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ABSTRACT: Expressed on virtually all prostate cancers and
their metastases, the transmembrane protein prostate-specific
membrane antigen (PSMA) provides a valuable target for the
imaging of prostate cancer. Not only does PSMA provide a
target for noninvasive diagnostic imaging, e.g., PSMA-positron
emission tomography (PSMA—PET), it can also be used to
guide surgical resections of PSMA-positive lesions. The latter
characteristic has led to the development of a plethora of
PSMA-targeted tracers, i.e., radiolabeled, fluorescent, or
hybrid. With image-guided surgery applications in mind, this
review discusses these compounds based on clinical need.
Here, the focus is on the chemical aspects (e.g., imaging label, spacer moiety, and targeting vector) and their impact on in vitro
and in vivo tracer characteristics (e.g,, affinity, tumor uptake, and clearance pattern).

B INTRODUCTION perioperative imaging of lymph nodal tumor infiltration and

There has been a surge in interest in the diagnosis, staging, and extrafg%sular tumor expansion (ECE) remamn a cf}allenge to
treatment of prostate cancer (PCa), the second most frequent date. " At the moment, 1rnage-gu1dan.ce targets In prostate
cancer and the fifth leading cause of cancer deaths in men."” cancer surgery are conﬁnec}s to sentllnel— anc:l/. or PSMA-
PCa is highly heterogeneous: its manifestation ranges from overexpressing lymph nodes.” To realize precision PSMA-

indolent, slow-growing, low-grade tumors, to high-grade targeted PCa surgery, preoperative molecular imaging “road-
aggressive neoplasms w1th extensive metastasis that eventually maps” supplied by PSMA—PET need to be transferred to the
are the cause of mortahty Overexpression of PSMA in >90% of surgical setting, indicating a demand for interventional PSMA-
PCa patlents * has driven the development of PSMA-targeted targeted imaging techniques.lg’20 Molecular image-guided
tracers for imaging purposes. PSMA-targeted tracers come in all surgery can be divided into three classes, i.e., tracers for (1)
shapes and sizes (including proteins and nanoparticles), yet the radioguided surgery (positron emission tomography, PET;
clinical standard is set by glutamate—ureido-based “small- single-photon emission computed tomography, SPECT; and
molecule” imaging agents designed to facilitate positron Cerenkov), (2) fluorescence-guided surgery, and (3) bimodal,
emission tomography (PET) imaging (e.g, “*Ga-PSMA-11, i.e,, hybrid approaches (SPECT/fluorescence or PET/fluo-
%Ga-PSMA-617, '*F-DCFPyL, and '*F-PSMA-1007).’ rescence combinations). When these concepts are applied to
PSMA-targeted tracers prov1de sensitive detection of metastatic small-molecule PSMA-targeted tracers, each class requires a
lesions both at low PSA values’™'” and at tumor diameters <$ different chemical design. Nonetheless, in all three cases tracer
mm,"" and have been successfully used to deliver PSMA- designs for image-guided surgery purposes should complement

targeted endoradiotherapy'” and theranostics' in heavily
metastasized castration-resistant PCa patients.
Surgery remains the mainstay of primary PCa treatment;'
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Figure 1. (A) Schematic cross-section view of PSMA illustrating intrinsic interactions between the three critical tracer components (targeting vector,
spacer, and imaging flag) and the protein’s primary and secondary binding site. (B) Depiction of anatomical relevance in PCa surgery: bladder (in blue)
relative to liver (red), kidneys (blue), lymph nodes (green), and prostate (pink). (C) Typical intraoperative sight during radical prostatectomy using

nerve-sparing surgery.

existing diagnostic imaging strategies that make use of the
clinically accepted glutamate—ureido-based radiotracers for
PSMA—-PET.

A plethora of PSMA-targeted tracer designs has been
presented with image-guided surgery applications in mind,
including tracers that already are available for image-guided
surgery in the clinic. In this review, we aim at complementing
earlier reviews on PSMA-guided surgery”*~*’ by discussing: (1)
the compatibility of glutamate—ureido-based “small-molecule”
PSMA-targeted tracer designs with the binding pocket of PSMA,
(2) the influence of tracer design on pharmacokinetics, and (3)
the ability of a given design with all its characteristics to address
the needs of a surgeon. In doing so, (radio)chemists, nuclear
medicine physicians, and surgeons are familiarized with the
status quo of small-molecule PSMA-targeted tracers for image-

guided surgery.

B THE BIOLOGY OF PSMA

PSMA goes by different names, ie, N-acetyl-L-aspartyl-L-
glutamate peptidase I (NAALADase I) in the nervous system
and the more generally applicable name glutamate carbox-
ypeptidase II (GCP II). The protein is encoded by folate
hydrolase 1 (FOLH1) in humans™* and has an extracellular
domain performing enzymatic functions.”>** When PSMA is
internalized, it activates the Protein Kinase B (AKT) and
mitogen-activated protein kinase pathways, thus promoting
proliferation and survival.””**

PSMA is expressed in all human prostate cells, including
normal and hyperplastic epithelium and prostatic—intraepithe-
lial neoplasia.” In prostate adenocarcinoma, a 100- to 1000-fold
overexzpression of PSMA is seen compared to benign prostate
tissue.”” The level of PSMA expression correlates with tumor
aggressiveness” and Gleason score.”” Next to its expression on
prostate cancer, PSMA is also expressed on the endothelial cells
of tumor-associated neovasculature of cancers such as lun:
carcinoma and neuroendocrine carcinoma of the pancreas.’
This characteristic implies that PSMA-targeting strategies could
serve oncological challenges beyond prostate cancer in the
future.

PSMA expression levels may be influenced by hormonal
therapies commonly applied in prostate cancer. Since androgens
downregulate FOLH1 gene expression,”” short-term androgen
deprivation therapy (ADT) enhances PSMA expression.6 On
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the other hand, long-term ADT will decrease tumor volume and
thereby limit the potential of PSMA-based imaging.”’

B REQUIREMENTS FOR TARGETING PSMA

The apical domain of the extracellular portion of PSMA provides
the target for small-molecule inhibitors as it contains the
binuclear-zinc-ion-containing active site of the protein, which
can be reached via a 20-A-deep substrate-binding cavity (Figure
1A).>**° PSMA has two substrate-binding pockets within this
cavity designated the S1 and S1’ pocket. The S1 pocket is fairly
specific for glutamate and aspartate side chains and this pocket is
optimized for binding of glutamate and glutamate-like
residues.’® The S1' pocket is amphipathic, i.e., it exploits both
polar (hydrogen-bonding, ionic) and nonpolar (hydrophobic,
van der Waals) interactions to induce binding and stabilization
of the substrate or inhibitor moieties.””*® Low nanomolar
PSMA inhibition of this binding site can be achieved through
small-molecule moieties of different compositions: phospho-
nates such as 2-(phosphonomethyl)pentanedioic acid,” thiols
such as 2-(3-mercaptopropyl) pentanedioic acid,” and ureas
such as N-[[[(1S)-1-carboxy-3-methylbutyl ]amino]carbonyl]-
L-glutamic acid.” Tracer designs have only been based on
organophosphorus-based (mimicking phosphinic acid inhib-
itors of PSMA) and glutamate—ureido-based (mimicking N-
acetylaspartylglutamate) moieties, of which the latter are most
abundantly exploited and thus described in this review.

Based on crystallographic data, Barinka et al.** have described
the existence of a “remote hydrophobic binding register” or
rather “accessory hydrophobic pocket” that is formed by
portions of f-sheets f13 (Arg463—Asp46S) and fl4
(ArgS34—ArgS36). This secondary binding pocket allows for
binding of distally placed benzene-like moieties. Exploration of
this pocket has led to various structure—activity relationship
studies to determine, e.g., optimal spacer length between
targeting vector and the benzene-like structure.*”** In radio-
chemistry, exploring the beneficial features of this secondary
binding site has proven to be of paramount importance in tracer
refinement.”

Imaging labels (e.g., radioisotopes, chelates, or fluorophores)
are generally placed outside of the amphipathic entrance funnel
(Figure 1A). These moieties can impact the affinity; from
radiochemical efforts, it seems that mostly steric hindrance and/
or charge play a large role in these influences.'******>*~% Eor
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Scheme 1. Chemical Structures of PSMA-Targeted Tracers for PET and SPECT Imaging”
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“Targeting moiety (green) and imaging flag (red) have been colored accordingly.

example, Banerjee et al.¥ placed various tridentate moieties
(chelating **™Tc) outside the amphipathic entrance funnel,
resulting in a more than 60-fold increase in tracer affinity
compared to analogs without a spacer moiety.

In an ideal setting, the above-mentioned characteristics imply
that small-molecule PSMA-targeted tracers should be designed
to meet three requirements: (1) enforcing primary binding with
the S1/S1’ pocket(s) and Zn?* ions located in the active site; (2)
promoting secondary binding in the accessory hydrophobic
pocket; (3) minimizing the impact of the externally placed
imaging label (Figure 1A) on the binding affinity with the use of

lengthy spacer moieties as previously researched for radio-
25,36,43,47,49
tracers.

B SURGICAL REQUIREMENTS

PSMA-targeted image-guided surgery can, in theory, address a
number of challenges during PCa surgery. A first surgical
application is found in the identification of locoregional
metastatic lymph nodes (LN; Figure 1B).'®°°7> In primary
surgery, identifying disease-related LNs by lymphatic mapping
has been shown to complement extended pelvic LN
dissections.'™” The same may be true for PSMA-targeted
image guidance approaches. Alternatively, in recurrent PCa,
salvage surgery can address the resection of PSMA—PET-
positive LNs.”* However, as is well-known, PET-based detection
of PSMA-positive nodes is size-dependent; analyses have shown
PSMA—PET detection rates of 0% and >60% when the short
axis diameter of the metastatic lesion was <2.0 and 2—4.9 mm,
respectively.””*° This characteristic, combined with the fact that
the amount of tracer uptake in micrometastases will lead to an
insufficient signal-to-background ratio, implies that PSMA-
targeted image-guided surgery is limited to the surgical
treatment of macrometastases.'” Still, patient selection based
on the PSMA-based PET scan as well as other clinical variables
(PSA value, number of lesions, location of lesions, time from first
treatment, Gleason score, and presence of androgen deprivation
therapy) remains mandatory.’

A second image-guided surgery application is found in
defining surgical margins during prostatectomy (Figure 1C).
Intraoperative margin assessment is of particular relevance when
both ECEs might be present and a nerve-sparing radical
prostatectomy is intended (to preserve erectile function). The
diagnostic accuracy of current imaging methods in predicting
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ECE is poor. Intraoperatively, the ex vivo neurovascular
structure-adjacent frozen-section examination (NeuroSAFE)
technique can be used to study excised tissue and to
pathologically assess the presence of tumor cells in the resection
margins.sg’59 Intraoperative assessment of margins would
improve surgical logistics and would also improve prediction
of the presence of residual lesions in the patient.

Despite the specificity for PCa, basal PSMA expression has
also been reported for other tissues, including benign prostate
epithelium.”®” Basal PSMA expression may thus provide a
background signal that needs to be considered when margin
assessment is aimed for. While glutamate—ureido-based radio-
tracers have readily proven their ability to target the primary
tumor,”’ their predominant renal clearance could also
compromise margin assessment; during prostatectomy, the
bladder is disconnected from the prostate and urine might flow
into the surgical field (Figure 1B). If urine contains PSMA-
targeted tracer (or its metabolites), it can contaminate the
margins and impair the ability to surgically assess the tumor
spread relative to the background.’® However, renal excretion
rates are unknown for most tracers. While the renal cortex is said
to express PSMA,”****7%® studies with the PSMA-targeted
radiolabeled J591 monoclonal antibody did not confirm its
presence.””*® As the proximal tubules are the prime location for
a plethora of transporters and multiligand receptors such as
megalin and cubilin, alternative mechanisms could potentially
also influence renal accumulation.””””" The observation of
"7Lu-PSMA I&T depicting an 8-fold reduction in kidney
uptake/retention at late (24—48 h) compared to early (1—4 h)
time points strengthens the assumption that metabolism of
renally accumulated PSMA-targeted tracers could influence
urine contamination.”” It is thus assumable that renal tracer
retention can to a certain degree be predictive for the presence of
imaging agents or labels in urine. To avoid such contamination
during surgery, a tracer either should not undergo renal
clearance or the time between tracer administration and surgery
should be extended to minimize contamination.

The physics of intraoperative guidance is dictated to a large
degree by two related features, i.e., the tissue penetration of the
imaging signature and the intensity of the signal. Identification of
affected LN is likely to demand imaging signatures that can
readily penetrate tissue, as metastases are embedded in, e.g,
adipose tissue, and can be rather small, hence favoring
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radioguidance modalities.”> The assessment of ECE in the
dissection planes requires a superficial feedback as signal from
deeper-lying tissues limits the spatial resolution. This require-
ment may be optimally supported by the use of optical
technologies. However, the availability of surgical modalities
that enable detection of the tracer used for guidance is
imperative. While perhaps not immediately obvious, the surgical
technique itself may also influence the choice for a particular
tracer. During open surgery, a small (approximately 15 X 10
cm?) but deep cavity is created that can easily accommodate a y-
probe but limits the use of a 2D fluorescence camera. In a
(robot-assisted) laparoscopic setting, on the other hand,
dedicated (DROP-IN) y-probes are required for radiotracing,
while the availability of a fluorescence (and 3D) laparoscopic
system is quickly becoming standard practice.”* For example,
since the Da Vinci S model has become available, all these
surgical robots are equipped with a fluorescence camera capable
of imaging different fluorophores.”*”

The preceding paragraph implies that PSMA-targeted image-
guided surgery is limited to the surgical treatment of
macrometastases and defining the surgical margins. Both
applications require a high signal-to-background ratio and
benefit from minimal tracer presence in urine.

B PSMA-TARGETED TRACERS
Tracers for PSMA-Targeted Radioguided Surgery. The

field of radioguided surgery revolves around the intraoperative
use of oftentimes diagnostic radiotracers commonly used in the
field of nuclear medicine. In this concept, noninvasive
preoperative images can be used to provide both a surgical
roadmap and intraoperative guidance. A range of radioactive
isotopes, corresponding chelates, and combinations thereof
have been coupled to PSMA-targeted vectors, thereby
developing a variety of radiotracers. Unique for PSMA-targeted
radiotracers is that many of them have already been translated to
the clinic. Interestingly, relatively few preclinical efforts with
image-guided surgery in mind have been reported in this area.
(Scheme 1, Table 1, Figure 2).

Use of Established PSMA—PET Tracers for Image-
Guidance Purposes. During patient selection for PSMA-
targeted image-guided surgery, the availability of, e.g., diagnostic
PSMA—-PET images, has proven to be a critical prerequisite
(Figure 2A).”” Intraoperatively, radiotracers such as **Ga-
PSMA-11"* can potentially be traced via their B*-emission
(Ema" = 1899 keV), high-energy y-emission (Ey = S11 keV), or
Cerenkov light (>250 nm). Despite literature examples
regarding intraoperative high-energy y-emission tracing of
PET tracers,”” this application has not yet been reported for
PSMA. Tracing the #*-emission of ®*Ga-PSMA-11 (IC5,=7.5 +
2.2)78 is currently being investigated for ex vivo margin
assessment in primary PCa and to identify PSMA-positive
LNs,* even though this emission type is limited by its tissue
penetration of a few millimeters.”’ Alternatively, Costa et al.**
have used ex vivo Cerenkov imaging to identify **Ga-PSMA-11
uptake in prostate sections containing primary PCa lesions.
Despite the potential displayed by these technologies, the half-
life of %*Ga (t; /2, rad = 1.1 h) limits the surgical time frame, the
radiation dose to the surgical staff is potentially high,*”** and
renal clearance of ®*Ga-PSMA-11 (kidney retention 139.4 +
21.4%ID/g at 1 h) means that prostate samples need to be rinsed
prior to imaging to remove urine contamination. Furthermore,
the signal penetration of *-emissions (mm ran§e)81 and the
resulting Cerenkov luminescence (<2 mm) > limits the
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Table 1. Radioisotope-Based PSMA-Targeted Tracers for Image-Guided Surgery
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Figure 2. Typical clinical workflow of radioguided surgery: (A) preoperative ®*Ga-PSMA-11 PET/CT followed by (B) preoperative *Tc-PSMA
I&S SPECT/CT; (C) intraoperative guidance combined with minimally invasive robot-assisted laparoscopic surgery using a DROP-IN y-probe with
PmTe.PSMA I&S. (Reprinted from van Leeuwen et al.” with permission from Wolters Kluwer Health, Inc.).

implementation to superficial lesions. On a positive note, these
technologies are also applicable for alternative PET tracers such
as, e.g, '"F-PSMA-1007 (minimized renal clearance and
extended half—life).86 With regard to half-life, the use of, e.g,
$*Cu-based derivatives (t,, = 12.7 h, E, . " = 653 keV)*” could
potentially help to further extend the time interval between
tracer administration and surgery.

SPECT Tracers for PSMA-Targeted Image-Guided
Surgery. In the field of radioguided surgery, y-ray-emitting
radiotracers are most commonly implemented.*> Herein,
radionuclides such as '>’I (Ey = 31.0, 35.5, 27.2, 27.4 keV),
77Lu (113, 210 keV), #™Tc (Ey = 140.5 keV), and '"'In (Ey =
171.3, 245.4 keV) have proven to be compatible with
conventional y-probes.®’ Given the clinical use of the chemically
optimized %*Ga-PSMA I&T, wherein a peptidic 3-iodo-p-Tyr-p-
Phe spacer promotes secondary binding,"” and the ability of the
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DO-
TAGA) chelate to coordinate '''In, '"'In-PSMA I&T was
explored in radioguided surgery applications.”®® In direct
comparison, the "*In-PSMA I&T (7.5 + 1.5 nM)** showed a
similar affinity for PSMA compared to its **Ga and "Lu-labeled
analogs (9.4 + 2.9 and 7.9 = 2.4 nM, respectively). Clinical
evaluation of "'In-PSMA I&T in six patients revealed that
although the sensitivity and spatial resolution of ''In SPECT/
CT are limited, uptake of the tracer in PSMA-Eositive LNs could
be used to provide efficient surgical §uidance. 7% Theoretically,
tracer analogs like "' In-PSMA-617" could also be explored in a
similar radioguided surgery setting. To circumvent the
suboptimal nuclear properties of ''In (high cost, limited
availability of '"'InCl,, relatively poor SPECT quality, and high
burden of radiation), a demand for a tracer analog labeled with
#mT¢ arose, *™Tc is one of the—if not the—most important
radionuclide(s) used in nuclear medicine due to its availability
from a generator, convenient half-life, negligible radiation dose
to the patient, and low cost.*’ Given the versatile but very
specific coordination chemistry of *™Tc,”' various *™Tc-
chelating moieties used in PSMA-targeted radiotracers have
been described.”**0>727% 9mT¢ pSMA 1&S (ICq, = 39.7 +
1.2 nM)”? employs the mas; chelate, and to optimize interaction
with the accessory hydrophobic pocket in the PSMA protein the
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tracer contains a D-Tyr-p-2-Nal-D-Lys spacer moiety. The
lipophilicity of PSMA I&S (LogP = —3.0) is higher compared
to its parent analog PSMA-I&T (LogP = —4.5), resulting in
delayed blood clearance (**™Tc PSMA I&S 1.73 + 0.50%ID/g;
"'In PSMA I&T 024 + 0.05%ID/g). *"Tc PSMA I&S
provides high-contrast preoperative PSMA-SPECT (at time
points >4 h post injection, preferably 18 h) and supports tracing
with a traditional y-probe in open surgery,””*® or during robot-
assisted surgery with a DROP-IN y-probe (Figure 2B,C).”° To
date, this tracer has predominantly been used in patients that
have received salvage surgery of metastasized LNs.’””°
Following PSMA-guided surgery, a complete biochemical
response (PSA < 0.2 ng/mL) could be achieved in 66% of
121 patients.”” Notably, the clinical studies did also indicate that
PSMA-guided surgery was particularly valuable in patients with
low preoperative PSA values that displayed a single lesion on
PSMA—-PET.

The radioguided surgery studies have relied heavily on
previous research and expertise obtained in the field of
radiochemistry. Efforts are focused on both primary PCa as
well as nodal metastases and set the current standard for PSMA-
targeted image-guided surgery applications.

PSMA-Targeted Fluorescent Tracers. In contrast to
tracers for radioguided surgery, fluorescent PSMA-targeted
tracers have the potential to support real-time optical visual-
ization of PSMA-positive lesions. Unfortunately, the ability to
use this technique for lesion identification is limited to
superficial applications (<1 cm from the surface), meaning it
cannot be used to create surgical roadmaps.”” Preclinically,
various fluorescent PSMA-targeted tracers have been described;
designs greatly vary in spacer moieties and fluorophores (visible
to far-red fluorophores and near-infrared fluorophores). (Tables
2, 3, Schemes 2, 3, and Figure 3.)

Visible to Far-Red Fluorescent PSMA-Targeted Trac-
ers. Since evaluation conditions varied in, e.g., dose and time
points, insights can only be inferred from direct comparisons
that have been made in individual studies. For the same reason, it
is difficult to discuss the findings of studies that reported
individual compounds, i.e.,, CYUE-Rhodamine B,”® PSMA-1-
Cys.s,”” and YC-9.'
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Scheme 2. Chemical Structures of Visible to Far-Red Fluorescent Imaging Agents for PSMA-Targeted Fluorescence-Guided
Surgery”
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Scheme 3. Chemical Structures of Near-Infrared Imaging Agents for PSMA-Targeted Fluorescence-Guided Surgery”
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By standardizing the EuK targeting vector and Phe-Phe-Dap- were able to report the impact that the fluorophores Dylight 680
Asp-Cys-maleimido-2-aminoethyl spacer, Kelderhouse et al.* and AlexaFluor 647 have on PSMA affinity (DUPA-Dylight 680
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Figure 3. (A) In vitro uptake of IRDye800CW-SCE in PSMA-positive LNCaP cells (top) with blocking by 2-PMPA (bottom) (adapted from

Matusoka et al.'**

etal.)'*" and (C) Cy5.5(SO;7),-EuK (adapted from Kwon et al.)'**

with permission from Elsevier). Example of in vivo imaging and typical biodistribution for (B) IRDye800CW-1 (adapted from Chen

kp = 33 nM, DUPA-Alexa Fluor 647 kp = 4.5 nM). These
findings indicated that the fluorophore exerts an influence, but
due to alack of additional data, it is difficult to assess which exact
teature of the chemical structure causes this influence.

The influence of spacers was studied for analogs that make use
of CyS.5-tetrakissulfonate by direct comparison.'”" This study
indicated that introducing a spacer has a positive effect on the
affinity (from k; = 90 + 40 pM for CyS5.5—1 to k; = 50 + 20 pM
for Cy5.5—2 and Cy5.5—3), but that variations in spacer type
predominantly affected the lipophilicity (CyS5.5—2 LogP =
—1.08 to Cy5.5—3, LogP = 3.00). Fluorescence imaging results
suggested that tumor uptake is increased when the spacers are
elongated. Dimerization studies by Kwon et al. underlined the
influence of the spacer on the lipophilicity, but also suggested
that increasing the number of targeting moieties has minimal
impact on the affinity when comparing Cy5.5(SO;”),-EuK
(LogP = —1.36, k; = 0.6 + 0.1 nM) with Cy5.5(SO;”)-(EuK),
(LogP = —0.33, k, = 0.1 + 0.0 nM) and (Cy5.5(SO;),-4-
(aminomethyl)benzoic acid-(EuK),; LogP = 1.32, k; = 0.4 +
0.1 nM)'” A follow-up study showed similar effects on the
lipophilicity, but the bi-2- nltr01rn1dazole -containing spacer
seemed to limit the affinity.'”® Surprisingly, this chemical
alteration did not have a clear impact on the fluorescence
imaging findings.

Near-Infrared Fluorescent PSMA-Targeted Tracers.
For fluorescence-guided surgery applications, near-infrared
Cy7 analogs have been most commonly employed. For the
compounds KUE-PEG,-ZW800 + 3C,'” IRDye800CW-
SCE,'’* ZJ-MCC-dEdEdEGK(IRDye800CW)G,'”® and
EUKL-cRGDfK-IRDye800'?” the affinity has not been
reported, despite the availability of in vivo data suggesting that
the compounds could be used to image PSMA-positive lesions.
DUPA-IRDye800CW has an afﬁmty of kp = 12 nM, but no in
vivo quantification was provided.” Individual studies with
OTL78 (LogP = 1.19, kp, = 4.7 nM) '*® and PSMA-1-IRDye800
(LogP = —2.14, IC, = 1.5 nM)”’ provide promising in vivo
findings, but further comparison is hampered by the fact that a
reference compound has not been assessed and the chemical
composition varies (Table 3, Scheme 3).

By varying spacers and fluorophores, Chen et al.'’" examined
how these molecular traits impacted tracer performance. For the
fluorophores IRDye800CW, IRDye800RS, and indocyanine
green (ICG), the PSMA affinity was highest with the longest
Ahx-Lys spacer (k; = 20, 4, and S pM, respectively), indicating
that steric hindrance is reduced when a longer spacer is used.
Cy?7 displayed the highest affinity without the use of a spacer (k;
= 1 pM), suggesting this fluorophore yields little steric
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hindrance. No general trends could be inferred from in vivo
fluorescence imaging findings or lipophilicity. During in vivo
imaging, the fluorescence signal of the IRDye800CW analogs
was substantially higher than that of the other analogs. This
finding is surprising, as the br1ghtness of Cy7 analogs generally
does not differ to such an extent."

Studies that compared different tracer designs under the same
conditions allowed for the isolation of general performance
trends; not only does the length of the spacer play a role, but its
composition also affects affinity. Furthermore, the structure of
the fluorophore clearly impacts the tracer performance, e.g.,
steric hindrance in the secondary binding pocket.

Hybrid Tracers for PSMA. The beneficial traits of both
radio- and fluorescent guidance can be integrated by creating
hybrid tracers that incorporate a radiolabel and a fluorophore in
a single molecule.''” To date, small-molecule hybrid PSMA-
targeted tracers have only been reported in the preclinical
setting. Next to structural differences (fluorophore, spacer),
different radioisotopes have been included. (Table 4, Scheme 4,
Figure 4).

The first hybrid PSMA-targeted tracer design, IRDye800CW-
Lys-DOTA-Gly-urea-Lys, has been introduced by Banerjee et
al.'"" Here, both IRDye800CW and DOTA (to chelate '!In)
were conjugated to a distal EuK moiety using a Lys-Lys-Suberic
acid backbone, a design that is in line with the multifunctional
single-attachment point (MSAP) principle coined by Josephson
etal.''? Although this particular spacer design does not seem to
actively promote binding in the secondary binding pocket, but
rather aims to minimize steric hindrance by the fluorophore, a
high affinity was reported for IRDye800CW-Lys-DOTA-Gly-
urea-Lys (k; = 1.2 + 0.1 nM). SPECT imaging showed clear
tumor visualization and in vivo biodistribution data (%ID/g
assessment at 0.1 nmol) indicated tumor-to-background ratios
in the range of 11—37 at time points between 1-24 h.
Fluorescence imaging at the same dose (but different imaging
time points) allowed for clear tumor visualization.''" The same
MSAP design concept was later used to introduce a bisulfonated
cyanine pentamethine (—(SO;)CyS(SO;—) fluorophore and
DOTAGA chelate to a D-(3-iodo)Tyr-D-(3-iodo)Tyr spacer
optimized for secondary binding,** yielding **Ga-PSMA I&F.”
The high affinity of this tracer (ICs, = 10.5 # 2.7 nM) translated
to a tumor-to-background ration of 9 %ID/g (0.2 nmol) and
tumor visualization using SPECT imaging (0.2 nmol) and
fluorescence imaging (at 2 nmol) using a customized Firefly
laparoscope.

Baranski et al.'" have applied a design concept wherein the
HBED-CC chelate was used to link the EuK binding moiety with
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Scheme 4. Chemical Structures of Hybrid Tracers for PSMA-Targeted Image-Guided Surgery”
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Figure 4. (A) Maximum-intensity projections of small-animal PET imaging of athymic nude mice bearing LNCaP tumors using 0.5 nmol **Ga-
HBED-CC-IRDye800CW. (B) Use of HBED-CC-IRDye800CW in vivo for fluorescence imaging with a Da Vinci Firefly laparoscope (1 mg, 30 g/
kg; both adapted from Baranski et al.;** in JNM). (C) Maximum-intensity projections of small-animal SPECT imaging of BALB/c nude mice bearing

LNCaP tumors using 1.0 nmol *™Tc-EuK-(SO;)Cy5-COOH (adapted from Hensbergen et al. in JNM).'** (D) Use of *™Tc-EuK-(SO;)Cys5-
COOH (100 pug, 2.85 ug/kg) for in vivo fluorescence imaging with a prototype Karl Storz camera that allows CyS imaging,

a PEG spacer containing a variety of fluorophores. This *Ga-

HBED-CC and EuK was removed. Varying the fluorophore
based hybrld desxgn was derived from ®*Ga-PSMA-11 (Table 1, (FITC, AlexaFluor488, IRDye800CW, or DyLight800) did not
Scheme 1),”® but the 6-aminohexanoic acid spacer between significantly impact the logD values [(2.01 + 0.39)—(2.98 +
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Table S. Differences between Fluorescence- and Radioactivity-Based Image-Guided Surgery

fluorescence

Spatial resolution pm—mm’s
Signal display Video rate
Acquisition time <50 ms

Compatibility with microscopic tissue

evaluation
Biodistribution
based signal attenuation)
Signal penetration depth through tissue <10 mm
Noninvasive whole-body imaging na.

(surgical roadmap)

Fluorescence microscopy (<um resolution)

Qualitative (image intensity only; impacted by autofluorescence and tissue-

radioactivity

>2 mm

Only numeric/acoustic (y-probe) or static
image (7 camera)

>500 ms (y-probe), multiple seconds (y
camera)

Autoradiography (>mm)

Quantitative (%ID/g)

>10 mm
2D scintigraphy/3D (e.g., SPECT/CT, PET/
CT)

0.09)], but did impact the PSMA affinity (IC, = 11.14 + 1.16,
13.32 + 0.83,24.54 + 5.70, and 21.41 + 1.90 nM, respectively).
Quantitative biodistribution using the ®*Ga isotope (%ID/g
assessment at 60 pmol) at 1 h p.i. showed that the structural
variations also extended to renal retention (138 + 39, 125 + 32,
205 + 56, and 221 + 24%ID/g, respectively), which could
impact the performance of tumor imaging as discussed
previously. This particular comparison allows for the isolation
of the influence that a fluorophore exerts on tracer performance.
In mice, **Ga-Glu-urea-Lys-HBED-CC-IRDye800CW could
be used to identify PSMA-positive tumors with small-animal
PET (Figure 4A; 0.5 nmol) or fluorescence imaging (0.5 nmol).
Interestingly, basal prostate uptake of Glu-urea-Lys-HBED-
CC-IRDye800CW in healthy pigs (1 mg, 30 ug/kg) was
evaluated using a Da Vinci Firefly laparoscope (Figure 4B).'"*

Alternatively, the use of cyanine fluorophores as spacers has
been explored. By using the fluorophore as spacer but keeping
the primary targeting vector and mas; chelate consistent, it
became possible to systematically study if and how a custom
bifunctional CyS fluorophore (ie, —CyS—, —(SO;)CyS—,
—Cy5(S05)—, —(Ar)CyS—, and —CyS(Ar)—) could influence
secondary binding to the amphipathic entrance funnel.'"
Affinities were greatly impacted by the fluorophore design: of
the five fluorophores studied only —(SO;)Cy5— showed IC, <
100 nM (EuK-(SO;~)CyS5-mas;, IC5 = 19.2 + 5.8 nM). These
results imply that the presence and location of an anionic
sulfonate moiety on the fluorophore influence the affinity for
PSMA. At 2 h p.i. using a dose of 1 nmol, *™Tc-EuK-
(SO;7)CyS-mas, displayed a relatively low renal retention (18.4
+ 8.5%ID/g), as well as high tumor-to-muscle and good kidney-
to-tumor ratios (Figure 4C, Table 4). This compound is
currently under evaluation in a healthy pig model where it allows
accurate prostate delineation using a microdosing regimen (100
g, 2.85 ug/kg; Figure 4D). Kommidi et al.'*> have used the
commercially available HOOC-(SO;)Cy3(SO;)-COOH to
create '®F-(S0;)Cy3(SO;)-EuK. In line with the above
findings, this compound has a high affinity (ECy, = 10.3 £ 0.7
nM) and tumors could be clearly visualized using small-animal
PET imaging. Quantitative biodistribution studies indicated a
high tumor uptake (tumor-to-blood ratio = 128) and low renal
retention (kidney-to-tumor ratio 0.06 at 2 h) using a dose of 2.5
nmol. Here, it should be noted the fact that '*F-(SO;)Cy3-
(80;)-EuK is radiohalogenated, which implies it has a reduced
amount of charges compared to radiometalated ligands, and as
such can influence renal accumulation and/or clearance.*¢

In summary, three types of hybrid tracer designs have been
reported: (1) MSAP, (2) chelate-spacer-based, and (3)
fluorophore-spacer-based. In general, these studies indicate
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that the affinity of the hybrid tracers is impacted by the addition
of a fluorophore. This effect, however, is most substantial when
the fluorophore resides within the secondary binding pocket. In
some cases, the dose used for the biodistribution in%ID/g was
different from the dose used for fluorescence imaging, making it
difficult to assess in vivo performance for the latter application.

B DISCUSSION

By combining the binding characteristics of PSMA with the
clinical need for accurate and sensitive detection of PSMA-
positive lesions during PCa surgery, a general perspective could
be created for the evaluation of the three families of PSMA-
targeted tracers for image-guided surgery (i.e., radioactive,
fluorescent, and hybrid). This overview suggests the “low-
hanging fruit” in PSMA tracer design has been picked by
incorporating off-the-shelf imaging labels and spacers on a well-
known targeting moiety. Although the majority of PSMA-
targeted tracers designed for image-guided surgery applications
are fluorescent (Tables 2, 3, Schemes 2, 3) or hybrid (Table 4,
Scheme 4) of nature, only radiotracers (Table 1, Scheme 1) have
been reported in clinical trials so far. Hence, it does not seem
that we are currently getting the most out of PSMA-targeted
tracer developments for image-guided surgery purposes.

Published clinical data with *Tc-PSMA I&S focuses on the
positive influence image-guided surgery has on the resection of
tumor-positive LNs in the salvage setting (after staging with
PSMA—PET).”””® Due to the lack of reports that describe the
use of these radiotracers in primary cancer resection, it is difficult
to judge the potential of PSMA-targeted image guidance for this
application. Most likely, resection of PSMA-positive LNs in the
primary setting will be equally as effective as in a salvage setting,
but given the overall renal clearance and high renal accumulation
of the PSMA-targeted tracers reported, the ability to detect
primary tumor margins is likely more reliant on the chemical
design of the tracer.

We have attempted to comprehend the requirements for the
chemical design of a high-end tracer for PSMA-targeted image-
guided surgery, but comparative interstudy performance
assessment was impaired by a number of features: (1) lack of
a standardized methodology for affinity assessment (k;, kp, ICs;
in some cases picomolar range affinities have been reported,
while comparative studies yield a lower affinity (nanomolar
range) for similar designs); (2) although it is known that the
applied dose influences the biodistribution of PSMA-targeted
tracers,”'”''® large variations in dose have been reported
between, e.g., fluorescence- and radioactivity-based studies
(0.1-1 nmol for radio- and hybrid tracers, 1—10 nmol for
fluorescent tracers; Table 1—3); (3) differences in time points of

DOI: 10.1021/acs.bioconjchem.9b00758
Bioconjugate Chem. 2020, 31, 375—395


http://dx.doi.org/10.1021/acs.bioconjchem.9b00758

Bioconjugate Chemistry

imaging (1—120 h; Table 1—3), combined with the biological
clearance profiles of individual tracers, are common and are
likely to impact the intensity of background signals; (4) missing
quantitative biodistribution data (%ID/g) for fluorescence
tracers (Table 4) makes it particularly challenging to place the
reported preclinical findings in perspective to the PSMA—PET
tracers that are currently used for staging of patients; (5) use of
different animal/tumor models complicates a direct comparison
based on tumor uptake values—it has been shown that the use of
different tumor models can increase the tumor uptake by almost
3-fold,"' it might cause one to wonder how accurately proof-of-
concept studies in mice represent the challenges encountered
during PCa surgery; (6) utility of radioactive and fluorescent
signatures for imaging is intrinsically different, further
complicating a comparison of the findings (Table 5).

Despite the hampering of interstudy comparisons, a number
of manuscripts cited in this review (one regarding radiotracers,
four regarding fluorescent tracers and two regarding hybrid
tracers) allowed for a structural intrastudy comparison of
different tracer analogs. These studies therefore complement the
existing radiochemistry literature on PSMA-targeted tracer
refinement.” Key performance characteristics could be inferred
from these combined data, e.g, that the spacer can be used to
influence the binding to the secondary pocket and/or to limit
steric hindrance from “bulky” imaging labels.'°>'** Hereby the
molecular features of different fluorophores exert a different
impact on affinity and tracer kinetics, similar to what has been
reported for chelates/ radiolabels.®”®> The influence of the
molecular composition of fluorophores was largest when short
spacers were used (meaning the fluorophores were placed in the
amphipathic entrance funnel),"”" or when the fluorophores were
purposely exploited as spacers.'' "' In the secondary binding
pocket, cyanine fluorophore structures with sulfonates instead of
additional aromatic rings yielded the highest affinity. Fur-
thermore, it is interesting to note that a study by Wang et al.
underlines that CyS fluorophores are not always outperformed
by Cy7 analogs.”

Besides strides that can be taken in optimization of the
chemical design, clinical translation of fluorescent tracers is also
affected by the sensitivity of detection. The translation of
radiotracers such as *"Tc-PSMA 1&S was supported by the
ability to apply these tracers in a microdosing regime, a concept
that limits toxicity and eases the clinical translation of
radiotracers.''” Despite clinical data indicating that fluores-
cence-guided surgery might also be feasible adhering to the
microdosing principle,””'**'*" as has also been suggested for
PSMA using a porcine model (Figure 4D), the application of
microdosing remains controversial in the field of fluorescence-
guided surgery.'”” Tt is certain, however, that intraoperative
identification of (fluorescent) lesions is less efficient when they
contain low tracer concentrations.”> Other than PSMA—PET
studies reporting on a >2 mm size limit for lesion
identification,” little is known about the PSMA concentration
on cancer cells in primary or metastatic lesions. Currently,
analysis of the PSMA—PET roadmap is one of the clinical
selection criteria for the inclusion of patients in PSMA-guided
salvage surgery.”” One might argue that inclusion of quantitative
analysis (e.g, SUV) of the lesion is these scans, coupled to
quantitative surgical detection and pathological analysis, could
in the future help define which PSMA concentration levels are
needed to support radio- and/or fluorescence-based lesion
identification in a surgical setting.
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Given the clinical impact of PSMA-targeted radioguided
surgery, the limited insights provided for the in vivo perform-
ance of fluorescent PSMA-targeted tracers and literature
suggesting that tissue-induced signal attenuation, e.g,, as result
of a high body mass index, limits the accuracy of fluorescence-
guided surgery.”>"** It is likely that PSMA-targeted tracers
incorporating a radiolabel are most promising. Here, the “best-
of-both-worlds” scenario offered by hybrid tracers (combination
of features in Table S) seems to provide a logical means to
support preoperative imaging and radioguided surgery, while at
the same time satisfying the surgeon’s desire for fluorescence
guidance.'"

Next to the small-molecule PSMA-tracers, antibody-based
efforts are also explored for this molecular target."*>~"*” In the
future, these different tracer designs can jointly address PSMA-
based resections in PCa and given the biology of PSMA, they can
possibly also guide resections in other cancers. When PCa is
PSMA-negative or PSMA-expression is low, other molecular
targets may be used for surgical guidance, e.g., the fibroblast
activation proteinl‘?’0 or gastrin-releasing peptide receptor.w’1

H CONCLUSION

Different PSMA-targeted tracers have been reported for the field
of PSMA-targeted image-guided surgery. When comparing the
reported radio-, fluorescent-, and hybrid PSMA-targeted tracers
it becomes evident that (1) radiotracers have already created
clinical impact, (2) fluorescent tracers are most abundant but are
used at a relatively high dose and the preclinical studies lack
pharmacokinetic assessment, and (3) hybrid tracers provide the
potential to complement the beneficial values of radiotracers
with fluorescence guidance.
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