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SUMMARY
Cardiac hypertrophy accompanies many forms of cardiovascular diseases. The mechanisms behind the development and regulation of

cardiac hypertrophy in the human setting are poorly understood, which can be partially attributed to the lack of a human cardiomyocyte-

based preclinical test system recapitulating features of diseased myocardium. The objective of our study is to determine whether human

embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to mechanical stretch can be used as an adequate in vitro model for

studyingmolecular mechanisms of cardiac hypertrophy. We show that hESC-CMs subjected to cyclic stretch, whichmimics mechanical

overload, exhibit essential features of a hypertrophic state on structural, functional, and gene expression levels. The presented hESC-

CM stretch approach provides insight into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays

groundwork for the development of pharmacological approaches as well as for discovering potential circulating biomarkers of cardiac

dysfunction.
INTRODUCTION

Heart diseases are among the leading causes of deathworld-

wide (Roth et al., 2017). Cardiac hypertrophy is a common

manifestation of many forms of cardiac disease, including

heart failure, myocardial infarction, and hypertension

(Frey et al., 2004).

An important cause of cardiac hypertrophy is mechani-

cal stretch (Frey et al., 2004; Ruwhof and van der Laarse,

2000). Due to volume or pressure overload, the heart starts

sending stress signals activating a hypertrophic response

program to compensate the wall stress. Persistent wall

stress leads to progressive cardiac remodeling and eventu-

ally the heart goes into a failing state (Frey et al., 2004;

Ruwhof and van der Laarse, 2000). Understanding the mo-

lecular mechanisms underlying development of cardiac

hypertrophy is essential for advancing treatment of cardiac

disease. Preclinical studies indicate that the hypertrophic

response is detrimental from the start and therefore specific

growth pathways responsible for hypertrophy may emerge

as direct targets for therapeutic interventions (Schiattarella

et al., 2017). Understanding the sequence of intracellular

molecular events andmechanisms underlying the develop-

ment of cardiac hypertrophy is essential for the treatment

of cardiovascular disease. Adequate research models are

needed for functional studies of molecular mechanisms

of cardiac hypertrophy. Human in vitro models are limited

by the amount of patient-derived primary cells of cardio-

vascular lineage and poor consistency, while existing
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animal models do not always accurately represent the

mechanisms responsible for cardiac hypertrophy develop-

ment due to significant inter-species differences in contrac-

tile features, stress response, and ion channel expression

and distribution (Denning et al., 2016; Garbern et al.,

2013; Sala et al., 2016). In addition, employment of stem

cell-derived organ-specific cells in disease modeling would

align with the 3Rs principles of refine, reduce, and replace

the use of animals in research and answer to the incentives

to limit the use of animal testing and help to replace it with

alternatives, including the development of ‘‘human-on-a-

chip’’ technology (report on a European Commission

scientific conference, Cronin, 2017).

Cardiomyocytes (CMs) differentiated from human

embryonic stem cells (hESCs) are a powerful tool for inves-

tigating cardiac development, function, and pathophysi-

ology (Davis et al., 2012; Elliott et al., 2011). Subsequently,

the availability of human embryonic stem cell-derived

CMs (hESC-CMs) provided a relatively cheap platform for

drug testing (Li et al., 2017; Mordwinkin et al., 2013). How-

ever, the use of hESC-CMs for studies of cardiac hypertro-

phy and downstreammolecular effects has not been clearly

demonstrated (Benam et al., 2015; Földes et al., 2011). The

mechanic force overload, or stretch model, is based on

induction of mechanical stress by physical stretching of

CMs. This is a sustained in vitromodel that mimics volume

overload on the heart during cardiac hypertrophy develop-

ment (Ruwhof and van der Laarse, 2000; Yamazaki et al.,

1995, 1998). An additional advantage of the stretch
thors.
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Figure 1. Study Workflow
(A) CMs were subjected to mechanical
stress for 48 hr and assessed for changes in
cell size, gene expression, cell stiffness,
reactive oxygen species (ROS) production,
and stress marker release. AFM, atomic force
microscopy; RNA-seq, RNA sequencing;
hESC-dCMs, human embryonic stem cell-
derived cardiomyocytes; KD, knockdown.
** p < 0.01, *** p < 0.001.
(B) Fluorescent microscopy images of
differentiated hESC-CMs expressing cardiac-
specific markers cardiac troponin T (TnT)
and a-actinin (ACTN2). DAPI staining was
used to label nuclei. Scale bar, 50 mm.
See also Movies S1 and S2.
in vitromodel compared with neurohumoral stimulation of

CMs (i.e., phenylephrine stimulation) is that it allows re-

searchers to distinguish direct effects of increased biome-

chanical load from secondary neurohumoral activation

(Frank et al., 2008).

The aim of this study is to determine whether hESC-CMs

subjected to mechanical stretch can be used as an informa-

tive in vitromodel for the investigation of molecular mech-

anisms of CM hypertrophy and identification of potential

targets involved in this process.
RESULTS

Generation and Characterization of hESC-CMs

CMs were generated from two independent previously

characterized hESC lines, HUES9 and H9, using small

molecule-modulated differentiation and subsequent

lactate purification (Burridge et al., 2014; Scott et al.,

2009). Purified CMs were subjected to mechanical stretch

(Figure S1A) and examined for cardiac hypertrophy-

related alterations with several assays (Figure 1A). CM

derived from both lines expressed standard CM-specific
markers (Figure 1B) and exhibited spontaneous beating

(Movies S1 and S2).

Mechanical Stretch Induces Hypertrophy, Reactive

Oxygen Species Production, Cell Death, and Fetal

Genes Expression in hESC-CMs

Heart cells are exposed to rhythmic contraction or regular

cyclic stretch throughout adult life. However, chronic

biomechanical stress is also an attribute of arterial hyper-

tension or valvular heart disease, eventually leading to

cardiac remodeling and cardiac hypertrophy development

(Frey and Olson, 2003). There are several stretch parame-

ters that could influence the hypertrophy response,

including the duration of stretch and the amount of

stretch. Before extensive phenotypingwas started, we stud-

ied several conditions, including different durations of

stretch (7, 24, and 48 hr) and different amounts of stretch

(5% versus 15%). We applied 15% stretch to monitor the

release of cardiac-specific biomarkers after 7, 24, and

48 hr of HUES9-CM stretch. Interestingly, the most robust

release of the N-terminal prohormone of brain natriuretic

peptide (NT-proBNP), a marker of cardiac stretch, as well

as of troponin T (TnT), a marker of CM damage, appeared
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after 48 hr of 15% stretch (Figure S1B). In addition, mRNA

expression level of TnT was not changed during the

stretch at different time points, but the expression of NT-

proBNP significantly increased after 7 hr of stretch and re-

mained significantly upregulated (Figure S1C). We also

looked at two different stretch regimes: 5% and 15%. In

our setup, application of 5% to HUES9-CMs for 48 hr did

not induce a clear phenotype.We did not record significant

changes in TnT release, increase of CM size, or clear induc-

tion of stress genes expression (see Figure S2). Therefore, for

further experiments, 15% cyclic stretch was applied for

48 hr.

Exposure of hESC-CMs to mechanical stretch for 48 hr

caused a significant increase in cell size in HUES9-CMs

(26% ± 9.7%, p < 0.001) (Figures 2A and S3). In order to

define whether inherited variabilities between hESC lines

have an impact on the results, we validated the model

using a different hESC line, H9. Cyclic stretch applied

to H9-CM resulted in increase of CM size (37% ± 19.6%,

p < 0.001), which indicated the robustness of the data

(Figure 2A).

For both HUES9- and H9-derived CMs we observed a

more than 2-fold increase of NT-pro-BNP and 1.5-fold

increase of TnT release after 48 hr of stretch (Figure 2B).

After 48 hr of stretch, a significant increase in reactive

oxygen species (ROS) production in HUES9- and

H9-derived CMs was observed (Figure 2C). In order to

further substantiate our claim that cellular hypertrophy is

present, we measured CM volume with the use of confocal

laser scanning microscopy (Zeiss LSM 7MP) on live wheat

germ agglutinin (WGA)/Hoechst stained cells. Confocal

imaging was further combined with three-dimensional

(3D) image processing software (Imaris 6.3.5) to generate

a 3D structure of the CMs and determine cell volume. We

chose not to fix CM and performed experiments on live

cells, since fixation causes shrinkage of the cells in the

z direction. Our results show that application of 15%
Figure 2. Effects of Mechanical Stretch on hESC-CMs
(A) Changes in CM size. Areas of at least 200 cells per condition per ex
differentiation of hESCs into CMs. Two different hESC lines were used
U test.
(B) Levels of TnT and NT-proBNP after 48 hr stretch of HUES9- and H
(C) Levels of total ROS production in HUES9- and H9-derived CMs subje
all graphs, each dot represents independent experiment and indepen
depicted in blue and H9-CM in orange. *p < 0.05, **p < 0.01.
(D) Changes in CM volume derived from 3D reconstruction of live co
stained with wheat germ agglutinin fluorescein isothiocyanate (WGA-
volume reconstruction was performed. Volumes of at least 30 cells
represents independent differentiation of HUES9 into CM. Scale bar, 1
(E) Changes in CM height derived from orthogonal projections of live
30 cells per condition per experiment were measured; each experiment
50 mm. n.s., not significant by Mann-Whitney U test.
stretch leads to a significant increase in CM volume

compared with control (+41.7% ± 6.8%, p < 0.05, n = 4),

Figure 2D. We performed an additional analysis of orthog-

onal projections of the confocal images in order to deter-

mine the height or thickness of the stretched and control

cells. This analysis revealed that the height of stretched

CMs was not changed compared with controls (10.78 ±

0.5 mm [stretched] versus 9.97 ± 0.56 mm [controls],

p > 0.1, n = 4; Figures 2E and S4D).

To assess CM apoptosis, an annexin V assay was used.

Stretched CMs displayed a 4-fold (p < 0.01) increased stain-

ing of annexin V compared with control (Figures 3A and

3B). After 48 hr of stretching we observed a significant

2-fold increase of lactate dehydrogenase (LDH), a marker

of necrosis, in the supernatant from stretched cells

(Figure 3C).

Cardiac hypertrophy is often accompanied by reactiva-

tion of fetal genes; i.e., genes that are active during fetal

cardiac development and quiescent in adult hearts

(Chien et al., 1993; Felkin et al., 2011; van der Pol

et al., 2017). We tested several such genes and showed

that expression of atrial natriuretic peptide (ANP),

B-type natriuretic peptide (BNP), but not TnT was altered

by mechanical stretch in HUES9- and H9-derived CMs

(Figure 3D). In addition, 48 hr of stretch shifted the

balance between a- and b-cardiac myosin heavy chain

(MYH6 and MYH7, respectively) expression (Figure 3D),

which is a common response to cardiac injury and a hall-

mark of cardiac hypertrophy (Hamdani et al., 2008;

Izumo et al., 1987).

Mechanical Stretch Leads toContractilityDysfunction

and Increases Stiffness of hESC-CMs

In order to determine whether stretch leads to the devel-

opment of functional defects (e.g., contractile dysfunc-

tion), we assessed CM contraction force with atomic

force microscopy (AFM) (Figure 4A). CMs subjected to
periment were measured; each experiment represents independent
: HUES9 and H9. Scale bar, 50 mm. ***p < 0.001 by Mann-Whitney

9-derived CMs. *p < 0.05.
cted to mechanical stress. Measured with CellROX Orange assay. For
dent differentiation of hESCs into CMs. For all graphs, HUES9-CM is

nfocal images of control and stretched CMs; cell membranes were
FITC) and nuclei with Hoechst. Images show an example of how the
per condition per experiment were measured; each experiment

5 mm. *p < 0.05, **p < 0.01, ***p < 0.001 by Mann-Whitney U test.
confocal images of control and stretched CMs. Heights of at least
represents independent differentiation of HUES9 into CM. Scale bar,
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Figure 3. Effect of Mechanical Stretch on
hESC-CM Viability
(A) Annexin V and Hoechst staining. Scale
bar, 50 mm.
(B) The total number of annexin V-positive
cells as a percentage of total cell number
shown as median of three independent
experiments.
(C) Level of LDH after 48 hr stretch of hESC-
CMs, shown as a fold change between con-
trol and stretched samples obtained from
four independent experiments.
(D) qPCR analysis of the mRNA levels of ANP,
BNP, TnT, and a- and b-myosin heavy chain
(MHC) isoforms in HUES9- and H9-derived
CMs after 48 hr stretch. Each dot represents
the mean Ct (cycle threshold) values of
triplicate measurements normalized against
the values obtained for the 36b4 gene for
the same sample.
For all graphs, each dot represents an in-
dependent experiment and independent
differentiation of hESCs into CMs. Median
values for each condition are shown.
*p < 0.05, **p < 0.01.
mechanical stress showed a 1.6-fold slower beating fre-

quency but not significantly affected beating force ampli-

tude compared with control (Figures 4B and 4C). However,

AFM observations of CM beating behavior have some lim-

itations, since all the measurements were performed at

room temperature. We also noticed changes in myofibril

structure and sarcomere length after 48 hr of stretch (Fig-

ures 4D and 4E). The size of the sarcomeres was signifi-

cantly increased after stretch (Figures 4D and 4E). We

found that myofibrils in stretched hESC-CMs were distrib-

uted in parallel and appeared wider, whereas in control

CMs myofibrils exhibited a more branched pattern and

appeared more spatially separated (Figure 4D). In addition,

the elastic modulus, measured with AFM, was significantly

higher in stretched CMs compared with untreated control

cells, demonstrating that mechanical stretch leads to an

increase of CM stiffness (Figure 4F). It is important to

note that thinner cells potentially lead to inaccurate mea-
798 Stem Cell Reports j Vol. 10 j 794–807 j March 13, 2018
surements of the elastic modulus. However, as described

above, stretching did not result in flatter cells (Figures

2D and 2E). Moreover, we were able to image CMs by

contact-mode atomic force scan using colloidal probe

cantilever and show that there is no significant difference

in CM height of control versus stretched CMs (6.1 ± 0.5

versus 6.4 ± 1, p > 0.1, Figure S4). In addition, as was

shown before, substrate contributions to the cell’s elastic

modulus measurement can be neglected if the AFM tip

indents less than 10%–20% of the cell thickness (Kuznet-

sova et al., 2007; Gavara, 2017).

Effects of Mechanical Stretch on Gene Expression

In order to determine genome-wide gene expression

changes induced by mechanical stretch we performed

RNA sequencing (RNA-seq) of seven independently derived

pairs of control and stretched HUES9-CMs. Analysis of

RNA-seq data identified 622 upregulated genes and 1022



Figure 4. Effect of Mechanical Stretch on
HUES9-CM Contraction and Sarcomere
Length
(A) AFM cantilever brought into contact
with cardiac cell. The gray box shows typical
beating force trajectory. Peaks represent
contraction of the CM: height of the peaks
characterizes force of the CM beat (nN) and
beat-to-beat distance represents beating
rate (dT, seconds).
(B) Effect of 48 hr mechanical stretch on CM
beating rate, beats per minute (BPM).
(C) Effect of 48 hr mechanical stretch on CM
beating force.
(D) Myofibrillar organization in control and
stretched HUES9-CM. CMs were stained for
troponin T and a-actinin with specific
antibodies (red and green, respectively).
Nuclei were stained with DAPI. Magnifica-
tion, 633 (oil). Scale bar, 10 mm.
(E) Effect of mechanical stretch on CM
sarcomere length measured as a distance
between z-discs.
(F) Young’s modulus of the HUES9-
CMs subjected to mechanical stretch for
48 hr. The plots show the difference in
elasticity for the untreated control cells and
stretched CMs.
All graphs show results of at least four
independent experiments. Median values
for each condition are shown. *p < 0.05,
**p < 0.01; n.s., not significant.
downregulated genes with a false discovery rate (FDR)

below 0.01 (Figure 5A, Tables S1 and S2, a Web interface

for data search and visualization is available at http://

cardio.genomes.nl). GeneOntology (GO) term enrichment

analysis revealed that downregulated genes were mainly

enriched in GOs such as cell cycle, chromosome organiza-

tion, DNA replication, and animal organ development

(Table 1, Figure S4). Interestingly, animal organ develop-

ment includes such GO terms as regulation of heart

contraction, muscle structure development, and muscle

system process (Figure S5). Upregulated GO terms were

mainly enriched in regulation of apoptotic process, sterol

biosynthetic process, and cytoskeleton organization
(Table 1, Figure S5). In addition, KEGG (Kyoto Encyclo-

pedia of Genes and Genomes) pathway analysis identified

seven pathways that were upregulated (FDR <0.02, Fig-

ure 5B, Table S3) and 17 pathways that were downregulated

by stretch (FDR < 0.02, Figure 5C, Table S4). Several of the

downregulated pathways were enriched for a common set

of regulatory (i.e., channels and mediators of Ca2+ concen-

tration across the cell and contractility modulators) and

structural genes (i.e., dystrophin, sarcoglycan alpha, mem-

bers of integrin and collagen families) related to various

cardiomyopathies (Table S4). KEGG pathway analysis also

pointed toward significant upregulation of apoptosis and

of p53 signaling pathways, as well as upregulation of
Stem Cell Reports j Vol. 10 j 794–807 j March 13, 2018 799
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Figure 5. Changes in CM Gene Expression
upon Mechanical Stretch Identified by
RNA-Seq
(A) Mean (average) plots showing statisti-
cally significant (FDR < 0.01) differentially
expressed genes in HUES9-CMs after 48 hr
of stretch versus control. Average gene
expression level is shown in counts per
million (CPM). Position of SP6 and FSTL3
genes used in subsequent functional studies
is indicated in red. See also Tables S1 and S2.
(B) KEGG pathway analysis for upregulated
genes in stretched CM. See also Table S3.
(C) KEGG pathway analysis for down-
regulated genes in stretched CM. See also
Table S4.
steroid biosynthesis (Figure 5B, Table S3). The KEGG

pathway maps (obtained via KEGGMapper v3.1 and avail-

able at http://cardio.genomes.nl) allow further detailed

exploration of the networks and the effects of stretch on

gene expression.
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Dysregulation of SP6 and FSTL3 Expressions Plays a

Role in Stretch-Induced Hypertrophy Development in

hESC-CMs

We chose to further explore two genes of particular interest.

The first gene, specificity protein 6 (SP6), was the most
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Table 1. Significantly Enriched GO Categories for Genes
Differentially Expressed upon Stretch

GO Term Description Number of

Sub-terms

p Value FDR q Value

UP

GO:0042981 regulation of

apoptotic

process

23 9.2 3 10�8 6.9 3 10�5

GO:0016126 sterol

biosynthesis

process

20 4.5 3 10�16 6.8 3 10�12

GO:0042221 response to

chemical

20 7.0 3 10�9 1.0 3 10�5

GO:0007010 cytoskeleton

organization

8 2.5 3 10�6 8.8 3 10�4

GO:0018126 protein

hydroxylation

3 7.6 3 10�8 5.9 3 10�5

GO:0031323 cellular

metabolism

3 8.0 3 10�5 1.2 3 10�2

DOWN

GO:0022402 cell-cycle

process

26 5.6 3 10�20 8.4 3 10�16

GO:0071495 cellular

response to

endogenous

stimulus

20 8.0 3 10�9 3.2 3 10�6

GO:0051276 chromosome

organization

16 1.6 3 10�14 5.9 3 10�11

GO:0048513 animal organ

development

14 9.8 3 10�12 1.3 3 10�8

GO:0006260 DNA replication 12 8.5 3 10�11 1.6 3 10�7

(Upper panel) Significantly enriched GO terms in genes upregulated upon

stretch. (Lower panel) Significantly enriched GO terms in genes downregu-

lated upon stretch. See also Figure S5.
upregulated gene and transcription factor identified in our

RNA-seq dataset (Figure 5A). SP6 is a member of the SP

family of transcription factors, which contains zinc finger

DNA-binding domains in its structure and localizes in the

nucleus (Scohy et al., 2000; Talamillo et al., 2010).We tested

the hypothesis that knockdownof SP6 expression inhuman

HUES9-CM would prevent the development of stretch-

induced hypertrophy. The second gene, follistatin-like 3

(FSTL3), was chosen to validate already known molecular

targets of cardiac hypertrophy development. Follistatin

(FST) andfollistatin-likegenes (FSTL1,FSTL3) playan impor-

tant role in heart failure development, and were linked to

both disease severity and mechanisms underlying recovery

(Lara-Pezzi et al., 2008; Maruyama et al., 2016; Oshima
et al., 2009; Panse et al., 2012; Shimanoet al., 2011). Interest-

ingly, all of these genes were dysregulated upon stretch

(Tables S1 and S2), with FSTL3 being the most dysregulated

among them at �2-fold upregulation upon stretch (Fig-

ure 5A). Changes in expression of FSTL3 and SP6 upon

stretch were also validated on H9-CM (Figure S6A).

HUES9-CMswere transduced by lentiviral vector express-

ing anti-FSTL3 short hairpin RNA (shRNA), anti-SP6

shRNA, and scrambled control (SCR) shRNA. qRT-PCR

analysis confirmed that transduction resulted in more

than 70% reduction in FSTL3 and SP6 gene expression

compared with the SCR (Figure S6B) and SCR subjected to

mechanical stretch (Figure S6C).

hESC-CMs expressing SCR-, FSTL3-, and SP6-specific

shRNAs were stretched for 48 hr and assessed for cell size

changes (Figure 6A). In CMs expressing SCR-shRNA,

exposure to 15% mechanical stretch led, as expected, to a

significant increase of cell size area (Figure 6B), TnT release

(Figure 6C), and ROS production (Figure 6D). Knockdown

of FSTL3 and SP6 in human CMs resulted in resilience to

stretch-induced cardiac hypertrophy and resilience to

oxidative stress (Figures 6B–6D).
DISCUSSION

In the present study, we employ mechanical stretching of

hESC-CMs as a human disease model for cardiac hypertro-

phy.We show dysregulation at the cellular, functional, and

genomic levels upon stretching. All specific hypertrophic

hallmarks, such as increase of cell size, elevated levels of

stress biomarkers, and shift in fetal genes expression, are

observed. In addition, we notice an increase in cellular stiff-

ness and decreased contractility accompanied by changes

of the sarcomeric structure. Intervention via knockdown

of genes of interest resulted in resilience to the hypertro-

phic phenotype upon stretch.

Several proteins are involved in sensing and responding

to stretch in the heart, the so-called mechanosensors

(Lyon et al., 2015; Sequeira et al., 2014). Upon mechanical

load, alterations in these proteins result in mechanical

signaling leading to hypertrophy (Knoll et al., 2011; Lyon

et al., 2015). These changes can take place at various sites

in the CM, including the sarcomere, sarcolemma, and

intercalated disc (Frank and Frey, 2011; Lyon et al., 2015).

To determine the global gene expression changes involved

in the hypertrophic response to mechanical stress, we used

an RNA-seq approach. For instance, the ANKRD1 gene,

which is 1.5-fold upregulated in our dataset (Table S1), is

a transcription factor that interacts with the sarcomeric

protein titin and plays a role in the myofibrillar stretch-

sensor system. Increased levels of this protein have been

detected in heart tissue of patients suffering from ischemic
Stem Cell Reports j Vol. 10 j 794–807 j March 13, 2018 801



Figure 6. Knockdown of FSTL3 and SP6 in HUES9-CMs Decreases Level of Stretch-Induced Hypertrophy
(A) Immunostaining of HUES9-CMs expressing SCR-, FSTL3-, or SP6-specific shRNAs with specific antibodies against cardiac troponin T
(green) and phalloidin. Images were taken on the control samples and samples subjected to mechanical stress for 48 hr. Scale bar, 50 mm.
See also Figures S3 and S4.
(B) Changes of cell size after stretch in CMs expressing SCR-, FSTL3-, or SP6-specific shRNAs were measured. Measurements were performed
in at least four independent experiments. ***p < 0.001; n.s., not significant by Mann-Whitney U test.
(C) HUES9-CMs expressing SCR-, Fstl3-, or SP6-specific shRNAs were stretched for 48 hr and troponin T level in the growth media was
measured. *p < 0.05; n.s., not significant.
(D) HUES9-CM expressing SCR-, Fstl3-, or SP6-specific shRNAs were stretched for 48 hr and levels of total ROS production were measured.
**p < 0.01; n.s., not significant.
cardiomyopathy and dilated cardiomyopathy (Herrer et al.,

2014; Zheng et al., 2010). It was also demonstrated that

ANKRD1 upregulation is associated with altered systolic/

diastolic function and that mutations in this gene result

in a differential stretch-induced gene expression pattern

(Herrer et al., 2014; Moulik et al., 2009). FHL1 is another

titin-binding protein that has been shown to be upregu-

lated in mouse models in response to pressure-overload-

induced hypertrophy and in the hearts of human patients

exhibiting hypertrophic cardiomyopathy (Chu et al., 2000;

Lim et al., 2001). This is in line with our RNA-seq data that

show a significant 1.5-fold upregulation of FHL1 in

stretched hESC-CMs (Table S1). Also other members of
802 Stem Cell Reports j Vol. 10 j 794–807 j March 13, 2018
the LIM domain family that have been implicated in me-

chanical strain signaling, such as PDLIM3 and LDB3, were

significantly dysregulated upon stretch (2-fold up and

1.5-fold down, respectively). LDB3 and PDLIM3 are known

to interact with the a-actinin rod domain within z-disc and

ablation of these proteins in mice resulted in abnormal

cardiac function and severe myopathy (Gautel, 2008;

Zheng et al., 2010).

Our AFM data showed that hESC-CMs subjected to me-

chanical stretch were significantly stiffer. Increased CM

stiffness is one of the hallmarks of myocardial remodeling

(Mohamed et al., 2016; Paulus and Tschope, 2013). There

are several factors that influence cardiac stiffness, such as



changes in sarcomere length, myofibril density, shift in

N2A toN2B titin’s isoforms expression, and titin phosphor-

ylation (Hutchinson et al., 2015; Mohamed et al., 2016;

Paulus and Tschope, 2013). Even though titin expression

was not changed upon stretch, KEGG pathway analysis

revealed downregulation of cGMP-PKG signaling pathway.

This downregulation further contributes to the deficit of

titin phosphorylation and overall increase of CM stiffness

(Kovacs et al., 2016). Also stiffness increases under oxida-

tive stress conditions due to disulfide-bridge formation,

which can occur in titin filaments (Linke and Kruger,

2010). We believe that changes in sarcomeric organization

observed upon CM stretch could also contribute to the

changes in cardiac stiffness. There is a significant dysregu-

lation in the expression ofMYOM2,MYPN, FHL1, SQSTM1,

CRYAB, OBSCN, PBK, and MDM2. All these genes encode

proteins, interact with titin, and affect myofibril formation

(Linke and Kruger, 2010; Sequeira et al., 2014).

In addition to changes in myofibril architecture, regula-

tion of cardiac muscle contraction was one of the signifi-

cantly downregulated processes according to the GO term

enrichment analysis. Our RNA-seq data showed significant

deregulation of ion homeostasis, one of the essential regu-

lators of cardiac contraction (Rosati and McKinnon, 2004).

We observed significant downregulation of Ca2+-channels,

such as RYR2, CACNA1D, CACNG6, CACNA1H, and

CACNB2 (Table S2). We also found a downregulation of

potassium (K+) and sodium (Na+) channels encoding genes

such as SCN9A, SCN8A, ATP1A2, KCNQ1, HCN1, KCNN2,

KCNAB2, and KCNH7 (Table S2). Multiple studies demon-

strated that alterations in Ca2+ release and disturbance of

K+ and Na+ ion channels cause abnormalities in CM

beating behavior (Communal et al., 2002; Gorski et al.,

2015; Zhang et al., 2013). These observations are also in

line with our AFM results showing that stretched CMs

need more time to generate beats of the same force ampli-

tude compared with control.

The GO term enrichment analysis of differentially

expressed genes showed that mechanical stretch upregu-

lates biological processes such as apoptosis, sterol biosyn-

thesis, and cytoskeleton organization. This is in line with

our phenotyping data, which also demonstrate that me-

chanical stretch causes increase of ROS production, necro-

sis, as well as apoptosis inCMs, and could be responsible for

cell loss. Similar findings have been reported for rat CMand

human biopsy studies, in which cardiac hypertrophy

development was associated with induction of significant

apoptotic and necrotic responses (Condorelli et al., 1999;

Fujita and Ishikawa, 2011; Mohamed et al., 2016; Okada

et al., 2004).

As the heart begins to fail, disruption of its homeostasis

leads to the release of stress-related cytokines, proteins, or

peptides, into the circulation. In our in vitro model system
NT-pro-BNP and TnT are released in the supernatant

upon stretching. Another well-known cardiac biomarker

is GDF15. It has been shown to be upregulated in patients

with various forms of heart failure and is associated with

an impaired prognosis (Dewey et al., 2016; Lok et al.,

2013). Interestingly, GDF-15 was among the top ten upre-

gulated genes identified in our RNA-seq dataset. These find-

ings suggest that our in vitro model combined with the

RNA-seq approach can be used for identification and vali-

dation of circulating biomarkers involved in cardiac failure.

We used obtained RNA-seq data not only for studying

potential candidates, such as SP6, the most induced tran-

scription factor in the dataset, but also for validation of

previously identified candidate genes such as FSTL3. This

gene has been reported as an important player in cardiac

remodeling. Expression of FSTL3was shown to be elevated

in tissue biopsies of patients with heart failure and levels

correlated with a-skeletal actin and BNP, both markers of

disease development (Lara-Pezzi et al., 2008; Oshima

et al., 2009; Shimano et al., 2011). As well as BNP, plasma

levels of FSTL3 were shown to be increased in heart failure

patients and associatedwith the severity of the disease, sug-

gesting its potential role as a circulating biomarker (Assadi-

Khansari et al., 2016). In addition to being secreted, FSTL3

can be found in both the nucleus and cytoplasm, which

implies its involvement in transcriptional regulation of

cardiac remodeling (Lara-Pezzi et al., 2008; Shimano

et al., 2011). Knockdown of FSTL3, as well as SP6, caused

significant desensitization of CMs toward stretch-induced

stress. This is in line with previously obtained in vivo and

in vitro studies that show FSTL3 induction under myocar-

dial stress and its negative effect on CM survival. A

cardiac-specific FSTL3 knockout mouse model showed

significantly smaller infarct sizes and lower number of

apoptotic myocytes after ischemia/reperfusion injury.

Knockdown of FSTL3 in cultured rat CMs inhibited phen-

ylephrine-induced cardiac hypertrophy (Oshima et al.,

2009; Panse et al., 2012; Shimano et al., 2011). Similarly,

in our study, FSTL3 ablation in human CMs subjected to

mechanical stretch led to the reduced level of cardiac

hypertrophy and less cardiac damage assessed by level of

TnT release and ROS production. Transcription factor SP6

has never been studied in relation to cardiac hypertrophy

development. However, two other members of the SP

family, SP1 and SP3, are both significantly overexpressed

in hypertrophied and fetal murine hearts and are believed

to be involved in cardiac hypertrophy development (Sack

et al., 1997).

Current advances in tissue engineering techniques made

3D cardiac tissue cultures feasible and potentially useful for

pharmacological and clinical applications (Feric and Radi-

sic, 2016; Kimbrel and Lanza, 2015; Li et al., 2017; Shino-

zawa et al., 2017; Weinberger et al., 2016). In addition,
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two-dimensional (2D) and 3D stem cell-derived CM cul-

tures were used in a number of studies in order to address

the immaturity of stem cell-derived CMs by employing a

variety of biochemical and biophysical signals (Kosmidis

et al., 2015; Jackman et al., 2016; Huebsch et al., 2016;

Shen et al., 2017). Furthermore, there are several studies

that applied 3D tissue culturing for studying stretch- or

phenylephrine-induced cardiac hypertrophy (Rupert

et al., 2017; Yang et al., 2016).

We elected to use 2D CM cultures as a basis for our study

for several reasons. While 3D tissues provide a more physi-

ologically relevant structure, the major incentive for

using thismodel is the requirement of non-CMs to be incor-

porated in 3D tissues for optimal function and tissue

functionality (Hussain et al., 2013). This would impede

the attribution of stretch-induced effects specifically to

CM. Moreover, constructed 3D tissues are based on various

compositions of extracellular matrix (ECM), which un-

dergoes cell-mediated remodeling at all times. Conse-

quently, changes in ECM characteristics might alter the

strain on specific parts of a tissue, therebymaking the tissue

unstable andprone to break, and reproducibility is rendered

difficult. 3D tissues also have different diffusion rates of sol-

uble factors depending on the location of individual cells

within the tissue, resulting in heterogeneous cell behavior

and therefore matrix remodeling. Combined, these traits

of 3D tissues make characterization (of tissue as a whole)

more complicated thanwith 2D cultures (Riehl et al., 2012).

To summarize, in the present study we show that

mechanical stretching of hESC-CMs can serve as an

in vitro disease model for studying human CM hypertro-

phy. This model broadens our understanding of themolec-

ular mechanisms behind mechanotransduction and

cardiac hypertrophy and can serve as a launch platform

for development of pharmacological approaches as well

as for discovering potential circulating biomarkers of

cardiac dysfunction.
EXPERIMENTAL PROCEDURES

Full experimental procedures are provided in the Supplemental In-

formation section.
Cardiac Differentiation of hESCs
To differentiate hESCs into CMs, a small molecule-based protocol

utilizing modulation of Wnt/b-catenin signaling was employed.

hESCs were treated with 6 mM GSK3-b inhibitor CHIR99021

(Cayman Chemicals) for 2 days, followed by inhibition of WNT

signaling using 2 mM Wnt-C59 (Tocris Bioscience). To further in-

crease CM population purity, metabolic differences between CMs

and non-CMs were exploited and cells were subjected to glucose

starvation in presence of 5 mM DL-lactate for 6 days. For a more

detailed protocol, see the Supplemental Information.
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RNA-Seq Data Accessibility
AWeb interface that provides search and visualization capabilities

for the generated datasets is available at cardio.genomes.nl.

Statistical Analysis
Values are displayed as medians of at least three independently

performed experiments. For all graphs, each dot represents results

of independent experiments performed on the independently

derived CM, and each dot is a mean of at least two technical repli-

cates. Unless stated otherwise, statistical comparisons were

performed using two-tailed, unpaired Student’s t test (Prism,

GraphPad Software). For qRT-PCR, analysis was performed using

GenEx software (MultiD Analyses AB). The following indications

of significance were used throughout the manuscript: *p < 0.05,

**p < 0.01 ***p < 0.001.
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The accession numbers for the RNA-seq data reported in this paper

are GenBank: SRR5875410–SRR5875423.
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Procedures, six figures, seven tables, and two movies and can be
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