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The purpose of this study was to evaluate the capabilities of DMLC to deliver the 
respiratory motion-synchronized dynamic IMRT (MS-IMRT) treatments under 
various dose rates. In order to create MS-IMRT plans, the DMLC leaf motions in 
dynamic IMRT plans of eight lung patients were synchronized with the respira-
tory motion of breathing period 4 sec and amplitude 2 cm (peak to peak) using 
an in-house developed leaf position modification program. The MS-IMRT plans 
were generated for the dose rates of 100 MU/min, 400 MU/min, and 600 MU/
min. All the MS-IMRT plans were delivered in a medical linear accelerator, and 
the fluences were measured using a 2D ion chamber array, placed over a moving 
platform. The accuracy of MS-IMRT deliveries was evaluated with respect to static 
deliveries (no compensation for target motion) using gamma test. In addition, the 
fluences of gated delivery of 30% duty cycle and non -MS-IMRT deliveries were 
also measured and compared with static deliveries. The MS-IMRT was better in 
terms of dosimetric accuracy, compared to gated and non-MS-IMRT deliveries. 
The dosimetric accuracy was observed to be significantly better for 100 MU/min 
MS-IMRT. However, the use of high-dose rate in a MS-IMRT delivery introduced 
dose-rate modulation/beam hold-offs that affected the synchronization between 
the DMLC leaf motion and target motion. This resulted in more dose deviations 
in MS-IMRT deliveries at the dose rate of 600 MU/min. 

PACS numbers: 87.53.kn, 87.56.N-

Key words: DMLC, IMRT, 4D, tracking, gating, dose rate 

 
I. InTRoducTIon

Intrafractional motion caused by respiration is an important concern in upper abdomen and 
thoracic sites and it results geometric, as well as dosimetric, uncertainties in radiation therapy 
treatments.(1-5) Advanced techniques, such as stereotactic body radiation therapy, utilizes delivery 
of higher dose to the target in a fewer fractions and this highlights the importance of managing 
these intrafractional uncertainties.(6)  

Techniques such as active or passive breath-hold(7-9) and respiratory gating(10-12) are com-
monly employed to account the intrafractional motion and reduce the internal margin in plan-
ning target volume. Breath-hold technique cannot be applicable to all lung patients because it 
may not be tolerated by pulmonary-compromised patients.(13) Conversely, the gated technique 
prolongs the treatment time, which is not favorable especially in IMRT as it would compromise 
the tumor control probability.(14-15) Further details about the above techniques may be found 
in the literature.(16)
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An alternate solution to account for the respiratory motion is to chase or track the moving 
target. Tracking of moving target can be achieved by various approaches (e.g., couch move-
ment,(17,18) robotic linac,(19-21) dynamic multileaf collimator (DMLC),(22-37) and gimbaled 
linac(38-41)). Among these tracking methods, DMLC-based target tracking was the focus of 
this work. 

The DMLC-based target tracking was first empirically demonstrated by Keall et al.(22) who 
described the technique as motion adaptive X-ray therapy (MAX-T). It has been shown that 
the DMLC could be effectively used to manage the target motion with submillimeter geomet-
ric accuracy.(23,24) The DMLC was also investigated to deliver target motion-synchronized 
intensity-modulated radiation therapy (MS-IMRT). Papiez et al.(29-31) discussed algorithms for 
DMLC leaf-pair optimal control IMRT delivery to moving and deforming targets. McQuaid 
and Webb,(33) McClelland et al.,(34) and Webb et al.(35-37) demonstrated an approach to deliver 
the dynamic IMRT treatments to moving targets; these studies considered the regular, as well 
as differential, target motions. 

In MS-IMRT treatments, two methods are generally used to obtain the target motion. One 
utilizes the online/real-time information(23,25) about the target position, and the other utilizes 
off-line/prior information.(26,27) In the real-time method, the target motion information is moni-
tored during treatment delivery using external/internal surrogates, and the DMLC apertures 
are reshaped in real time to compensate for the online monitored target motion. In off-line 
method, the target motion is measured at simulation stage and used to create the DMLC-based 
motion-synchronized deliveries; synchronized moving aperture radiation therapy (SMART)(26) 
and breathing synchronized delivery (BSD)(27) are two such techniques. During these treat-
ment deliveries, this synchronization between the target motion and DMLC motion should be 
maintained. However, mechanical motion capabilities of DMLC leaf impose constraints for 
maintaining this synchronization in MS-IMRT because the DMLC has not only to move for 
beam intensity modulation, but also has to follow the target motion.(42) Hence, it is important 
to investigate the capabilities of DMLC to deliver the MS-IMRT treatments, especially under 
various circumstances. 

The purpose of this study was to evaluate the capabilities of DMLC to deliver the MS-IMRT 
treatments under various dose rates (DR) using prior information of target motion. Furthermore, 
the dosimetric results of MS-IMRT deliveries were also compared with gated and non-MS-IMRT 
(no compensation for target motion) deliveries. In this study, the target motion only along the 
DMLC motion was considered because the lung tumor motion is larger in the craniocaudal 
direction for lower-lobe unfixed tumors.(43)  

 
II. MATERIALS And METHodS

A DMLC leaf motion modification method was developed to incorporate the prior target 
motion due to respiration into a dynamic IMRT delivery. Using this method, the MS-IMRT 
plans were created for eight lung patients who had previously been planned for dynamic 
IMRT. The dosimetric accuracy of the MS-IMRT deliveries was evaluated for three dose rates: 
100 MU/min, 400 MU/min, and 600 MU/min. Further, the dosimetric results of MS-IMRT 
deliveries were compared with corresponding gated deliveries of duty cycle 30% and  
non-MS-IMRT deliveries.

A.  Respiratory motion-synchronization method
The process of respiratory motion-synchronization in conformal delivery is relatively simple 
and straightforward. But, this process is complicated in dynamic IMRT since the DMLC leafs 
are already moving. In principle, the DMLC leafs should not only compensate the target motion, 
but also they should preserve the intended intensity pattern in a MS-IMRT delivery. For this 
purpose, an automatic program was developed in MATLAB (ver. 7.0; The MathWorks, Natick, 
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MA) and the workflow of this program is shown in Fig. 1. In this study, the target motion was 
incorporated into the DMLC leaf motions which was created after optimization process (i.e., 
the DMLC leaf motion file (actual fluence) calculated by leaf sequencing algorithm was used). 
The program requires two inputs: original DMLC leaf motion information (including dose 
rate and total monitor unit (MU)) of a dynamic IMRT plan, and the trajectory of the moving 
target. Using this information, the program superimposes the target trajectory into the original 
DMLC leaf motions. 

The program corrects the individual DMLC leaf motions for the prior information of   
target motion. The respiratory motion-corrected DMLC leaf velocity (VMLC’) is determined 
as follows:
 

  (1)

 

VMLC
’
 =  

VMLC                for VT = 0

VMLC + |VT| for V T > 0

VMLC -  |V T|    for V T < 0
 

The program extracts each DMLC leaf velocity (VMLC) from the original DMLC leaf 
motion file and adds the velocity of the moving target (VT) into it during the forward (positive) 
direction of target motion (i.e., both the target and DMLC are moving in the same direction). 
Conversely, the program subtracts the VT from the VMLC during backward (negative) direction 
of target motion (i.e., both the target and DMLC are moving in opposite direction). During 
the forward motion of the target, the DMLC has to move fast enough to compensate the target 
motion and, in addition, it has to preserve the required intensity modulation. Whereas, during 
the backward motion of the target, the DMLC has to move slow enough to compensate the 
target motion as well as preserve the required intensity modulation. During the backward target 
motion, the resultant direction of leaf motion is always towards the highest velocity value (i.e., 
if the DMLC leaf velocity is greater than target velocity, the resultant velocity after subtraction 
would be towards DMLC leaf motion). Similarly, if the target velocity is greater than DMLC 
leaf velocity, the resultant velocity after subtraction would be towards target motion.

Fig. 1. The work flow of respiratory motion synchronization in dynamic IMRT.
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B.   designing motion-synchronized delivery
The respiratory motion considered in this study was having cos4(t)-shaped motion  in cran-
iocaudal direction with a fixed amplitude of 2 cm peak to peak and the breathing period of 
4 sec.(44) Previously planned dynamic IMRT plans of eight lung patients were retrospectively 
included in this study. These IMRT plans were optimized using conventional (3D) CT images 
for a total dose of 70 Gy in 35 fractions with 6 MV photon beam at a dose rate of 400 MU/
min in a commercial treatment planning system (Eclipse, Varian Medical Systems, Palo Alto, 
CA). The DMLC leaf motions were calculated using leaf motion calculator (LMC) (ver. 8.6) 
by keeping the effective limiting leaf velocity as 2.5 cm/sec. In order to keep the DMLC leaf 
motion along the target motion, the collimator rotation was fixed at 90° for all fields. These 
DMLC leaf motions of the dynamic IMRT plans along with MU and dose-rate information 
were imported into the in-house program. The velocity of the individual DMLC leafs was 
modified to incorporate the above assumed target motion. During motion synchronization, the 
initial respiratory phase was set as 320° which was determined as an optimal parameter.(42) In 
a dynamic IMRT planning, variation in the dose rate alters the velocity of the DMLC leaf and 
MU required for delivering the treatment.(45) Hence, dynamic IMRT plans with dose rate of 
100 MU/min and 600 MU/min were also generated for each patient. The DMLC leaf motions 
of these plans were also imported into the program for motion synchronization. During the 
motion-synchronization process, no attempt was made to restrict the DMLC leaf velocity below 
the effective limiting leaf velocity. Further, the dose rate was considered as constant during 
MS-IMRT deliveries. 

c.   Evaluation of motion-synchronized deliveries
The experimental verification of MS-IMRT deliveries was performed in a medical linear accel-
erator (CL2100CD, Varian Medical Systems) equipped with millennium 120 DMLC system. 

Dosimetric accuracy (2D fluences) of the MS-IMRT deliveries was measured using 
I’MatriXX 2D ion chamber array device (Scanditronix Wellhöfer, Freiberg, Germany) which 
was sandwiched between Perspex slab phantoms. This detector system was placed over the 
QUASAR motion platform (Modus Medical Devices Inc., London, Canada) which was pro-
grammed to move in the craniocaudal direction (along the direction of DMLC leaf motion) for 
the assumed target motion. During the MS-IMRT delivery the treatment was started manually 
whenever the target was in synchronization with the DMLC leaf motion. The real-time position 
management (RPM) system was used to make this manual synchronization (i.e., the ‘beam on’ 
was made at 320° respiratory phase by observing the breathing cycle in RPM software). The 
measurements were carried out for static, non-MS-IMRT, gated, and MS-IMRT deliveries at 
the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min for all patients. A total of 96 
measurements were performed for eight patients, which consisted of 24 measurements for each 
static, non-MS-IMRT, gated, and MS-IMRT deliveries. The dosimetric measurements were 
carried out for all patients using the following experimental setups:

1. Static IMRT delivery: The I’MatriXX remained static (no motion) and the original dynamic 
IMRT plans (no compensation for respiratory motion) were delivered. These measurements 
were considered as reference.

2. Non-MS-IMRT delivery: The I’MatriXX movement was simulated for the assumed target 
motion and the original dynamic IMRT plans (no compensation for respiratory motion) were 
delivered. 

3. MS-IMRT delivery: The I’MatriXX movement was simulated for the assumed target motion 
and the MS-IMRT plans (compensated for respiratory motion) were delivered.

4. Gated delivery: The RPM system was used to deliver the gated treatments. A two dot pas-
sive marker block was placed on chest wall of the moving QUASAR phantom. An infrared 
camera tracks the movement of the markers to produce the respiratory motion of phantom. 
A gating widow of 30% duty cycle was set at end expiration of the wave. The original IMRT 
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plans (no compensation for respiratory motion) were delivered on the moving detector under 
this gated operation. 

The dosimetric measurements of non-MS-IMRT, gated IMRT, and MS-IMRT deliveries were 
compared with static delivery using gamma evaluation(46) criteria of 2% dose difference and 
2 m distance to agreement. The percentage of pixels which had γ < 1 was recorded for analysis. 
Statistical analyses were also performed using the Student’s t-test (two-tailed, heteroscedastic). 
Differences were considered to be significant for p-value < 0.05. During the above measure-
ments, the MLC controller was programmed to record the DynaLog (Varian Medical Systems) 
files for leaf positional error analysis. 

 
III. RESuLTS 

In order to deliver the intended dose to a moving target, the velocities of the DMLC leafs in 
the original IMRT plans were modified to synchronize the prior information of target motion. 
Figures 2(a), (b), and (c) show DMLC leaf velocities of original IMRT (non-synchronized) 
plans of a single patient for the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min. It 
is revealed from these figures that the velocities of DMLC leafs are increased as the dose rate 
is increased. Figures 2(d), (e), and (f) show DMLC leaf velocities of MS-IMRT plans for the 
dose rates of 100 MU/min, 400 MU/min, and 600 MU/min. It is observed from these figures that 
the velocities of the DMLC leafs are modified (in positive and negative directions) to account 
the target motion. Further, the required velocity to deliver the MS-IMRT plan exceeded the 
leaf velocity value 3.0 cm/sec for the dose rate of 600 MU/min in three (patients 3, 4 and 7) 
out of eight patients.

The dose distribution of non-MS-IMRT delivery was compared with static reference delivery 
and is shown in Fig. 3(a) for a single patient at the dose rate of 400 MU/min. Similar com-
parisons were also performed for gated and MS-IMRT deliveries and are shown in Figs. 3(b) 
and (c). Further to highlight the effect of dose rate, the dose profiles were extracted along the 
DMLC leaf motion direction across the Fig. 3 (x-axis) and are shown for dose rates 100 MU/
min, 400 MU/min, and 600 MU/min in Figs. 4(a), (b), and (c) for various techniques.  

The percentage of pixels which passed the gamma criteria of 2% dose difference and 2 mm 
distance to agreement is shown in Table 1. In the absence of motion synchronization, the dose 
deviation with respect to static was larger, and the percentage of pixels passing the gamma test 
was in the range of 58.5 to 80.66 for the dose rate of 100 MU/min, 57.71 to 77.54 for 400 MU/
min, and 53.42 to 75.1 for 600 MU/min. However, when the gating method was exploited, this 
dose deviation was significantly reduced and percentage of pixels passing the gamma test was 
in the range of 85.17 to 88.67 for 100 MU/min (gating vs. non-MS-IMRT; p < 0.001), 82.62 to 
92.97 for 400 MU/min (p < 0.001), and 82.13 to 91.41 for 600 MU/min (p < 0.001). 

On the other hand, the MS-IMRT resulted in further significant improvement in dose delivery 
compared with gated deliveries. In the MS-IMRT delivery, the percentage of pixels passing the 
gamma test was in the range of 91.89 to 98.44 for 100 MU/min, 89.16 to 98.34 for 400 MU/
min, and 77.73 to 96.48 for 600 MU/min. 

The percentage deviation of pixels passing the gamma test for gated and non-MS-IMRT 
deliveries with respect to corresponding MS-IMRT deliveries was also calculated. The dosim-
etric accuracy of MS-IMRT deliveries was superior over non-MS-IMRT deliveries by (mean ± 
SD) 28.97 ± 7.05% (p < 0.001), 29.85 ± 6.49% (p < 0.001), and 28.62 ± 6.88% (p < 0.001) 
for the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min, respectively. Similarly, 
the dosimetric accuracy of MS-IMRT deliveries was advantageous over gated deliveries by 
8.38 ±1.88% (p < 0.001), 6.19 ±4.79% (p = 0.003), and 0.63 ± 9.42% (p = 0.685) for the dose 
rates of 100 MU/min, 400 MU/min, and 600 MU/min, respectively. 
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While comparing the impact of various dose rates, the MS-IMRT delivery with low dose 
rate (i.e., 100 MU/min) resulted in superior dosimetric accuracy compared with other dose rates 
(100 MU/min vs. 400 MU/min, p = 0.252; 100 MU/min vs. 600 MU/min, p = 0.027; and 400 MU/
min vs. 600 MU/min, p = 0.095). It is observed that the MS-IMRT delivery at a dose rate of 
600 MU/min did not result in any additional benefit over corresponding gated delivery.

 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. The velocities of 60 DMLC leafs in a original dynamic IMRT plan for the dose rates of 100 MU/min (a), 400 MU/
min (b), and 600 MU/min (c) are shown, and demonstrating that the velocities of all leafs are positive. The velocities of 
DMLC leafs in MS-IMRT plans for the dose rates of 100 MU/min (d), 400 MU/min (e), and 600 MU/min (f). In MS-IMRT 
delivery, the DMLC leaf velocities obtain both positive and negative values to account forward and backward motion of 
target, and hence exceed the effective limiting leaf velocity (2.5 cm/sec) at 600 MU/min.
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(a) (b)

(c)

Fig. 3. Isodose distributions (dashed lines) of non-MS-IMRT (a), gated IMRT (b), and MS-IMRT (c) deliveries at the 
dose rate of 400 MU/min are compared with the corresponding static isodose distribution (solid lines).The assumed target 
movement was along the DMLC motion with 2 cm peak-to-peak amplitude and 4 sec breathing period. (Isodose lines: 
95% = orange, 90% = cyan, 80% = black, 70% = red, 50% = green, and 30% = blue.)
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Fig. 4. Dose profiles of various techniques are shown for dose rates 100 MU/min (a), 400 MU/min (b), and 600 MU/min 
(c). These profiles were obtained along the DMLC leaf motion direction at the central axis of Fig. 3.  

(a)

(b)

(c)
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IV. dIScuSSIon

A leaf motion modification method was developed to synchronize the prior information of 
target motion into the delivery of dynamic IMRT. The accuracy of MS-IMRT delivery was 
evaluated for the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min in eight clinical 
patients. Further, the dosimetric results of MS-IMRT deliveries were also compared with the 
corresponding gated (duty cycle 30%) and non-MS-IMRT deliveries. 

The MS-IMRT could deliver the intended dose to a moving target with superior dosimetric 
accuracy compared with gating and non-MS-IMRT techniques (Table 1). Since, the gating 
method had residual motion within the 30% gating window, it had slightly larger deviations 
compared with MS-IMRT delivery. This residual motion is directly proportional to the gating 
window size or duty cycle. Hence, use of larger duty cycle will further degrade the delivered dose. 
The treatment efficiency of MS-IMRT deliveries was nearly 100% for all patients (due to prior 
target motion synchronization); whereas, the gated delivery had only 30%. Hence, MS-IMRT 
delivery was found to be superior in terms of dosimetric accuracy and treatment efficiency. 

While comparing the dosimetric results of MS-IMRT delivery for various dose rates, larger 
deviations were observed at high-dose-rate delivery. Because, the use of high-dose rate in a 
dynamic IMRT delivery increased the DMLC leaf velocities (see Figs. 2(a), 2(b), 2(c)). Further, 
the motion-synchronization process resulted in addition of target velocity into the original DMLC 
leaf motion during the forward motion of target (Figs. 2(d), 2(e), 2(f)). This higher DMLC leaf 
velocity resulted in larger dose deviation in the MS-IMRT delivery.

In principle, LMC usually requires one of the DMLC leaves of a pair to be moving at maxi-
mum physical leaf velocity to minimize the treatment time and transmitted dose. But, the com-
munication time delay between the control systems of MLC  and accelerator imposes that the 
maximum leaf velocity used in a delivery should not be the maximum physical velocity limitation 
of DMLC, but rather the largest velocity which will not put the leaves out of tolerance with in 
the communication delay. This suggested the replacement of the maximum physical velocity 
of DMLC by the effective limiting leaf velocity.(47) Hence, we used the effective limiting leaf 
velocity 2.5 cm/sec (not the maximum velocity) in our study. However, the synchronization of 
target motion resulted in the DMLC leaf velocity to exceed the effective limiting leaf velocity, 
especially at 600 MU/min. And even sometimes, the DMLC leaf motion exceeded the veloc-
ity value 3.0 cm/sec. The MS-IMRT deliveries with prior knowledge of target motion always 
assume a constant dose rate.(41) But, whenever the DMLC leaf motion exceeds the effective 
limiting leaf velocity, the MLC controller modulates the dose rate or holds the beam. This 

Table 1. Percentage of pixels passing the gamma criteria of 2% and 2 mm.

  Dose Rate 100 MU/min Dose Rate 400 MU/min Dose Rate 600 MU/min
 Patient Non-   Non-   Non-
 Number MS-IMRT Gating MS-IMRT MS-IMRT Gating MS-IMRT MS-IMRT Gating MS-IMRT

 1 80.66 88.45 92.77 77.54 90.2  91.31 75.1  89.36 87.4  
 2 66.89 87.79 98.44 64.16 87.7  98.34 62.89 87.11 96.48
 3 64.65 87.7  96.19 62.99 87.21 93.55 57.52 90.92 77.73
 4 62.79 86.25 93.26 57.71 87.12 89.16 57.03 87.3  87.11
 5 68.75 86.72 95.12 65.92 92.97 94.04 65.14 91.41 93.07
 6 69.92 87.99 97.27 69.04 82.62 95.02 69.63 82.13 94.14
 7 58.5  85.17 91.89 60.74 86.42 89.65 53.42 85.9  81.15
 8 69.93 88.67 98.05 66.8  87.21 97.56 65.63 87.21 92.87
 Average
 ± 67.76± 87.34± 95.37± 65.61± 87.68± 93.58± 63.30± 87.67± 88.74±
 Standard 6.52 1.20 2.51 5.98 2.98 3.40 7.16 2.97 6.63
 Deviation   
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dose-rate modulation/beam hold-off would result in desynchronization of DMLC leaf motion 
with respect to target motion and, hence, wrong delivery to a moving target. 

Further, apart from dose-rate modulation/beam hold-offs, the increased DMLC leaf velocity 
resulted in more leaf positional errors during delivery.(48) Data from the DynaLog files created 
from each delivery revealed that the leaf positional errors were consistently larger for higher leaf 
velocity deliveries (i.e., high-dose-rate deliveries). Figures 5(a) and (b) show the leaf positional 
errors in the DynaLog file recorded by MLC controller for static and MS-IMRT deliveries at 
the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min. 

For the above reasons, we observed inferior dosimetric accuracy in MS-IMRT deliveries at 
the dose rate of 600 MU/min. In addition, the MS-IMRT deliveries at the dose rate of 600 MU/
min did not result in any additional benefit over corresponding gated deliveries in terms of 
dosimetric accuracy. Therefore, in order to have better dose delivery in MS-IMRT treatments, 
optimal dose rate should be used. It is observed from the Table 1 that the percentage of  pixels 
passing the gamma criteria in MS-IMRT delivery was roughly identical for dose rates of 
100 MU/min and 400 MU/min (p = 0.252), whereas 600 MU/min had larger (p = 0.027) dose 
deviations. Hence, the dose rate of 300–400 MU/min may be utilized in a MS-IMRT delivery, 
which will not compromise the dosimetric accuracy or treatment time. 

Fig. 5. The leaf positional errors of DMLC leaf pairs recorded by DynaLog files are shown for static (a) and MS-IMRT 
(b) delivery at the dose rates of 100 MU/min, 400 MU/min, and 600 MU/min.

(a)

(b)
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In our study, we used the effective limiting leaf velocity as 2.5 cm/sec. Hence, in high-dose-
rate IMRT plans, the DMLC leaf motions were already having the velocity in the range of 
2.5 cm/sec. Therefore, whenever the motion-synchronization process is attempted in a DMLC 
leaf motion file for high-dose rate, the effective limiting leaf velocity should be reduced from the 
default value 2.5 cm/sec. Though the reduction of effective limiting leaf velocity increases the 
total MU in a dynamic IMRT delivery,(45) it can be delivered with superior dosimetric accuracy 
to a moving target without dose-rate modulation/beam hold-offs. Hence, appropriate effective 
limiting leaf velocity and dose-rate combination should be used in a MS-IMRT delivery.

However, even after reducing the effective limiting leaf velocity, in some circumstances, 
the required DMLC velocity for a MS-IMRT delivery may be above the physical DMLC 
velocity limitation. During these circumstances, one can utilize the following strategy. The 
program used in this study adds the target velocity into the DMLC leaf motion during the 
forward motion of target and subtracts it while the target is in backward motion. Only the addi-
tion of target velocity would result in the DMLC leaf motion exceeding the limit. Hence, in a 
motion-synchronization process, whenever the DMLC leaf motion exceeds the maximum leaf 
velocity, we can introduce a beam ‘hold’ until the target moves backward; this would result 
in subtraction of target velocity from the original DMLC leaf motions and enable the DMLC 
leaf motions not to exceed the maximum DMLC leaf velocity. Although this process would 
increase the treatment time (by a factor of 2), the dosimetric accuracy in MS-IMRT delivery 
would be ensured at high-dose rates.

Results of this study about the impact of dose rate in a MS-IMRT delivery agree with the 
earlier investigations by Xu et al.(42) They systematically evaluated various clinical param-
eters such as collimator angle, initial phase, dose rate, and machine tolerance which affect 
the synchronization between the target motion and DMLC motion in SMART delivery. They 
determined the optimal clinical parameters to deliver the SMART treatment: collimator angle 
in the range from 90° to 110°, initial respiration phase 320°, appropriate dose rate, and MLC 
leaf tolerance. They included only one patient in their investigations. But, the performance of 
MS-IMRT delivery would depend upon the complexity of the fluence to be delivered. Hence, 
we studied the impact of dose rate in MS-IMRT delivery on cohort of eight patients. Among the 
eight patients, patient number 4 and 7 were having complex fluence patterns, therefore gamma 
pass rate in these patients were less compared to other patients. The impact of collimator rota-
tion in MS-IMRT delivery was not included in our study because we considered target motion 
only along the DMLC leaf motion direction. In addition, the optimal values were used for initial 
respiratory phase as 320° and the MLC leaf positional tolerance as 0.2 cm. 

The presented results in this study are specific to the target motion of velocity ± 0.5 cm/sec 
which was in the direction along the DMLC leaf motion. However, use of three dimensional 
target motions with larger velocity values would increase the DMLC leaf velocities further in 
a MS-IMRT delivery. Hence, this would have a greater affect on the performance of delivery. 

 
V. concLuSIonS

The performance of MS-IMRT delivery was evaluated for various dose rates and compared 
with gated and non-MS-IMRT deliveries. The dosimetric accuracy of MS-IMRT deliveries was 
observed to be superior to both gated and non-MS-IMRT deliveries. The MS-IMRT treatments 
were most reliably delivered when the dose rate was set to low values. And the use of high-dose 
rate in MS-IMRT delivery introduced dose-rate modulation/beam hold-offs, which affected the 
synchronization between the DMLC leaf motion and target motion. Hence, appropriate dose 
rate should be selected in MS-IMRT deliveries. Strategies were also discussed to deal with the 
circumstances whenever the DMLC leaf motion exceeded the velocity constraints.
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