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Abstract

Background: With more countries exiting lockdown, public health safety requires screening measures at inter-

national travel entry points that can prevent the reintroduction or importation of the severe acute respiratory

syndrome-related coronavirus-2. Here, we estimate the number of cases captured, quarantining days averted and

secondary cases expected to occur with screening interventions.

Methods: To estimate active case exportation risk from 153 countries with recorded coronavirus disease-2019

cases and deaths, we created a simple data-driven framework to calculate the number of infectious and upcoming

infectious individuals out of 100 000 000 potential travellers from each country, and assessed six importation risk

reduction strategies; Strategy 1 (S1) has no screening on entry, S2 tests all travellers and isolates test-positives

where those who test negative at 7 days are permitted entry, S3 the equivalent but for a 14 day period, S4

quarantines all travellers for 7 days where all are subsequently permitted entry, S5 the equivalent for 14 days and

S6 the testing of all travellers and prevention of entry for those who test positive.

Results: The average reduction in case importation across countries relative to S1 is 90.2% for S2, 91.7% for S3,

55.4% for S4, 91.2% for S5 and 77.2% for S6. An average of 79.6% of infected travellers are infectious upon arrival.

For the top 100 exporting countries, an 88.2% average reduction in secondary cases is expected through S2 with the

7-day isolation of test-positives, increasing to 92.1% for S3 for 14-day isolation. A substantially smaller reduction of

30.0% is expected for 7-day all traveller quarantining, increasing to 84.3% for 14-day all traveller quarantining.

Conclusions: The testing and isolation of test-positives should be implemented provided good testing practices are

in place. If testing is not feasible, quarantining for a minimum of 14 days is recommended with strict adherence

measures in place.
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Introduction

The coronavirus disease-2019 (COVID-19) pandemic has
resulted in a global cessation of almost all cross-border travel
where the public health implications and economic impact are
unprecedented relative to other emerging infectious disease epi-
demics.1–10 The lockdown in Wuhan, China, where severe acute
respiratory syndrome–related coronavirus-2 (SARS-CoV-2)

originated, had a major positive impact on reducing further
spread within China and beyond11 ,12 where a clear correlation
was observed pre-lockdown between travel volume and
subsequent seeding of epidemics elsewhere.10 The accompanying
travel restrictions during lockdown have contributed towards
epidemic containment with estimations in early February of
a 77% reduction in imported cases from mainland China to

http://creativecommons.org/licenses/by-nc/4.0/
http://www.oxfordjournals.org
http://www.oxfordjournals.org
http://orcid.org/0000-0003-1592-1745


2 Journal of Travel Medicine, 2020, Vol. 27, 8

other countries13 an 81.3% reduction in case exportation on
average.14 In Australia, modelling showed that a full travel ban
reduced cases by 86%, whilst the impact of a partial lifting of the
ban was minimal,15 demonstrating the need for strict compliance
of no entry at borders. This however is unsustainable in the
medium to long term as the SARS-CoV-2 outbreak continues
to spread globally, making travel bans a delay strategy and not
preventative, which has been previously observed by the World
Health Organization who did not recommend their long-term
use for global pandemics due to the severe economic impacts
caused.16 ,17 Pressure is thus increasing on countries to lift travel
restrictions and implement alternative control measures at their
borders, which includes screening.18 ,19

Many countries are additionally emerging from lockdowns,
which have successfully suppressed outbreaks or reduced the
epidemic size in multiple countries,20 and to avoid further lock-
downs from recurring or new outbreaks, the risk of case impor-
tation or exportation should be minimized. Case exportation
risk has been previously explored which identified Thailand,
Japan, South Korea and Singapore as high-risk countries for case
importation from mainland China due to high traffic volumes
in the early phase of the epidemic21 but the global epidemic
has and continues to rapidly evolve. Several studies have since
shown that a 3–6% proportion of air passengers were SARS-
CoV-2 positive during the height of the COVID-19 outbreaks in
Europe22 ,23 where the infectiousness24 and high estimated asymp-
tomatic rates25 ,26 of SARS-CoV-2 have now left few countries or
territories unaffected. Heterogeneity in the efficacy of ongoing
control measures,20 adherence and public perceptions of risk27

and implementation times28 ,29 have however caused remarkably
different outbreaks and by extension exportation risks. Gaining
understanding of importation risk therefore requires ongoing
global and country-specific assessments to identify which coun-
tries are at high risk of case exportation.

Especially critical for high-risk countries, screening measures
can be utilized to ensure infected travellers are no longer
infectious when they enter the local population, thereby
ensuring public safety whilst encouraging economic growth and
protecting livelihoods. For countries with strained capacities
in healthcare resources and limited incoming travel, such as
those identified by Gilbert in the African continent,30 screening
measures can be highly beneficial, if successfully implemented,
on the wider healthcare system by identifying imported cases
and preventing ongoing community spread. Additionally, for
countries with relatively suppressed epidemics from lockdown
or post-lockdown strategies in place, identifying cases on entry
saves the need for more immense contact tracing efforts which
are both time-consuming and expensive, and reduces the risk of
continued virus reintroduction.

Such implementation of present or future screening at entry
points requires the exploration of different strategies with corre-
sponding estimates of their relative success in capturing infec-
tions to be informative to policymakers. We therefore outline
a method to quantify the risk of case exportation from 153
countries or territories per 100 000 travellers in 1000 simula-
tions under six risk-mitigation strategies. In these strategies, we
explore the use of isolation of test-positives and quarantining of
all travellers for 7 and 14 days, and estimate the number of cases
captured, quarantining days averted and secondary cases which
occur from missed importations allowed entry.

Methods

To estimate the number of arrivals from 153 countries with
recorded COVID-19 cases and deaths, we created a simple data-
driven framework that calculates the number of infected people
travelling based on the modelled time of infection and time dif-
ference to entry. As countries have different epidemic trajectories,
they pose different risks of case exportation and are assessed
separately. At arrival points, the effects of six strategies are
explored in their efficacy to preventing the importation of cases.

Simulating the number of infected individuals

We simulate arrivals from a country of origin, C, calculating
risks per 100 000 travellers in 1000 simulations to accommo-
date uncertain travel volumes. The conditional distribution of
importation at different stages of infection is obtained from
these 100 000 000 simulated travellers. Those who were infected
but not yet recovered were extracted for further modelling. The
amount of secondary transmission over their infected lifespan
was then apportioned into transmission potential before arrival,
during quarantine or isolation if any, and in the community.
Quarantine and isolation measures were assumed to take place in
a designated healthcare facility or centre where transmission risk
is reduced to negligible levels, or at home with strict adherence
where any family members present are also expected to follow
the same measures.

We assumed travellers were administered a polymerase chain
reaction (PCR) test upon arrival and estimated the likelihood
of identifying each positive infection using a binomial distri-
bution where the probability of detection was a function of
their time from illness onset (symptom onset for those who are
symptomatic and time of expected symptom onset for those who
are asymptomatic) using data from Xiao et al.31 (Fig. 1a). PCR
sensitivity was assumed to be 85% for 2 days pre-illness onset,
similar to sensitivity 2 days post-illness onset, and infections
were undetectable at any earlier point during the incubation
period. Asymptomatic individuals were assumed to follow the
same detection profile as symptomatic individuals.

For a country of origin C and travel dateT assumed to be
23rd July 2020, we simulated the incidence of infection among
100 000 000 travellers that (i) occurred prior to T, (i) were not
admitted to hospital, and (iii) did not become non-infectious
prior to T. To obtain estimates of the daily number of infections
in C, we utilized daily incidence and death data being published
by the Center for Systems Science and Engineering at Johns
Hopkins University32 across 153 countries from 22nd January
to 6th August 2020.

To estimate condition (1), we first simulated the time of
infection (tIC

i ) for each individual i reported to have died at time
tDC
i in country C using estimates from Linton et al.18 of the

distribution of time of illness onset to death (ωi for individual
i) and incubation period (bi) using the following relationship:

tIC
i = tDC

i − ωi − bi,

where ωi and bi were given log-normal distributions with mean
and standard deviation 20.2d and 11.6d for ωi and 5.6d and
3.9d for bi (Fig. 1b, c). All cases, regardless of symptom profile,
were assumed to have the same illness onset and incubation
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Figure 1. (a) The sensitivity of the PCR test over time. (b) The distributions used to estimate the number of infection days from illness onset to death

and (c) from infection time to illness onset. (d) The distribution used for time to admission for cases that are hospitalised in the country of origin

period distributions where asymptomatic individuals did not
show symptoms.

For condition (2), we used {tIC
i } to estimate the number of

symptomatic and asymptomatic incident infections each day,
assuming the case and infection fatality ratio (CFR and IFR)
estimates derived by Russell et al.33 at 1.2% and 0.6% to be
similar to those in each country of origin. Hence, we approxi-
mated the total number of incident infections in country C in two
categories, symptomatic (SC

t ) and asymptomatic (AC
t ), at time
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for I(), the indicator function. A symptomatic patient may visit
a healthcare facility, determined by the simulated date of i’s
hospital admission (tHC

i ), also based on estimates from Linton
et al.34 with a corresponding log-normal distribution (Fig. 1d).
A random subset of the simulated symptomatic population was
then removed each day based on the country’s reported case
count, leaving the remaining as mildly symptomatic and able to
travel at T.

For condition (3), we compared the date of entry T to the
date of clearance defined as the simulated reported date or first
day of symptoms with an additional 10-day infectious period.
Based on the control strategies, a proportion of infected people
are expected to clear infection whilst under isolation or quaran-
tining, or will be permitted entry whilst infectious or infected and
not infectious yet.

Proposed Strategies

The six strategies are explored (Fig. 2) as follows:

(1) No screening—entry is allowed for all incoming travellers
from the source country,

(2) Screening of all incoming travellers on arrival and 7-day
isolation for test-positive travellers, with release into the
community only with a negative test thereafter,

(3) Screening with 14-day isolation of test-positives followed by
a negative test,

(4) No screening of travellers but a 7-day mandatory quaran-
tine for all,

(5) No screening but 14 days of quarantine and
(6) Screening of all passengers and entry prohibited for those

testing positive.

Strategy 1 serves as a baseline of no testing or quarantining
where all individuals enter unconfirmed as to whether they are
infected (Fig. 2). Strategy 2 assumes that testing occurs upon
entry where individuals testing positive are isolated for 7 days
and those who test negative are allowed entry. Those who test
positive are only allowed entry once they are confirmed to be
negative with a subsequent test on day 7. Strategy 3 is the
equivalent of Strategy 2 but isolation occurs over 14 days for
individuals testing positive who then receive a second test on day
14. For Strategy 4, all individuals are quarantined for 7 days, and
for 14 days in Strategy 5. For Strategy 6, all travellers are tested
and individuals testing positive are denied entry.

We summated the number of travellers at the point of entry
or release from isolation or quarantine who were infectious or
infected (and infectious later), depending on the strategy. We also
calculated the number of quarantine days, defined as days spent
at a quarantine facility or similar setting with minimal risk of
infection to others) in all strategies, and measured the differences
between Strategy 2 and 4, and Strategy 3 and 5, representing the
time spent in a facility between isolation and quarantine methods
for 7 and 14 days. The number of secondary cases was lastly
calculated for each individual as the proportion of infectious days
remaining out of the total 10 days of potentially active infection
after the Strategy was implemented (release at day of entry, 7 days
or 14 days) multiplied by 2, which is the assumed R0.

Results

The 10 countries with the highest risk are presented where
notable epidemics or surges in cases are being reported (Fig. 3; a
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Figure 2. Depiction of scenarios (S1–S6) and outcomes, which are labelled and colour coded. Individuals who land or receive no testing measures

in Strategy 1, 4 and 5 are displayed as (1) in dark grey. Individuals who land and are tested in Strategy 2, 3 and 6 are presented as (2) in blue and

those who are tested positive and quarantined for at least 7 days are shown as (3) in red. For Strategy 3, individuals who are tested and remain

quarantined until 14 days are represented as (4) in orange. For Strategy 6, individuals who are denied entry when tested upon landing are presented

as (5) in pink. Dark grey routes represent active pathways on arrival and light grey signify inactive routes where no testing is conducted. A dotted

line signifies the denial of entry up to that timepoint or complete denial of entry for Strategy 6. For Strategy 4 and 5, quarantine measures are in

place at 7 days and 14 days, respectively, and for Strategy 2 and 3, isolation measures are in place for those who test positive. At the end time point,

individuals who tested positive and have been cleared (purple), tested negative (dark blue) and are unconfirmed (green) are presented
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Figure 3. (a) The estimated number of infected travellers per 100 000 arrivals from countries of origin on a logarithmic scale, (b) the differences in

quarantine days between Strategy 2 (7 day isolation) and Strategy 4 (7 day quarantine), and Strategy 3 (14 day isolation) and Strategy 5 (14 day

quarantine) and (c) the number of secondary cases estimated to occur as individuals are permitted entry according to the travellers’ infectious time

remaining

complete list of all countries is available in Appendix 1 in Supple-
mentary data available at JTM online). Relative to allowing all
travellers in unchecked (Strategy 1; Fig. 3a), testing and isolating
reduces case importation numbers by an average of 90.2% for
7 days (Strategy 2) and by 91.7% for 14 days of isolation for
test-positives (Strategy 3). Declining to test and using quarantine
instead reduces case importation by 55.4% for 7 days (Strategy
4) and by 91.2% for 14 days of quarantine (Strategy 5). Pro-
hibiting test positives from entry with no quarantining reduces
transmission by 77.2% (Strategy 6). The testing and isolation of
positive individuals for 7 days substantially reduces importation
risk, and the requirement of a negative test prior to release from
isolation increases the effectiveness compared to quarantine of
the same length without testing. At 14-day quarantining, the
effects of testing and/or quarantining are comparable as the
substantial majority of travellers are no longer infectious. The
isolation of test-positive travellers rather than quarantining all
100 000 travellers for 14 days however notably reduces total
quarantine days for Brazil’s travellers by 1 399 564 days per
100 000, 1 399 897 days for the UK and 1 399 763 days for the
USA (Fig. 3b and Appendix 1 in Supplementary data available at
JTM online), which brings economic savings whilst minimizing
importation risk.

An average of 79.6% of infected travellers are infectious on
arrival (Fig. 4), with an estimated 30.5% having 1 to 3 days of

infectious time remaining, 24.9% from 4 to 6 days, 24.2% from
7 to 10 days, and the remaining becoming infectious on arrival.
If transmissibility is similar for travellers and the general public,
then for an R0 of 2 in July 2020, a no-screening or quarantine
policy would lead to 250 secondary cases per 100 000 travellers
from the USA, 433 from Brazil and 105 from the UK, but as
few as two from Japan and five from Germany (Figure 3c and
Appendix 1 in Supplementary data available at JTM online). For
testing and 7-day isolation (Strategy 2) in the top 100 exporting
countries, on average an 88.2% (86.9–89.4%) reduction in
secondary cases in the destination country is expected; this would
increase to 92.1% (91.5–92.8%) for 14-day quarantine. For 7-
day quarantine without testing, a smaller reduction of 30.0%
(24.1–40.5%) is expected. For 14-day quarantine without test-
ing, an 84.3% (78.4–88.8%) reduction is estimated, which is
lower in efficacy than with testing, as an average of 6.4% of
travellers become infectious 14 days or more after arrival that
may be captured through testing at Day 14 (Strategy 3).

Discussion

Our results support a policy of testing arriving passengers from
countries with ongoing transmission, followed by isolation until
an individual is identified as having cleared the infection and
is no longer infectious. This strategy would reduce risk to a

https://academic.oup.com/jtm/article-lookup/doi/10.1093/jtm/taaa141#supplementary-data
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Figure 4. The number of infection days left shown as a proportion among travellers arriving. Those who are infectious on arrival are in dark grey,

and those who are not infectious yet are in light grey

level that would permit necessary business and leisure travel to
continue with test-trace-and-isolate programmes, thus detecting
additional infections that were missed at the border.

Strategy 1, or no control, is not recommended as although
travel restrictions may not act as a primary control measure,
screening can prevent the entry of infectious and upcoming
infectious travellers, which would otherwise require extensive
contact tracing efforts and counteract ongoing control mea-
sures to maintain low levels of infection. Strategy 4 is also not
recommended as it is relatively ineffective and implements the
quarantining of all travellers, which is expected to heavily impact
even resource rich countries. Strategy 6, although more effective,
allows for the importation of individuals who are early in their
infection and not yet detectable using PCR, which is assumed to
be 3 days before illness onset in this analysis.

Strategy 2 tackles this issue by isolating test-positives until
they present a negative result, only allowing the entry of poten-
tially infected and infectious people through test failure, which
is relatively low provided test practices are robust. Strategy 3 is
more effective than Strategy 2 as test-positive individuals are kept
in isolation until a minimum of 14 days where a greater pro-
portion have cleared the infection and are no longer infectious.
Where quarantining facility space is severely limited or long-
term adherence is poor when individuals are quarantined at their
home location, which may also expose their household members
to infection, utilizing a minimal 7-day isolation period for test-
positives remains a viable option. The usefulness of testing is
shown for 7-day interventions with a 34.8% increase in caught
infected travellers from Strategy 2 and 4 (90.2% vs 55.4%)
where all traveller quarantining is substantially less effective.
The extension of isolation days to a minimum of 14 days with
and without testing has a difference of 0.5% (Strategy 3 and 5;
91.7% vs 91.2%), which is a relatively minor saving. In contrast,
without testing, the extension of quarantining of all travellers
from 7 days to 14 days without testing is critical, increasing the
efficacy of the screening measure by 35.8% (Strategy 4 and 5;
55.4% vs 91.2%).

With ongoing concerns of false-negative rates in PCR
testing,35 ,36 strained test kit availability37 and lack of trained
manpower and laboratories,38 the quarantining of all travellers

for 14 days may be more feasible to implement over the
conducting of rigorous and repeated testing of incoming
travellers. The location for quarantine, whether it is home
or institutional, will also likely impact the efficacy of the
proposed screening strategies39 and will depend on each
country’s ongoing control measures in place. For countries
with good testing practices for travellers in place, the testing of
travellers remains an effective strategy in reducing importation
risk, and substantially negates the risk of community spread
occurring from potential non-compliance of quarantining
measures among travellers. Testing also substantially reduces
the number of quarantining days among travellers by over
1 399 000 days for 14-day quarantining. Countries should thus
assess whether testing or 14-day quarantining is viable and cost-
effective, considering their own policies and access to testing or
quarantining facilities. Where testing practices cannot maintain
high case-finding rates as the sensitivity of the testing measures
is reduced by a factor describing improper test handling, further
country-specific analyses will be required to ascertain whether
the quarantining of all travellers may be unavoidable (Appendix
2 in Supplementary data available at JTM online; Strategy 2
and 3 show a diminished reduction of 73.6% and 75.6% in
an alternate scenario where the global PCR sensitivity profile is
reduced by 75%).

Several challenges exist however in our estimations moving
forward, requiring the ascertaining of PCR test sensitivity as a
function of the whole infection period and asymptomatic status,
considerations of country-specific test practices and examining
of the actual proportions of travellers who are likely to travel
between countries that remains a significant current unknown.
Political concerns should also be accounted for where the limited
entry of travellers in Strategy 6 who are returning to their
home country after long periods of stay abroad may not be
feasible and dependent on country-specific entry policies. The
use of immunity passports19 ,40 or similar certification could
help mitigate such ethical issues and relieve resource use for
testing and quarantining should the traveller be confirmed to
have been previously positive, or a vaccine become available.
Their use however requires a better understanding of the dynam-
ics of waning immunity and test sensitivity over time. Lastly,

https://academic.oup.com/jtm/article-lookup/doi/10.1093/jtm/taaa141#supplementary-data
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country-specific estimates will require continued updating where
the same analysis at different time points (Appendix 3 in Sup-
plementary data available at JTM online; equivalent of Fig. 3
carried out on 28 June 2020) will show countries moving ranks
according to their ongoing reported case numbers and deaths,
although the relative efficacies of the strategies explored are
expected to remain largely the same.

Supplementary data

Supplementary data mentioned in the text are available to sub-
scribers in JTMEDI online.
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