in the dFNC literature) is still a matter of debate. It must also be noted that there 

could be several different ways of capturing the temporal dynamics in fMRI data and in turn 

illuminating the brain function; the methods studied in this paper do not claim a specific 

number of states in the fMRI data any more than a specific number of resting state networks 

in fMRI data could be claimed. Rather, the focus is on illustrating that such a decomposition 

may be useful for studying the brain, and this necessitates the ability to identify stable 

connectivity patterns from the data that can replicate and which show similar temporal 

dynamic properties. There is already evidence for usefulness of the dynamic state models 

explored in this work as previous work has demonstrated that such patterns are better than 

static connectivity at predicting patient groups which suggests that such decompositions as 

explored may be useful for helping differentiate patients and controls (Damaraju et al., 2014; 

Rashid et al., 2014; Yu et al., 2015; Du et al., 2016; Miller et al., 2016).

Going forward, investigating the functional and neurophysiological relevance of the 

observed time-varying FC states, meta-states or other robust connectivity descriptors 
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assumes critical importance and needs further confirmation. Demonstrating functional 

relevance is currently an active topic with several interesting works establishing direct links 

with ongoing cognitive function and effective cognitive performance (Craddock et al., 2012; 

Schaefer et al., 2014; Gonzalez-Castillo et al., 2015; Madhyastha et al., 2015; Shine et al., 

2016a,b), identifying signatures of consciousness (Hutchison et al., 2013a,b; Amico et al., 

2014; Hudson et al., 2014; Barttfeld et al., 2015; Wang et al., 2016), tracking day-dreaming/ 

mind-wandering (Kucyi and Davis, 2014; Kucyi, 2017), and decoding signatures of sleep 

and awake states (Tagliazucchi and Laufs, 2014). Additionally, simultaneous recording of 

electrophysiological data in conjunction with BOLD fMRI data not only enables charting of 

the human brain activity at high spatial as well as high temporal resolutions, but also linking 

variability in FC fluctuations to external measures of neuronal activity. Recently found 

evidence of potential electrophysiological signatures of dynamic BOLD FC clearly hint 

fluctuations in the BOLD FC to be interesting i.e. having a neurophysiological origin 

(Tagliazucchi et al., 2012; Chang et al., 2013; Allen et al., 2017). Such preliminary 

observations clearly suggest that multi-modal studies may play a key role in determining 

neural or behavioral relevance of the observed FC states in the fMRI data. Future work 

would hence likely involve recognition of a multi-modal, multi-level theoretical framework 

that would very likely be able to capture the underlying physiological correspondences that 

enable switching of the emergent connectivity patterns. Neuronal correlates of time-varying 

FC have been previously suggested in few studies (Liu et al., 2013; Thompson et al., 2013; 

Kragel et al., 2016), and more recently Matsui et al. (2017) claims a link between time-

varying FC and neuronal origins, however, a lot of additional work is still needed to affirm 

the correspondence of the time-varying FC state descriptions with underlying neuronal 

activity. Other lesser explored alternate approaches that have shown promise include casual 

manipulation of the FC states using pharmacology (Hutchison et al., 2013a,b; Barttfeld et 

al., 2015; van den Brink et al., 2016) or direct brain simulation techniques (Liu et al., 2015; 

Cocchi et al., 2016) to trace functional or neurophysiological relevance (Shine and Poldrack, 

2017). We predict such tailored investigations probing the functional and neurophysiological 

relevance of the time-varying FC states will play a major part in uncovering the underlying 

relationships we are pursuing; replicability is only an initial step forward.
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Fig. 1. 
Summary of the research methods. (A) 61 components from the Group Independent 

Component Analysis (GICA) on the entire dataset were identified as reference Resting State 

Networks (RSNs). The first 7000 datasets were partitioned into 28 age matched, independent 

groups each having 250 scans. All partitioned samples underwent GICA using the same 

parameters as the entire dataset GICA. Spatial maps and time-courses of the individual 

subjects were reconstructed for all decompositions. Networks across the decompositions 

were mapped onto the reference RSNs using a greedy spatial correlation analysis, and 37 

components over a fixed threshold were retained for dFNC analysis. (B) The reconstructed 

time-courses went through additional processing to remove any probable noise sources and 

outliers. These processed time courses underwent dFNC analysis with a sliding window 

method thus resulting in emergence of inter-RSN covariance patterns for the different time 

windows. (C) To explore structure and frequency of the windowed connectivity patterns 

(CPs), recurring connectivity state profiles (SPs) were estimated and characterized using a 
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hard-clustering approach (CPs clustered to map one of the recurring connectivity SPs), and a 

fuzzy meta-state approach (CPs decomposed into meta-states). (D) Sorted SPs were 

summarized deriving several similarity statistics in both approaches to evaluate replicability. 

(E) Results were validated using extensive internal (using the original fMRI data) as well as 

external (using synthesized surrogate datasets) validation methods in both approaches.
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Fig. 2. 
Resting State Networks (RSNs). Spatial maps of the 37 retained RSNs at the most activated 

sagittal, coronal and axial slices.
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Fig. 3. 
Optimal Clustering Analysis. (A) Elbow plot for a sample run; (B). Group-wise boxplots of 

the estimated optimal number of clusters over 10 independent runs. (B) The x-axis labels in 

Fig. 3b illustrate the number of runs for that particular group (out of a total of 10 runs) that 

estimated the optimal value of k equal to 5. In all, 241 out of the 280 independent runs 

estimated the optimal value of k equal to 5; hence, this value of k was validated as the 

optimal clustering case for the rest of the study.
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Fig. 4. 
State summary measures in the clustering approach. (A) SPs averaged over all groups; (B) 1-

sample t-test results on the SPs; (C) 1-sample t-test results averaged over the domains; (D) 

Boxplots of pairwise linear correlations of the SPs; (E) Boxplots of average occurrence % of 

the SPs; (F) Boxplots of the average mean dwell times of the SPs; (G) Boxplots of average 

fractional times of the SPs; (H) Occurrence percentages of the SPs modelled w.r.t. time; and 

(I) Mean and std. deviation of average state transition probabilities (modelled as a first order 

Markov chain).

Abrol et al. Page 31

Neuroimage. Author manuscript; available in PMC 2018 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
High-dimensional windowed FNC data projection onto a two-dimensional space using the t-

distributed Stochastic Neighbor Embedding (tSNE) framework. (A) tSNE visualization of 

the windowed FNC data from all 28 groups suggests consistent clustering for states 1, 2, 3 

and 4 for all groups, touching class boundaries and low degree of homogeneity for state 5. 

Additionally, from the state summary measures, State 5 was seen to be less reproducible as 

compared to the other 4 states. (B) tSNE visualization for states 1 to 4 for all groups 

confirms distinct (but touching) clustering regions for these different data classes. (C) and 

(D) Class conditional densities for the states 1 to 4 in 2 dimensions (Fig. 5C) and 3 

dimensions (Fig. 5D) reveal distinct peaks for all 4 classes thus validating the structure in 

the data.
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Fig. 6. 
Internal validation in the hard-clustering approach. Clustering results for a range of number 

of clusters (k = 2 to 10) demonstrate high similarity of the emergent state profiles.
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Fig. 7. 
External Validation in the hard-clustering approach. (A). SPs emergent from clustering 

windowed FNC data corresponding to real fMRI data exhibit high correlation with SPs from 

similar analysis on 100 synthesized surrogate datasets of RSN time-courses with consistent 

phase randomization (CPR) and low correlation in case of inconsistent phase randomization 

(IPR); and (B) Observed sum of pair-wise inter-state distances in real data in comparison to 

the null distribution of this test statistic approximated from 100 CPR surrogate datasets.
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Fig. 8. 
State summary measures in the meta-state approach. (A) Histogram plots of the estimated 

subject-specific temporal ICA meta-state metrics demonstrate similar distributions across all 

groups; (B) Boxplots of group-wise averages of temporal ICA meta-state metrics indicate 

low variation in group summary metrics; (C) Similarity of group summary metrics across 

different groups within and across different decomposition methods. Notably, the metrics are 

consistent across groups in k-means, but different from other methods since k-means uses 

only 4 discrete states (1–4), as compared to other methods that use 8 states (−4 to −1 and 1 

to 4).
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Fig. 9. 
Internal Validation in the meta-states approach. (A) Sensitivity test of number of dimensions 

(o = 2 to 5) to the meta-states framework validates similarity in group summary measures; 

(B) Averaged metrics are consistent across groups, but increase with model order as range of 

meta-states is proportional to model order.
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Fig. 10. 
External validation in the meta-states approach. Meta-state metrics corresponding to real 

fMRI data were observed to fall outside the respective null distributions generated from 

meta-state metrics corresponding to 100 CPR surrogate datasets of RSN time-courses. 

Results for the temporal ICA, spatial ICA and PCA decomposition methods are shown; 

similar result was observed for k-means decomposition method.
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