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Abstract

Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity,
tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence
of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical
in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a
proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG
complexes’ roles in development and the mechanisms by which they repress transcription are not completely
understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose
functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-
amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-
amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES
represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first
evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish
embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for
models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment
of the potential role of Groucho-family proteins in both normal and abnormal development.
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Introduction

The mammalian T-cell factor (TCF) family is composed of
four members (TCF1, LEF1, TCF3 and TCF4 [1]), containing a
highly conserved high-mobility-group (HMG) domain (Figure
1A), which is responsible for their ability to bind DNA
specifically [2–4]. The first members of the family were cloned
as regulators of T-cell receptor alpha enhancer in lymphocytes
[5–7], but TCFs are now well recognized as important players
in a wide variety of processes, especially in development
[8–15]. TCF4 (encoded by the TCF7L2 gene), in particular, is
the most prominently expressed TCF/LEF member in the
developing gut [11,16] and is necessary to maintain the

proliferative compartment in the intestinal epithelium, as seen
in TCF4-deficient mice and zebrafish [17–19].

A major breakthrough in our understanding of the TCFs’
roles and mechanism of action came with the discovery that
they complex with β-catenin (encoded by the CTNNB1 gene) to
act directly as transcription factors, with the TCFs providing the
DNA binding and β-catenin a potent transactivation domain
[13,20,21]. This seminal discovery placed TCF-β-catenin
complexes as the main effectors of Wnt signaling, a very
important and evolutionary conserved pathway from Drosophila
to humans [22–24]. Together with previous data on APC
binding to and regulation of β-catenin [25–27], this led to the
realization that abnormal activation of TCF-β-catenin-controlled
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transcription is the fundamental biochemical event underlying
colorectal cancer initiation [18,28,29]. The summation of
biochemical, developmental and oncobiology data thus led to a
basic model of Wnt-dependent gene expression: upon Wnt
signaling (Wg in Drosophila), the integrity/assembly of a β-
catenin phosphorylation complex containing APC, Axin/
Conductin and GSK-3β kinase is affected [30–36]. This leads
to a cytoplasmic accumulation of β-catenin and its translocation
to the nucleus, where it interacts with TCF/LEF proteins to
activate multiple target genes [11,15,30–40]. In the absence of
Wnt, β-catenin phosphorylation targets it for degradation in the
proteasome [41,42], freeing TCF proteins to participate in
transcription repression [12,43–46].

The involvement of Groucho-family proteins in this
repression was revealed by the findings that they interact with
TCFs and antagonize TCF-mediated transcription activation
and Wnt signaling in mammalian cells, as well as Drosophila
and Xenopus embryos [47–49]. Importantly, these studies
implied a role for GRGs in Wnt-mediated dorsal-ventral (DV)

patterning [50,51], one of the major early developmental
decisions made in vertebrate embryos, that requires β-catenin
accumulation and signaling activation [43,52–58].

In vertebrates, the Groucho family can be divided into two
distinct structural subgroups. The first includes the “long”
proteins, termed GRG (1–4), for Groucho-related gene (or TLE
(1–4), for Transducin-like enhancer of split, in humans), which
have five distinct domains (Figure 1B): the highly conserved Q
(glutamine-rich) and WD (containing WD40 repeats, and
involved in most protein interactions) in the N- and C-termini
respectively, separated by the much more variable GP (glycine/
proline-rich), CcN (with putative casein Kinase II/cdc2
phosphorylation sites and a nuclear localization signal), and SP
(serine/proline-rich) domains. They are generally accepted as
co-repressors of multiple transcription factors with crucial roles
in diverse processes, such as segmentation, sex
determination, embryo patterning and organogenesis
[47,59–61]. The second subgroup encompasses the proteins
sometimes referred to as the “short Grouchos”, including

Figure 1.  Schematic representation of the mammalian TCF4 and GRG domains organization.  A) The human TCF4 gene
consists of 17 exons (top), some of which are subject to alternative splicing (black exons). The TCF4 variant used (Ex1-17) includes
isoform specific sequences such as the LVPQ domain due to the use of an alternative splice donor site at the end of exon 7
(arrowhead). A TCF4 fragment lacking the C terminus (a.a.s 7-387), was fused to Gal4’s DNA-binding domain (Gal4-BD) and used
as bait in a two hybrid screen. B) The GRG family comprises two distinct classes of proteins, based on their domain constitution: the
“long Grouchos”, GRG/TLE 1-4, consisting of five different domains (Q, GP, CcN, SP and WD40); and the “short Grouchos”, such
as the alternative splice-product Grg1-S or the GRG5/AES subfamily members, which contain only the Q and GP domains.
doi: 10.1371/journal.pone.0067694.g001
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alternative splicing variants of the long forms, such as Grg1-S
(a variant of mouse Grg1) and distinct members expressed
from their own loci, such as GRG5 (also referred to as AES, for
Amino-terminal enhancer of split). Proteins in this subgroup
contain only the first two conserved domains (Q and GP)
(Figure 1B) and have sometimes been suggested to act as
dominant negatives of the long forms [49,62]. However, this
view has been contradicted by the demonstration of
transcriptional repression by several short forms, including
Grg1-S, AES197 (a “truncated” sea-urchin Groucho
homologue) and GRG5/AES [63–69].

Here, we characterize the TCF4-GRG5/AES molecular
interaction, map the minimal interacting region in TCF4 to a
111-amino acid stretch and show that, in contrast to other
Grouchos, GRG5/AES-binding depends on the 4-amino acid
motif LVPQ. Interestingly, both this motif and the 111-amino
acid core binding region are present only in some TCF4
isoforms. We further demonstrate that GRG5/AES acts as an
efficient repressor of TCF-β-catenin signaling both in human
cells and zebrafish embryos, capable of counteracting the
effects of activated β-catenin both in axis duplication and DV
patterning during zebrafish embryogenesis. These results
broaden our understanding of the physical and functional
interactions between TCFs and Groucho-family proteins, will
help develop more accurate models of Wnt-signaling regulation
by the latter, and pave the way for a detailed in vivo analysis of
the role played by TCF-GRG complexes in intestinal
development, homeostasis and tumorigenesis.

Materials and Methods

Plasmids
TCF4 bait plasmids were generated by PCR amplification of

cDNA fragments coding for amino acids 7-387 (“TCF4”) or
33-387 (“dnTCF4”) of human TCF4 isoform 1
(NP_001139746.1 NCBI accession number) and cloning into
pAS2 and pAS2-1, respectively (Clontech). pGAD10-βcat
(containing the entire coding region of β-catenin) was
recovered in a pilot screen for TCF4-interacting proteins using
a commercial human fibroblast cDNA library in pGAD10
(Clontech). TCF4 fragments used in interaction mapping (e.g.
TCF41-129), as well as a human TCF1 cDNA fragment coding for
amino acids 176-359, were PCR amplified and inserted in
frame with the Gal4-binding domain (G4BD) in pAS3, a pAS2
derivative containing a single EcoRI restriction site. The ACT-
GRG4-QGP (GRG41-221) and GAD-Grg1S plasmids were
generated by subcloning the relevant cDNA fragments into
pACT2 or pGADT7 (Clontech), in frame with the Gal4-
activation domain (G4AD).

Myc-tagged TCF4 and HA-tagged GRG5/AES mammalian
expression plasmids were generated by subcloning of partial
and full-length human cDNAs into CMV-promoter driven
plasmids (Clontech), in frame with the respective epitopes.
CMV-βcat (WT) was generated by removing β-catenin cDNA
from pGAD10-βcat and subcloning into pCMV. CMV-βcatT41A
(coding for a mutant β-catenin found in human tumors) was
derived from CMV-βcat by site directed mutagenesis.
Expression vectors for Grg1-S and Grg1-L [63] were obtained

from Addgene (Addgene plasmids 11065 and 11067,
respectively). CMV-G4VP was generated by subcloning the
Gal4-VP16 fusion [70] into a CMV-promoter driven mammalian
expression vector; G4BD.GRG5 and G4BD.Grg1-L were
generated by removing the VP16 coding sequences from CMV-
G4VP (yielding CMV-G4BD) and replacing them with those of
GRG5/AES and Grg1-L.

TCF-Luc (containing three TCF consensus binding sites -
TREs) and TCF*-Luc (with three mutant TCF binding sites)
were previously described [71]. For pB15UT-Luc, 3 copies of
the 5 Gal4 upstream activation sequences (UASG) present in
UASG-βgal [70] were concatamerized and used to replace the
TREs in TCF-Luc. For 15UTSV-Luc, the SV40 promoter from
"trigger P5" [70] was PCR amplified and cloned into pB15UT-
Luc between the UASG and the luciferase gene.

Plasmid templates to synthesize mRNAs for zebrafish
embryo injections were generated by cloning of full length
cDNAs for TCF4, GRG5/AES and an activated β-catenin
(βcatT41A), as well as TCF433-596 (“FLdnTCF4”) into pCS2plus.

All plasmids were sequenced to confirm that they had been
accurately constructed. More detailed information about the
constructs is available upon request.

Yeast two-hybrid assays
A commercial human fetal brain cDNA library in pACT2

(Clontech), was screened by PEG/LiAcetate co-transformation
[72] with the bait plasmid pAS2-TCF4 into the AH109 yeast
reporter strain (which contains integrated copies of ADE2 and
HIS3 reporter genes under control of Gal4-dependent
promoters). Primary candidates were selected for their ability to
grow in SC-Leu-Trp-Ade medium (BIO101). A secondary
screen was performed by selection on medium also lacking
histidine and containing 30mM of the HIS3 inhibitor 3-
Amino-1,2,4-triazole (3-AT), (Sigma). False positives were
screened against by co-transformation of individual candidate
prey plasmids with the control bait plasmid pLAM, which codes
for a G4BD-laminin fusion protein.

Mapping of the GRG5/AES -binding region in TCF4 was
done by individually co-transforming each of the various TCF4-
fragment encoding bait plasmids with a pACT2-GRG5 plasmid
recovered in the library screen and selection on SC-Leu-Trp-
Ade medium. For each fragment, the strength of the interaction
was evaluated by spotting 60 individual colonies on media also
lacking histidine and containing increasing concentrations of 3-
AT. Evaluation of the effects of removing the LVPQ motif was
done by co-transforming TCF4 bait constructs with either
GRG4-QGP or Grg1-S encoding prey plasmids and spotting a
mixture of 20 transformant colonies from each interaction
tested on SC-Leu-Trp-Ade selective medium.

Prey-plasmid recovery
Putative candidates selected in the secondary screen were

grown in SC-Leu-Trp and plasmid DNAs extracted by glass
bead lysis and ethanol precipitation. DNA from each yeast
clone (containing a mixture of the bait plasmid and one or more
prey plasmids) was transformed into E. coli cells by
electroporation and colonies containing different prey plasmids
identified by PCR/agarose gel electrophoresis screening with
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bait plasmid and prey plasmid specific primers. Plasmid DNA
was isolated by a standard alkaline lysis method and used to
identify inserts by sequencing.

Cell line, transfections and luciferase assays
Human embryonic kidney (HEK) 293 cell line (ATCC

number: CRL-1573) was maintained in Dulbecco’s modified
Eagle’s medium (DMEM) (Invitrogen) supplemented with 10%
FBS (fetal bovine serum) (Invitrogen) and 1% of a solution
containing 10000 U/ml penicillin and 10000 µg/ml streptomycin
(Invitrogen).

Transient transfections were performed using Lipofectamine
2000 reagent (Invitrogen). Cells were seeded at 1×105 cells/ml
into 24-well plates one day prior to transfection. The total
amount of transfected DNA was adjusted in each case to 1.5
µg per well by addition of the appropriate backbone vector.
Effector plasmids included: pCMV-GRG5/AES (0.4, 0.8 or 1.2
µg), pCMV-β-catenin (0.1 µg), pCDNA3.1-dnTCF4 (0.4 or 1.2
µg), Grg1-S (1.2 µg), Grg1-L (0.4 or 1.2 µg). ), CMV-G4BD (1.2
µg), CMV-G4BD.GRG5 (1.2 µg) and CMV-G4BD.Grg1-L (1.2
µg). Luciferase reporter plasmids included TRE-Luc (0.1 µg),
TRE*-Luc (0.1 µg), pB15UT-Luc (0.1 µg) and 15UTSV-Luc (0.2
µg). In each case, a CMV-β-galactosidase plasmid (0.1 µg)
was co-transfected to normalize for transfection efficiency. For
each transfection, the total DNA was incubated with 3 μl of
lipofectamine for 20 minutes and gently added to the cells.
Twelve hours after transfection, the medium was replaced and
24 hours later cells were washed in PBS buffer and collected to
determine luciferase and beta-galactosidase activities. Cell
lysates were prepared using 100 μl of 1XRBL (Promega) per
well and luciferase activity was assayed according to the
manufacturer’s instructions (Promega). Beta-galactosidase
assays [70] were performed in 96-well plates using 5 μl of each
cell lysate, 45 μl of reaction buffer and 10 μl of ONPG (o-
nitrophenyl-β-D-galactopyranoside, Sigma) solution and
stopped by addition of 25 μl of 1M Na 2CO3 (Sigma). After
subtraction of the background, the luciferase activities were
normalized against beta-galactosidase activities. Each
transfection was performed independently three times and all
the assays were done in triplicate.

Co-immunoprecipitation
Whole-cell extracts were prepared from HEK293 cells co-

transfected with 1 μg of pCMV-Myc-TCF4 and 1 μg of pCMV-
HA-GRG5/AES expression plasmids. 500 µg of protein were
incubated at 4 °C, for 2h and with rotation with 2.5 µg of mouse
monoclonal anti-Myc antibody (Clontech). Immunoprecipitates
were incubated for 30 min with Protein G-Sepharose beads 4
Fast Flow (GE Healthcare). After the incubation, the beads
were washed three times with 1 ml of lysis buffer (140 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH
7.4, 1% Triton X-100, 1% Nonidet P-40, 1 mM
phenylmethylsulfonyl fluoride, 20 mM NaF, 3 mM sodium
vanadate, 10 µg/ml aprotinin and 10 µg/ml leupeptin) and
boiled in sample buffer (4% SDS, 20% glycerol, 3.5% 2-
mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris
HCl, pH 6.8).

For total protein lysates, 20 µg of protein were loaded per
case. Proteins were separated by 12% SDS-PAGE, transferred
onto a Hybond nitrocellulose membrane (Amersham
Biosciences) and subjected to Western blot analysis. Briefly,
membranes were blocked for 30 min with 5% nonfat milk in
PBS + 0.5% Tween-20 and incubated for 2 h with rabbit
polyclonal anti-HA or mouse monoclonal anti-Myc antibodies
(Clontech) diluted 1/1000. HA epitope-tagged GRG5/AES and
Myc epitope-tagged TCF4 were detected using horseradish
peroxidase-conjugated secondary antibodies (Santa Cruz
Biotechnology), diluted 1/2000, followed by ECL detection
(Amersham Biosciences).

Ethics statement
All experiments were conducted according to an animal

protocol approved by the University of Pennsylvania
Institutional Animal Care and Use Committee (#802394).
Veterinary care was under the supervision of the University
Laboratory Animal Resources of the University of
Pennsylvania.

Fish and mRNA microinjections
Wild-type fish and embryos were maintained essentially as

described previously [73].
Plasmids were linearized and transcribed in vitro using the

SP6 Message mMachine Kit (Ambion). Synthesized mRNAs
were purified by phenol: chloroform extraction and isopropanol
precipitation and injected into one-cell stage embryos, except
for the β-catenin-induced double axis experiments, in which
mRNAs were injected into one blastomere of eight-cell stage
embryos. Embryos were injected according to a previously
described procedure [74].

Whole-mount in situ hybridization
WT and injected zebrafish embryos were collected at 70% of

epiboly stage and fixed in 4% paraformaldehyde. The following
antisense RNA zebrafish probes were used: chordin [75], gata2
[76] and sp5l [77]. Whole-mount in situ hybridizations were
carried out as described previously [78].

Results

GRG5/AES specifically interacts with TCF4
TCF4 is considered one of the most important regulatory

genes in intestinal development and homeostasis in
vertebrates. As part of our general interest in a detailed
understanding of the functions played by TCF4 in these
processes, we tried to identify novel TCF4-interacting proteins.
Because we were particularly interested in potential differences
among the sets of proteins that interact with TCF4 and those
that bind its homologues, we decided to perform a two-hybrid
screen similar to the one that led to the identification of β-
catenin as a TCF1 partner [13]. A truncated form of TCF4
(7-387 amino acids) fused to the Gal4-DNA-binding domain
(G4BD) was therefore used as bait to screen a Gal4-activation
domain (G4AD)-fused human fetal brain cDNA library (Figure
1A). This TCF4 fragment retains the N-terminal β-catenin
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interacting domain, as well as most of the HMG-box, but lacks
the C-clamp motif found in E-tail containing isoforms [79], as
well as the C-terminal CtBP-binding domain [80]. Additionally, it
includes alternative exons in the intermediate region and
isoform-specific sequences such as the LVPQ motif, as a result
of the use of an alternative splice donor site at the end of exon
7 [81,82] (Figure 1A).

Out of approximately 1.2 million independent yeast
transformants initially screened, we isolated close to 300
candidate prey plasmids that were sequenced and analyzed by
database comparison. The most frequently obtained cDNA,
representing approximately 13% of the total and including
many full-length clones, corresponded to GRG5/AES. This was
similar to the results obtained with TCF1, but very surprising, in
light of previous claims that mouse Grg5 binds TCF1 but not
TCF4 [49]. To demonstrate that the TCF4-GRG5/AES
interaction is specific, the TCF4 bait plasmid (pAS2-TCF4) was
reintroduced into yeast cells along with pACT2 (prey “empty
vector" expressing the G4AD). Conversely, the GRG5/AES
prey plasmid (pACT2-GRG5) was reintroduced with pLAM
control bait (encoding a fusion of laminin protein with G4BD).
Figure 2 shows that yeast cells are only able to grow in the
selective medium when co-transformed with both TCF4 and
GRG5/AES fusion plasmids, indicating that a functional two-
hybrid transcription factor is produced and therefore that TCF4
interacts with GRG5/AES.

To determine if TCF4 and GRG5/AES can also interact in
mammalian cells, co-immunoprecipitation studies were carried
out on protein extracts of transiently transfected HEK293 cells
(Figure 3). We expressed Myc-tagged TCF4 proteins either in
the presence or absence of HA-epitope-tagged GRG5/AES.
Full length TCF4 or the fragment containing residues 7-387
(used in the original two-hybrid screen), were precipitated from
the cell lysates with a monoclonal anti-Myc antibody, and the

immunoprecipitates were analyzed for the presence of both
GRG5/AES and TCF4 proteins by Western blotting.
GRG5/AES was readily and specifically detected in
immunoprecipitates from co-expressing cells, as shown by the
presence of the predicted 23kDa size protein (Figure 3A, lanes
2 and 4), but not from cells expressing only one of the proteins,
confirming that there is a physical interaction between
GRG5/AES and both full-length and truncated TCF4.

TCF4130-240 is sufficient for strong interaction with
GRG5/AES and other Grouchos

To map the GRG5/AES-interaction domain of TCF4, we next
fused successive truncations of TCF4 to G4BD (Figure 4A) and
analyzed their ability to bind GRG5/AES by yeast two-hybrid
(Figure 4). We first divided the original TCF4 bait fragment into
two overlapping regions, TCF47-260 and TCF4130-387 (Figure 4A),
both of which were found to mediate the interaction (Figure 4B,
lanes 4 and 5). We next tested the overlapping fragment,
TCF4130-260, and found that this region is sufficient to mediate
specific interaction with GRG5/AES (Figure 4B, lane 6). It was
also shown to be necessary, as no interaction was detected
with the flanking regions: TCF4261-387 failed to activate the
reporter gene, as did TCF47-129, despite its ability to interact
with β-catenin (Figure 4B, lanes 7 and 8).

To gain further insight into this interaction, we next attempted
to determine the minimal interacting region. Additional TCF4
truncations were thus generated in fusion with G4BD (Figure
4A) and tested by two-hybrid for adenine reporter activation
(Figure 4B). Because the yeast strain AH109 is HIS- and
contains an integrated copy of the HIS3 gene under the control
of a Gal4-dependent promoter, we were also able to more
accurately evaluate the interaction ability of TCF4 fragments.
For each interaction experiment, 60 transformant colonies were

Figure 2.  Physical interaction of TCF4 and GRG5/AES in yeast cells.  The AH109 yeast strain was co-transformed with the
indicated constructs (central panel). Transformants were selected in medium lacking tryptophan and leucine (left panel) and
activation of a Gal4-dependent ADE2 gene was examined by growth on selective plates additionally lacking adenine (right panel).
Yeast cells containing both TCF4 and GRG5/AES grew in the selective media. pLAM and pACT2 plasmids were used as bait and
prey negative controls respectively, while the β-catenin prey plasmid constitutes a positive control for the interaction assays.
doi: 10.1371/journal.pone.0067694.g002
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therefore assayed for growth on dropout medium plates lacking
histidine and containing increasing doses of 3-aminotriazol (3-
AT), an inhibitor of HIS3. With increasing doses of 3-AT, more
and more of the enzyme is inhibited, selecting for stronger
gene activation and more stable interactions (Figure 4C).

Because the 253-FRQ/HPY-257 motif in TCFs has been
suggested to be involved in binding to Groucho family
members [48,83,84], we tested a TCF4 fragment lacking this
pentapetide (TCF4130-240). As shown in Figure 4B and 4C,
transformant yeast cells grew well, both in medium lacking
adenine and in medium lacking histidine, even at the highest 3-
AT concentration tested (30mM), demonstrating that the motif
is not required for this specific interaction. In contrast,
TCF4130-220 completely lacked GRG5/AES-binding (Figure 4B),
showing that amino acids 220-240 are required for the
interaction. We further determined that fragments 151-260 and
172-260 are still able to interact with GRG5/AES and activate
the adenine reporter (Figure 4B). However, the binding affinity
was reduced, as shown by the limited growth of transformants
in medium lacking histidine at high 3-AT doses (Figure 4C).
Additionally, TCF4172-240 showed dramatically reduced GRG5/
AES-binding and the interaction was only observed under low
stringency 3-AT selection (Figure 4C). Altogether, these data
indicate that the GRG5/AES-interacting domain of TCF4
resides within amino acids 130-240 and that this region is
sufficient for a strong TCF4-GRG5/AES interaction.
Importantly, strong interaction of the TCF4130-240 fragment was
also observed with Grg1-S and GRG4-QGP (compare Figures
4B and 5B), suggesting it defines a general core region for
TCF4-GRG interactions.

The LVPQ motif is critical for TCF4’s interaction with
GRG5/AES but not with other Grouchos

The 20-amino acid segment of TCF4 we determined to be
essential for GRG5/AES-binding (amino acids 221-240)
encompasses the LVPQ motif, which is present only in some
TCF4 splice variants, and invariantly found in TCF3 [81,82].
Because this motif has been implicated in repression mediated
by these particular TCFs [81,82,85], we investigated whether it
plays a role in TCF4-GRG interactions, by testing the effects of
deleting it from TCF4130-240 in yeast two-hybrid assays (Figure
5). As shown in Figure 5B, absence of the LVPQ motif
completely abrogates interaction with GRG5/AES, implying that
it plays a critical role in TCF4-GRG5/AES binding. However,
this cannot be generalized to other GRGs, as the LVPQ
deletion had no effect on TCF4’s interaction with Grg1-S and
only mildly hampered its binding to GRG4-QGP, a "truncated"
GRG4 that, like GRG5/AES or Grg1-S, includes only the Q and
GP domains (Figure 5B). These results show that Groucho
proteins bind differently to TCF4 and suggest its interaction
with GRG5/AES might be modulated by alternative splicing.

GRG5/AES represses Wnt signaling in human cells and
cooperates both with dnTCF4 and Grg1-L for efficient
transcriptional repression

GRG5/AES has variously been reported to act either as a
dominant negative, that interferes with the function of the long
GRGs [49,62] or, like these, as a co-repressor of multiple
transcription factors, including members of the TCF family
[66–68,86]. Together with our observation of an interaction
between GRG5/AES and TCF4 this prompted us to examine
the ability of GRG5/AES to counteract TCF-β-catenin-mediated

Figure 3.  Physical interaction of TCF4 and GRG5/AES in human cells.  A) Lysates of HEK293 cells transiently transfected with
the indicated expression plasmids were subject to immunoprecipitation (IP) with anti-Myc antibody and the immunoprecipitated
proteins were analyzed by Western blot (WB) with anti-HA and anti-Myc antibodies. Co-precipitation of HA-tagged GRG5/AES was
detected only in the lysates of cells co-transfected with Myc-TCF47-387 (lane 2) or Myc-TCF4FL (full-length) (lane 4). B) 10% of each
total cell lysate was loaded for WB with either anti-HA or anti-Myc antibodies. The asterisks indicate nonspecific binding to
immunoglobulin light (*) and heavy (*´) chains.
doi: 10.1371/journal.pone.0067694.g003
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transcription (Figure 6). As previously observed in other cell
lines [71], co-transfection of HEK293 cell line with a TCF-Luc
construct (containing three TCF consensus binding sites
upstream of the firefly luciferase cDNA) together with β-catenin
resulted in a remarkable increase of luciferase activity
compared to TCF-Luc expression alone (Figure 6A). Addition
of increasing amounts of GRG5/AES plasmid reduced
luciferase reporter activation in a dose-dependent manner
(Figure 6A). At the highest dose tested, GRG5/AES
suppressed TCF promoter activity 12-fold, similar to the
repressive effect of a dominant negative form of TCF4, a well-
accepted antagonist of TCF-β-catenin signaling [18]. As
expected, co-transfection with the control reporter TCF-Luc*

(with mutated TCF binding sites) resulted in no alteration of
luciferase activity.

To further evaluate the putative repressive function of GRG5/
AES, we compared its activity to those of other Groucho-family
members, broadly accepted as general co-repressors of the
TCF/LEF-family of proteins: GRG4, Grg1-L and Grg1-S. As
shown in Figure 6B, GRG5/AES was found to repress TCF-β-
catenin-dependent transcription in human cells similarly to
other family members tested - and indeed more efficiently than
GRG4 (see also Figure S1). Surprisingly, in this specific cell
line, the “long Grg1" (Grg1-L) was not capable of repressing
transactivation of the TCF-Luc reporter gene (Figure 6B). This
might have resulted from a lower protein expression level in the

Figure 4.  Mapping of TCF4’s GRG5/AES-interacting region using yeast two hybrid assays.  A) Schematic diagram of the
Gal4BD-TCF4 constructs tested for interaction with GRG5/AES. B) GRG5/AES-interacting TCF4 fragments activate an ADE2
reporter gene, conferring to yeast transformants the ability to grow in selective medium lacking tryptophan, leucine and adenine. C)
Transformants were also tested for activation of a HIS3 reporter, as determined by growth in medium lacking histidine and with
increasing doses of 3-aminotriazol (3AT). As defined by both reporter assays and summarized on the right panel of the diagrams,
the region encompassing residues 130-240 is sufficient for the interaction, with residues 220-240 being strictly necessary. Two
previously described fragments were included as internal controls: dnTCF4, that lacks the N terminal β-catenin binding domain [13];
and TCF1176-359 [49]; n.d.: not done.
doi: 10.1371/journal.pone.0067694.g004
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cells (Figure S1), or rather be another indication of the complex
and context-dependent nature of Groucho proteins’ functions.
To determine whether GRG5/AES is actively repressing TCF-
dependent transcription as has been demonstrated for "long
Grouchos" [87], or rather functioning by blocking the formation
of TCF-β-catenin active complexes, we tested the ability of
GRG5/AES to interfere with basal transcriptional activity when
tethered to DNA. Gal4-fusion constructs encoding either
GRG5/AES or full-length Grg1 (Grg1-L) were therefore
transfected into HEK293 cells and their ability to repress the

activity of a strong, Gal4-responsive, promoter was compared.
As shown in Figure S2, GRG5/AES is able to repress basal
transcription to the same degree as Grg1-L, implying that
GRG5/AES harbors a functional repression domain
comparable to those of the long Grouchos. These results
demonstrate that GRG5/AES can effectively repress
endogenous TCFs and down-regulate TCF-β-catenin-mediated
transcription.

Because HEK293 cells express all TCF/LEF-family members
[62], we could not determine whether this repression was

Figure 5.  Convergent and divergent sequence requirements for TCF4 binding to different GRGs.  A) Schematic view of
TCF4 (left) and GRGs (right) fusion constructs used in yeast-two hybrid assays. B) Two-hybrid analysis of the importance of amino
acids 130-240, 221-240 and the LVPQ motif for the interactions between TCF4 and GRGs. Co-transformant yeast cells were
selected in medium lacking tryptophan and leucine and assayed for the indicated interactions using the adenine reporter gene (in
Trp-Leu-Ade-medium). The same 111-amino acid region (residues 130-240) is sufficient for strong interaction with all three GRGs
tested, and amino acids 221-240 are required for it, whereas removal of the LVPQ motif abrogates binding to GRG5/AES, but not
the other GRGs, although it has some effect on the TCF4-GRG4 interaction. The ACT2 plasmid was used as a negative control.
doi: 10.1371/journal.pone.0067694.g005
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mediated through TCF4. To address this limitation, we co-
transfected HEK293 cells with both GRG5/AES and dnTCF4
expression plasmids, to test whether they act cooperatively or
independently in repressing TCF-Luc reporter transactivation.
As shown in Figure 6C, this resulted in 22.5-fold transcriptional
repression, significantly higher than the 6.3-fold additive effect

of GRG5/AES- and dnTCF4-mediated repressions. This
implies that GRG5/AES and dnTCF4 indeed act cooperatively
in transcription repression, suggesting that the TCF4-
GRG5/AES interaction contributes to GRG5/AES’s repressor
function. Furthermore, we asked whether GRG5/AES could
similarly cooperate with Grg1-L, using the same reporter gene

Figure 6.  GRG5/AES represses TCF-β-catenin mediated transcription and co-operates with both dnTCF4 and Grg1-L for
transcriptional repression.  HEK293 cells were transfected with either the reporter construct TCF-Luc (containing three TCF
consensus binding sites upstream of the firefly luciferase cDNA), or the control reporter TCF*-Luc (with mutations in the TCF-
binding sites) and the indicated combinations of expression plasmids. A) Addition of GRG5/AES plasmid decreases the luciferase
activity induced by transfected βcat and endogenous TCFs in a dose dependent manner. At the highest dose (1.2 μg/μl), GRG5/
AES-mediated repression is comparable to the effect of dominant negative TCF4 (dnTCF4), a previous established repressor of the
canonical Wnt pathway [13]. B) Repression of TCF-β-catenin mediated transcription by various Groucho-family proteins. In contrast
to “long” Groucho Grg1 (Grg1-L), GRG5/AES, GRG4 and Grg1-S (a short GRG1 isoform [63]) effectively repressed TCF-dependent
luciferase activity. 1.2 µg were used for transfection of each Groucho expression plasmid. C) Co-transfection of GRG5/AES with
either dnTCF4 or Grg1L (0.4µg of each plasmid) results in higher repression of TCF-β-catenin dependent luciferase activity then
transfections with each effector plasmid individually. β-galactosidase assays were performed as an internal control for transfection
efficiency. All the assays were done in triplicate in three independent experiments.
doi: 10.1371/journal.pone.0067694.g006
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assay (Figure 6C). Interestingly, although Grg1-L alone was
unable to repress TCF-mediated transactivation in this assay,
its co-transfection with GRG5/AES significantly increased the
latter’s repression activity, showing that GRG5/AES can
cooperate with the "long Grouchos" in downregulating Wnt/β-
catenin signaling.

GRG5/AES counteracts β-catenin dependent dorsal
specification in zebrafish

In zebrafish, as in Xenopus, nuclear accumulation of β-
catenin in the early embryo is required for activation of
dorsalizing genes and establishment of the dorsal-ventral (DV)
axis [56,88,89]. Furthermore, both β-catenin and Wnt
overexpression result in embryo dorsalization and secondary
axis formation [14,20,54,90–92]. Our observations that
GRG5/AES interacts with TCF4 and behaves as a consistent
repressor of TCF-β-catenin dependent transcription in human
cells therefore raised the possibility that GRG5/AES may also
regulate DV patterning during early zebrafish embryogenesis.

To test for this possibility, we started by microinjecting
grg5/aes mRNA into 1-cell stage embryos (Figure 7).
Morphologically, the vast majority of injected embryos were
apparently normal at 10hpf, with the characteristic thickening of
the neural plate along the dorsal side. However, some embryos
displayed reduction of the dorsal side (Figure 7B). In contrast,
and as previously reported, overexpression of an active β-
catenin (T41A) resulted in dorsalized embryos, easily
recognized by an animal-vegetal elongated morphology and, in
some embryos, formation of ectopic dorsal axes [54] (Figure

7C, D). To further characterize the effect of grg5/aes
microinjection, we investigated the expression pattern of the
dorsal marker chordin by performing in situ hybridizations at
mid-gastrulation in grg5/aes-injected embryos. As shown in
Figure 7, chordin expression was clearly reduced, suggesting
that GRG5/AES indeed influences DV axis patterning by
inhibition of dorsal-specific gene expression.

Next, we sought to evaluate GRG5/AES’s ability to
antagonize β-catenin dorsalizing activity in zebrafish embryos.
When we microinjected β-catenin into a single blastomere of 8-
cell stage embryos, severe disruption of DV patterning
occurred. Forty-five percent of injected embryos were dead at
24hpf, likely as a consequence of extreme dorsalization (Figure
8), while 62% of the remaining embryos displayed axis
duplication. While a complete secondary axis was obtained on
a few occasions, partial axis duplications were more common.
Nevertheless, to avoid ambiguity, we grouped both types in the
same class, scoring embryos as having double-axis whenever
there was notochord duplication (Figure 8B). In contrast, co-
injection of β-catenin and grg5/aes mRNAs into a single
blastomere of 8-cell stage embryos resulted in a much higher
survival rate (Figure 8A). The number of embryos dead at 24
hours was reduced 9 fold, and dorsalized phenotypes were
more moderate compared with those produced by β-catenin
injection alone (data not shown). Furthermore, there was a
consistent decrease in the number of embryos with a
duplicated axis, indicating that GRG5/AES antagonizes β-
catenin signaling in zebrafish embryos. Comparable results
were observed in embryos co-expressing β-catenin and

Figure 7.  GRG5/AES overexpression leads to ventralization of zebrafish embryos.  (A–D) Lateral view, dorsal to the right, of
10hpf-stage embryos. (A) Control uninjected; (B) Injected with 250pg of grg5/aes mRNA; arrowhead: anterior end of the neural plate
with formation of the “polster” in the prospective head region; (C–D) Injected with 100pg of an activated β-catenin mRNA. Black
arrows: ectopic dorsal axis; E-F) Whole-mount in situ hybridization for chordin expression at 70% epiboly uninjected (E) and grg5/
aes-injected (F) embryos.
doi: 10.1371/journal.pone.0067694.g007
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dnTCF4 (Figure 8A), a truncated version of TCF4 that lacks the
β-catenin binding domain and is similar to constructs previously
shown to inhibit axis formation in both Xenopus and zebrafish
[13,14].

The ability of GRG5/AES to counteract β-catenin in vivo was
further explored by examining the expression of markers for the
DV character of the injected embryos (Figure 9). During
gastrulation, chordin is expressed in the prospective dorsal
region of the embryo [75] and, by 70% epiboly, it encompasses
approximately half of the circumference of the margin (Figure
9A). Conversely, gata2 expression is restricted to the ventral
region (Figure 9I). As expected, dorsalized β-catenin-injected
embryos displayed completely circular chordin expression in all

of the tested embryos (Figure 9B,Q) and, consistently, a
complete suppression of gata2 (Figure 9J, R). However, when
grg5/aes mRNA was co-injected, β-catenin-induced
dorsalization was efficiently rescued as shown by restoration of
normal marker gene expression patterns. The embryos were
placed into four classes based on DV extent of marker gene
expression (Figure 9Q). All the co-injected embryos tested for
chordin showed reduction of the circular expression induced by
β-catenin. In 48% of the embryos, the chordin expression
domain was restricted to less than 40% of the margin cells or
was completely absent (class 1, Figure 9C, Q), indicating loss
of dorsal-specific gene expression caused by GRG5/AES. In
33% of the embryos tested, the normal pattern of chordin

Figure 8.  GRG5/AES reduces both mortality and axis duplication in β-catenin-overexpressing embryos.  A) One blastomere
of 8-cell stage zebrafish embryos was injected with the indicated combinations of β-catenin (50 pg), grg5/aes (500 pg) and dntcf4
(500 pg) mRNAs. Partial and complete axis duplications were grouped to avoid ambiguity. The total number of scored embryos (n)
is indicated at the lower part of the panel. B) Example of 24hpf embryo showing complete axis duplication (induced by β-catenin
injection), with two discernible heads (arrows), notochords (asterisks) and tails (arrowheads). Dorsal view, anterior to the left. C)
Example of 24hpf embryo injected with β-catenin showing extreme dorsalization.
doi: 10.1371/journal.pone.0067694.g008
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 expression was restored (class 2, Figure 9D, Q); 19% still
showed ventrally expanded expression when compared to
uninjected controls, but to a lesser degree than embryos
injected only with β-catenin (class 3, Figure 9E, Q). GRG5/AES
was also able to rescue gata2 expression in 68% of the total
embryos, either fully (41%) or partially (27%) (Figure 9I–M, R).
Similar results were observed in control experiments of β-
catenin and dntcf4 co-injections, with clear suppression of β-
catenin induced dorsalization and strong evidence of a
ventralizing effect (Figure 9F–H, N–P).

GRG5/AES antagonizes Wnt/β-catenin signaling during
early zebrafish embryogenesis

Sp5l is a direct target of canonical Wnt signaling whose
expression reflects Wnt involvement in mesoderm and
neuroectoderm patterning during gastrulation [93,94]. We
therefore predicted that, if indeed GRG5/AES antagonizes β-
catenin activity, it should be able to rescue, at least partially,
sp5l upregulation induced by β-catenin. As expected, injection
of activated β-catenin mRNA resulted in greatly expanded sp5l
expression at the animal pole of 70% epiboly embryos (Figure
10B) and this overexpression was clearly reduced upon co-
injection of grg5/aes mRNA. The embryos analyzed by in situ
hybridization were classified as above, in different classes of
rescue efficiency and a representative example of each class is

Figure 9.  GRG5/AES antagonizes β-catenin in dorsal-ventral patterning during early zebrafish embryogenesis.  Whole-
mount in situ hybridizations for chordin (A–H) and gata2 (I–P) of double-injection experiments (columns). Animal pole views, dorsal
to the right, of 70% epiboly stage-embryos. Injection of β-catenin strongly dorsalizes embryos, as shown by an expanded and
circumferential expression of the dorsal-specific gene chordin (B) and a total absence of the ventral-specific gene gata2 (J). Co-
injection of grg5/aes (C-E; K-M) rescues β-catenin-induced dorsalization and restores normal expression domains for both marker
genes. dntcf4 co-injections (F–H; N–P) were used as a control for β-catenin antagonism. Co-injected embryos were grouped in four
classes of marker gene expression: C1 (C, F) – abnormal expression consistent with embryo ventralization; C2 (D, G; K,O) −
restoration of normal expression patterns (A,I); C3 (E, H; L, P) – partial reversion of β-catenin-induced abnormalities; C4 (M) −
abnormal expression consistent with embryo dorsalization. Q–R: distribution of the embryos in the different classes of chordin (Q)
and gata2 (R) expression. GRG5/AES antagonizes β-catenin effects on chordin and gata2 in 100% and 68% of the embryos
respectively. n: number of embryos tested.
doi: 10.1371/journal.pone.0067694.g009
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shown (Figure 10C–E). In 75% of the co-injected embryos,
GRG5/AES repressed β-catenin-induced overexpression, from
which 45% were partially rescued, while in 27% the normal
expression pattern was completely restored. Co-injection of
dntcf4 control mRNA similarly suppressed or completely
abolished sp5l overexpression (Figure 10I).

Discussion

TCF4 binds to GRG5/AES in yeast and human cells
Despite intensive work to describe how the TCF-β-catenin

pathway operates in a variety of developmental processes, a
detailed understanding of the specific molecular mechanisms
that fine-tune basic signaling is still lacking. Although β-catenin
regulation has been extensively studied, much less is known
about the regulation of TCFs and how individual members of
this family dictate Wnt signaling output in different cell types.
We were particularly interested in TCF4 because it plays
pivotal roles in a variety of processes, including central-nervous
system patterning [95,96], skin homeostasis and wound repair
[97] and particularly normal development and pathology of the
intestine [17,18,29,98]. We therefore performed a yeast two-
hybrid screen for new putative TCF4-interacting proteins and
demonstrated that TCF4 physically interacts with GRG5/AES, a
distinct member of the GRG family that exemplifies a subclass

of “truncated” proteins, commonly referred to as the “short
Grouchos”. This observation was unexpected, because it had
been previously reported that mouse Grg5 did not interact
directly with TCF4, although it did with other TCFs [49].
Interestingly, in the same study, mouse Grg5 was shown to
interact with Xenopus TCF3 but not with the orthologous
mouse protein. This might be due to sequence divergence
among different species, affecting binding specificities.
However, there is a growing body of evidence for the existence
of multiple isoforms of both GRG5/AES and TCF4, resulting
from extensive alternative splicing and/or alternative promoter
usage [79,82,99,100]. As would be expected from first
principles, and has been confirmed by several reports, this
structural variation results in specificity in protein–protein
interactions, with profound functional implications [81,99,101].
It is therefore possible that apparently conflicting results stem
from the use of different isoforms, as it is not always clear in
the literature which particular one was used. At any rate, our
work clearly demonstrates the existence of an interaction
between TCF4 and GRG5/AES, confirmed by co-
immunoprecipitation and transcription repression assays in
human cells. This result is particularly important because it was
obtained in an unbiased way – in a cDNA library screen for
TCF4 interacting proteins where GRG5/AES was the most
frequently obtained candidate – and not through candidate

Figure 10.  GRG5/AES represses Wnt signaling during early zebrafish embryogenesis.  Whole-mount in situ hybridizations for
sp5l, a direct target of canonical Wnt signaling. Lateral view, dorsal to the right, of 70% epiboly stage-embryos. Injection of β-catenin
induces broad ectopic domains of sp5l expression (B), which are reversed by co-injection of grg5/aes (C–E) or dntcf4 (F–H).
Expression patterns in co-injected embryos were grouped in four classes, as above. AES reversed β-catenin-induced misexpression
in 75% of the embryos (I). n: number of embryos tested.
doi: 10.1371/journal.pone.0067694.g010

GRG5 Binds TCF4 and Represses Wnt Signalling

PLOS ONE | www.plosone.org 13 July 2013 | Volume 8 | Issue 7 | e67694



testing. Additional support for an in vivo interaction between
TCF4 and GRG5/AES comes from the overlapping expression
patterns of these two proteins observed in several vertebrates
[86,102–105] and the evidence for their critical roles during
pituitary gland development [102].

Isoform-specific regions of TCF4 are critical for
differential binding to GRGs

All TCF/LEF family members share two highly conserved
structural features: a 55-amino acid N-terminal domain
responsible for β-catenin binding and a centrally located high-
mobility-group (HMG) box that mediates DNA-sequence
recognition and bending for an architecturally favourable
context for transcription control [2–4] (Figure 1A). Between
these two domains is one of the most divergent regions among
the family members (and even orthologues), to which various
roles involving protein–protein interactions have been assigned
[43,46,106,107]. GRG binding has also been broadly assigned
to this region in previous interaction studies for TCF1, Xenopus
TCF3 and LEF1, though recently a second (and weaker) site in
LEF1’s HMG box has been described as mediating interaction
with Drosophila Groucho [69]. No interaction mappings were
previously reported for TCF4 and, due to the low sequence
conservation in this region, results previously obtained with
other TCFs are not easily transposable to TCF4. We performed
an exhaustive mapping of the GRG5/AES-binding region in
TCF4 by yeast two-hybrid and determined that a 111-amino
acid stretch (residues 130-240), located between the β-catenin
binding domain and the HMG box, is sufficient for the TCF4-
GRG5/AES interaction (Figure 4). Interestingly, this region
largely corresponds to an alternative-splicing prone region,
encompassing exons 4-6, only present in some TCF4 variants
[99,101].

Although this fragment displays some similarity to the GRG-
binding regions described for other TCFs (Figure S3), no highly
conserved sequences are recognizable, in contrast to what has
been reported for other GRG partners, which bind through
specific and short motifs [108]. Indeed, it had been speculated
that the pentapeptide FRQ/HPY present in TCF/LEF-family
members might be involved in the interaction with GRGs
[48,83] because it is somewhat similar to the motifs found in
other GRG partners, such as Hairy-related proteins (WRPW)
[109], Runt (VWRPY) [110] and HKb (FRPW) [84], but we have
demonstrated that this motif is not required for binding between
TCF4 and GRG5/AES (Figure 4). Equally dispensable is the
sequence corresponding to a short LEF1 stretch proposed to
mediate Groucho binding (Figure S3) [69].

Our mapping refinement assays further led us to identify both
convergent and divergent requirements for TCF4 binding by
various GRGs. Indeed, the 111-amino acid core region for the
TCF4-GRG5/AES interaction was also shown to be sufficient
for TCF4 binding to GRG4 and GRG1. Similarly, the last 20
residues (221 to 240) of this region were found to be critical for
all three interactions, as their removal abrogated them. On the
other hand, GRG5/AES, but not GRG1 or GRG4 binding
depends on the LVPQ motif, which is located in the 221-240
region and, within the TCF family, is only present in TCF4 as a
result of specific alternative splicing, and invariantly in TCF3

(Figure S3). The LVPQ motif had previously been implicated in
repression mediated by these particular TCFs [81,82], but its
role in modulating TCF-GRG interactions was unknown. Our
observations therefore support the idea that binding of
GRG5/AES depends on the expressed splice TCF4 variant and
that contradictory results may be explained by different splice
variants of TCF4 used in different reports. More importantly, it
strengthens the idea that multiple TCF4 isoforms can
differentially influence tissue-specific Wnt responses.

Nevertheless, it should be noted that an additional segment
(amino acids 130-171) is also required for binding. This might
indicate that TCF-GRG interactions, rather than being
mediated by a single short motif, involve multiple cooperative
binding events. Alternatively, it is possible that more important
than specific sequences is a favorable conformation of the
GRG-binding region to which the various segments found to be
required contribute. Consistent with this possibility, though
GRG family members bind the same TCF/LEF proteins,
different specific requirements seem to underlie individual
interactions, the only obvious feature shared by the GRG-
binding regions in TCFs being a high proline content (Figure
S4). Interestingly, similar proline-rich regions have been
identified in other transcription factors that interact with
Groucho-related proteins and are also a feature of several
transcription repressors [65,67,111–113]. The significance of
this observation is unknown, but it might point to a requirement
for a disordered structure of the TLE/GRG-binding regions.

GRG5/AES represses TCF-β-catenin-mediated
transcription in human cells and synergizes with Grg1-
L for efficient repression

The long Grouchos are generally recognized as dedicated
co-repressors of a wide range of DNA-binding factors, including
the TCF/LEF family [59,108,114,115]. The highly conserved Q-
domain mediates interaction with TCF/LEF transcription
factors, as well as tetramerization, which is thought to be a
prerequisite for repressor function [116–118]. Furthermore, the
GP domain interacts with histone deacetylases (HDACs) in
repressor complexes, promoting a more compact and
transcriptionally inactive chromatin [47,62,119,120]. As for the
short Grouchos, and particularly GRG5/AES, the situation is
more complex. Similarly to the long proteins, human
GRG5/AES was originally described as a transcriptional co-
repressor [67] but subsequent reports have provided evidence
that it can act either as a co-repressor [67–69,86,121,122] or
as a “de-repressor” [62,116,117]. Many of the interactions
between the long GRGs and different transcription factors are
mediated by their C-terminal WD domains (Figure 1) and in
these cases a mechanism for de-repression can easily be
postulated: a short Groucho, incapable of interacting with the
co-repressor protein but still able to bind other Groucho family
members, might “poison” tetramers, by rending them less
proficient at forming repression complexes [65,112,113]. In the
case of TCFs, however, the interaction is mediated by the Q
domain [62], present in both the short and long Grouchos,
making this mechanism unlikely. Initial reports of GRG5/AES
as a TCF de-repressor therefore required an alternative
explanation: the divergence between the GP domains of the
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long GRGs and those of GRG5/AES make the latter unable to
interact with HDACs 1 and 3. However, this explanation is still
not satisfactory for two reasons. First, lack of HDAC binding
does not prevent GRG5/AES from acting as a co-repressor for
other transcription factors [66–68,86], possibly through
interaction with the basal transcription machinery. Second,
structural studies have suggested that GRG-mediated
repression of TCF-β-catenin dependent transcription is based
on competition for TCF binding – at which GRG5/AES is fully
proficient [123].

In this study, we demonstrate that GRG5/AES consistently
behaves as a TCF co-repressor, in both human cells and
zebrafish embryos. More specifically, we show that, at least in
HEK293 cells, GRG5/AES is able to strongly repress TCF-β-
catenin transcription in a dose-dependent manner. Additionally,
we observed a similar, though less pronounced, repressive
effect of GRG5/AES in DLD-1, a colorectal tumor cell line
which displays constitutive TCF4-β-catenin dependent
transcription due to APC mutations (data not shown). This is in
agreement with a study published during the preparation of this
manuscript, showing that GRG5/AES is also able to repress
LEF1 in human cell lines [69], but in stark contrast to what was
observed in another recent study, in which it de-repressed
LEF1-mediated activity [124]. Moreover, our work shows that
GRG5/AES is also able to synergize with long Grouchos for
strong TCF-mediated repression, thus providing additional
support to the growing idea that GRG5/AES is not a general
GRG antagonist and highlighting the importance of taking
caution with generalizations about a protein’s function and
biological effects.

How can these apparently conflicting observations regarding
GRG5/AES’s role in repressing TCF-β-catenin dependent
transcription be reconciled? Our studies strongly suggest that
GRG5/AES’s function is critically dependent on the specific
TCF/LEF isoforms present in the cell. For example, as
previously noted, the TCF4 region involved in GRG5/AES
binding is affected by alternative splicing, which could, in some
cells, give rise to isoforms that do not interact with GRG5/AES.
A similar mechanism is behind TCF1’s role as a Wnt antagonist
in the intestine: because the prevailing TCF1 isoform in that
tissue lacks a β-catenin interacting region, it can only form Wnt-
signaling repressing complexes and therefore acts as an
intrinsic dominant-negative [125]. The relative abundances of
other GRG interactors might also be important. Indeed, some
of them are well known to interact only with the long Grouchos,
and it is also possible that others have a preference for the
short ones, like GRG5/AES. The balance of all these partners
in a cell is therefore likely to affect GRG5/AES’s availability to
functionally interact with TCFs. Interestingly, the same process
could also limit the availability of one or another of the long
Grouchos, implying that, under specific circumstances, some of
these might also behave as dominant negatives and potentially
explaining our observation that Grg1-L, by itself, was unable to
act as a TCF co-repressor in HEK293 cells (Figure 6B,C).

In both cases – differences in TCF isoforms and differences
in other partners – a de-repressor role for GRG5/AES hinges
upon the notion of “tetramer-poisoning” by a functionally
impaired protein. This is consistent with the notion that

homotetramerization is essential for efficient repression
[121,126], but opposed by our findings of cooperation between
GRG5/AES and Grg1-L and at least by another study showing
that a C. elegans GRG5/AES-related protein was found to
cooperate with a long Groucho orthologue in co-repression
[122]. Alternatively, GRG5/AES’s subcellular distribution might
be a crucial determinant of its apparently inconsistent behavior.
As it varies in different cell contexts [124], it is conceivable that
a predominantly cytoplasmic distribution could contribute to
retain other GRGs in the cytoplasm, thus limiting their
repressive activity.

GRG5/AES represses dorsal cell fate in zebrafish and
antagonizes Wnt signaling during DV patterning

Analysis of both mutant lines and overexpressing
transgenics have demonstrated the indispensable role of
canonical Wnt signaling in establishing the DV axis during early
zebrafish embryogenesis [14,54,57,88,127–130]. Asymmetric
nuclear accumulation of maternal β-catenin demarcates the
specification of dorsal identity in the early embryo [56]. Parallel
to what is observed in Xenopus, overexpression of β-catenin
leads to strongly dorsalized embryos and formation of double
axes [54,89]. In a similar way, and with the intrinsic limitations
of all overexpression experiments, our results suggest that
GRG5/AES might modulate DV patterning in the early embryo:
first, GRG5/AES overexpression inhibits dorsal cell fate,
effectively reducing endogenous expression of early dorsal-
specific genes like chordin. Second, it can antagonize and
rescue the most severe β-catenin-induced dorsalization
phenotypes, including double-axis formation and expansion of
dorsal domains (accompanied by a reciprocal reduction of
ventral regions). Third, similar to a dominant negative version
of TCF4, it downregulates expression of direct Wnt target
genes and interferes with axis specification, most likely through
TCF-GRG repressor complexes. These results consistently
suggest that GRG5/AES can act as a repressor of Wnt
signaling during early zebrafish development and concur with
previous evidence for short Grouchos’ repressive activity in
vivo. For example, in sea urchin, fragments of LvGroucho
containing only the Q and GP domains (like GRG5/AES) or
even the Q domain alone, were shown to inhibit TCF-β-catenin-
mediated endomesoderm specification along the animal-
vegetal axis [64]. Also, a naturally truncated version of GRG1/
TLE1 was shown to counteract β-catenin in Xenopus [63] and,
more recently, a GRG5/AES-related protein was found to act
as a co-repressor to control developmental decisions in C.
elegans [122].

Considering its endogenous expression in several species
[86,108,131–134], including zebrafish (Costa A. M. S. et al,
manuscript in preparation), we propose that GRG5/AES
orthologues act endogenously as negative regulators of Wnt
signaling during early patterning of the DV axis in the zebrafish
embryo. It would be interesting, for example, to analyze if there
is an upward gradient of TCF-GRG5/AES complexes along the
DV axis, that mirrors the reported downward TCF-β-catenin
gradient [88]. Also, given that some Tcf4 variants are
maternally and zygotically expressed during zebrafish
embryogenesis [104], similarly to what we found for zebrafish
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Grg5 (Costa A. M. S. et al, manuscript in preparation), it is
conceivable that specific Tcf4 isoforms may play a role in DV
patterning. In fact, in Xenopus it was demonstrated that
depletion of maternal XTcf4 resulted in reduction of chordin
expression and ventralized embryos consistent with loss of
organizer gene expression [135]. However, such roles for
TCF4 have been difficult to definitively establish, as no
phenotype was obvious in the available TCF4 mutants or
knockdowns studies in several species [17,19,136], perhaps
due to partial functional redundancy with other TCF-family
members. In this context, a Tcf4 zebrafish mutant lacking the
LVPQ domain, which we found to be specifically needed for
GRG5/AES-binding, could provide an invaluable tool to future
studies of the physiological role of TCF4-GRG5 interaction
during DV patterning and to gain further insight into how
individual TCF4 splice variants may be involved in this process.
An additional question is whether GRG5/AES plays an
important role in the intestinal physiology of vertebrates. Since
TCF4 is the most prominently expressed TCF/LEF family
member in the gut, our characterization of the TCF4-
GRG5/AES interaction may have important implications for
normal intestinal development and tumorigenesis.

Supporting Information

Figure S1.  All Grgs tested were highly expressed in
HEK293 cells.
HEK293 cells were transiently transfected with the Grg
expression plasmids indicated above the lines, and 25 μg of
total protein was loaded for Western-blot analysis, using either
anti-HA or anti-Myc antibodies. All transfections resulted in high
levels of expression for the corresponding proteins, but
quantitative comparisons are limited by the use of different
epitopes. The asterisk indicates a nonspecific band around 80
KDa, detected by the anti-HA antibody. Membranes were
reprobed with an antibody specific for α - tubulin, which served
as a loading control (lower blot).
(PDF)

Figure S2.  GRG5/AES has intrinsic repressive activity
when directly bound to DNA.
HEK293 cells were transfected with the 15UTSV-Luc reporter
alone or together with the indicated effector plasmids. 15UTSV-
Luc has high basal activity (resulting from the presence of an
SV40 promoter) and is Gal4 responsive (because it contains 15
UASG). Reporter activity repression by a Gal4-binding domain-
GRG5/AES fusion (G4BD.GRG5) is similar to that of its Gal4-
Grg1-L counterpart. An expression vector encoding only the
Gal4-binding domain (G4BD) was used as a negative control.
(PDF)

Figure S3.  Amino acid alignment of human TCF/LEF
family members.

Amino acid numbers for each protein are indicated on the right.
Black shading indicates identity, grey shading indicates similar
residues. The two highest regions of homology are the N-
terminal β-catenin binding domain (BD) (amino acids 1-53 of
TCF4) and the HMG-box (amino acids 318-409 of TCF4). The
GRG5/AES-interacting region in TCF4 mapped in this study
(red box) corresponds to a 111 amino-acid stretch in the most
variable region among TCFs (amino acids 130-240 of TCF4).
The previously described [49] GRG/TLE-binding domain in
TCF1 (amino acids 176-359 of TCF1) is delimited by asterisks
(*). Blue boxes highlight three specific domains: LVPQ (amino
acids 237-240 of TCF4) contained in the GRG5/AES-
interacting region of TCF4; FRHPY (amino acids 253-257 of
TCF4), not necessary for this interaction, and FPPHMV (amino
acids 270-275 amino acids in TCF4), corresponding to the
aligned region of a previously characterized domain involved in
Groucho-binding for LEF1 [69], but not necessary for TCF4-
GRG5/AES interaction. Sequences were aligned using the
Clustal W algorithm.
(PDF)

Figure S4.  GRG-binding regions in TCF/LEFs display high
proline content.
Alignment of the 111-amino acid (amino acids 130-240) human
TCF4 stretch to which we mapped GRG5/AES-binding to the
other TCF/LEF human protein sequences using the Clustal W
algorithm running on the Geneious v 5.3 program.
(PDF)
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