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Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination.

However, this endogenous repair response is suboptimal and may account for the persistently compromised function of surviving

axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal

columns, become associated with peripheral myelin. The molecular control, functional role and origin of these central remyelinating

Schwann cells is currently unknown. The growth factor neuregulin-1 (Nrg1, encoded by NRG1) is a key signalling factor controlling

myelination in the peripheral nervous system, via signalling through ErbB tyrosine kinase receptors. Here we examined whether Nrg1

is required for Schwann cell-mediated remyelination of central dorsal column axons and whether Nrg1 ablation influences the degree

of spontaneous remyelination and functional recovery following spinal cord injury. In contused adult mice with conditional ablation

of Nrg1, we found an absence of Schwann cells within the spinal cord and profound demyelination of dorsal column axons. There

was no compensatory increase in oligodendrocyte remyelination. Removal of peripheral input to the spinal cord and proliferation

studies demonstrated that the majority of remyelinating Schwann cells originated within the injured spinal cord. We also examined

the role of specific Nrg1 isoforms, using mutant mice in which only the immunoglobulin-containing isoforms of Nrg1 (types I and II)

were conditionally ablated, leaving the type III Nrg1 intact. We found that the immunoglobulin Nrg1 isoforms were dispensable for

Schwann cell-mediated remyelination of central axons after spinal cord injury. When functional effects were examined, both global

Nrg1 and immunoglobulin-specific Nrg1 mutants demonstrated reduced spontaneous locomotor recovery compared to injured con-

trols, although global Nrg1 mutants were more impaired in tests requiring co-ordination, balance and proprioception. Furthermore,

electrophysiological assessments revealed severely impaired axonal conduction in the dorsal columns of global Nrg1 mutants (where

Schwann cell-mediated remyelination is prevented), but not immunoglobulin-specific mutants (where Schwann cell-mediated remye-

lination remains intact), providing robust evidence that the profound demyelinating phenotype observed in the dorsal columns of

Nrg1 mutant mice is related to conduction failure. Our data provide novel mechanistic insight into endogenous regenerative processes

after spinal cord injury, demonstrating that Nrg1 signalling regulates central axon remyelination and functional repair and drives the

trans-differentiation of central precursor cells into peripheral nervous system-like Schwann cells that remyelinate spinal axons after

injury. Manipulation of the Nrg1 system could therefore be exploited to enhance spontaneous repair after spinal cord injury and

other central nervous system disorders with a demyelinating pathology.
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Introduction
Spinal cord injury comprises many pathological events and

leads to devastating deficits in bodily functions. Apart from

loss of motor function and paralysis, many patients also

suffer incontinence (Potter, 2006), chronic pain

(Ravenscroft et al., 2000) and psychiatric disorders

(Chevalier et al., 2009). The financial burden of spinal

cord injury is staggering, with healthcare costs among the

highest of any medical condition (Cannon, 2013) and im-

proving neurological outcome after spinal cord injury re-

mains a major clinical challenge (Dietz and Fouad, 2014;

Ramer et al., 2014).

The complex pathophysiology of spinal cord injury is

biphasic, comprising primary trauma followed by second-

ary injury progression. Initial tissue disruption, haemorrha-

ging and oxidative stress are followed by inflammation,

death of neurons and glia, axonal demyelination and de-

generation, extracellular matrix remodelling, glial scar for-

mation, and cavitation (Schwab and Bartholdi, 1996; Hagg

and Oudega, 2006; Fitch and Silver, 2008; Gaudet and

Popovich, 2014). Targeting any of these injury-induced re-

active changes, singularly or in combination, may contrib-

ute to improved neurological outcome after spinal cord

injury and lead to new therapeutic strategies (Oudega et

al., 2012; Ramer et al., 2014). Despite the severe neuro-

logical deficits, some degree of spontaneous, but incom-

plete, functional recovery is observed in almost all cases

(Fawcett et al., 2007). In terms of underlying biology, it

is apparent that a number of spontaneous regenerative

events occur after spinal cord injury, including neurogen-

esis, plasticity and remyelination of spinal axons (Beattie et

al., 1997; Raineteau and Schwab, 2001; Weidner and

Tuszynski, 2002; Hagg and Oudega, 2006). It is crucial

to better understand the cellular and molecular mechanisms

underlying these spontaneous repair events, which might

provide a route to enhance them directly and to design

combinations of effective therapeutic interventions.

Sparing of some subpial axon-containing spinal tissue

around the lesion core is a typical feature of traumatic

spinal cord injury (Crowe et al., 1997; Norenberg et al.,

2004; Guest et al., 2005). In the spared tissue, viable axons

are observed but these are unable to conduct under normal

physiological conditions (Koles and Rasminsky, 1972;

Nashmi and Fehlings, 2001; James et al., 2011). This

axonal impairment is associated with acute and profound

demyelination of spinal axons after traumatic contusion-

type spinal cord injuries (Bunge et al., 1960; James et al.,

2011; Plemel et al., 2014; Papastefanaki and Matsas,

2015), which are the most common form of spinal cord

injury suffered by humans (Norenberg et al., 2004).

Apoptotic loss of oligodendrocytes and gradual myelin deg-

radation are among the major events that follow primary

damage in rodents and humans (Crowe et al., 1997; Beattie

et al., 2002; Buss et al., 2005). Remyelination of demyeli-

nated axons within the injury penumbra is an important

regenerative process described in several animal models of

spinal cord injury (Bunge et al., 1961; McDonald and

Belegu, 2006; James et al., 2011; Plemel et al., 2014;

Papastefanaki and Matsas, 2015). However, this endogen-

ous repair is suboptimal and incomplete. Chronically

demyelinated axons have been reported in animal models

(Blight and Decrescito, 1986; Waxman, 1989; James et al.,

2011) and are observed up to a decade after human spinal

cord injury (Bunge et al., 1993; Guest et al., 2005). Myelin

integrity is essential for CNS physiology, allowing fine

tuning of motor skills and sensory integration, and there

is evidence that remyelination restores efficient signal con-

duction and functional outcome (Smith et al., 1979;

Duncan et al., 2009) and is crucial for axonal protection

and metabolic support (Franklin and Ffrench-Constant,

2008; Irvine and Blakemore, 2008). Strategies to prevent

demyelination at early stages and to accelerate and enhance

myelin repair at later stages are an important part of the

wide spectrum of promising therapies for spinal cord injury

(Plemel et al., 2014; Ramer et al., 2014; Papastefanaki and

Matsas, 2015).

An interesting phenomenon in the injured CNS is remye-

lination of central axons by Schwann cells, which are nor-

mally excluded from the CNS and represent the primary
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myelinating cells in the peripheral nervous system (PNS).

This unexplained intrinsic myelin repair is also observed in

the chronically injured human spinal cord, where demyeli-

nated axons become associated with peripheral myelin,

most noticeably in the dorsal columns (Bunge et al.,

1993; Guest et al., 2005). Evidence demonstrates that

Schwann cells that myelinate CNS axons produce func-

tional and stable myelin that has normal properties

(Blight and Young, 1989; Felts and Smith, 1992, 1996).

In addition, in the remyelinated axons the composition of

the nodes of Ranvier is normal (Black et al., 2006). Two

distinct mechanisms might account for the presence of ‘cen-

tral’ Schwann cells: peripheral Schwann cells might enter

the spinal cord as a result of injury to the transition zone

between PNS/CNS and/or they may be derived from CNS-

resident oligodendrocyte precursors by (trans)-differenti-

ation (Sims et al., 1998; Jasmin et al., 2000; Zawadzka

et al., 2010; Perlin et al., 2011). Independent of the cellular

mechanisms, molecular mechanisms that govern the

Schwann cell-mediated remyelination of injured spinal

axons are unknown. Understanding the molecular events

involved in this process is important and could be exploited

to enhance function of surviving axons, or improve func-

tion of regenerating axons, in the injured spinal cord and

thus improve functional recovery. Such mechanisms might

also promote repair in other CNS disorders that involve a

demyelinating pathology.

The growth factor neuregulin 1 (Nrg1, encoded by

NRG1), which signals via ErbB tyrosine kinase receptors,

is crucial for Schwann cell development and function in the

PNS. Nrg1 stimulates survival of precursors, migration of

Schwann cells, ensheathment, myelination and remyelina-

tion of peripheral axons (Birchmeier and Nave, 2008;

Fricker and Bennett, 2011; Stassart et al., 2013; Nave

and Werner, 2014). There are over 30 different Nrg1 iso-

forms, all of which possess an epidermal growth factor

(EGF)-like signalling domain essential for receptor binding

and biological activity. Isoforms differ in their functional

role and expression and can be classified according to the

structure of their N termini (Falls, 2003; Newbern and

Birchmeier, 2010). Isoforms containing an immunoglobulin

(Ig)-like domain (types I and II) can be either directly se-

creted or released as soluble proteins from the cell surface

after proteolytic cleavage. Isoforms possessing a cysteine-

rich domain (type III isoforms) have two transmembrane

domains and require proteolytic cleavage by BACE1 (b-site

APP-cleaving enzyme 1) for full activity. In vivo these iso-

forms are thought to be retained on the cell membrane and

signal in a juxtacrine manner (Hu et al., 2006; Willem et

al., 2006) although type III isoforms can undergo dual

cleavage by BACE1 and ADAM17 to release the EGF

domain, which signals in a paracrine fashion (Fleck et al.,

2013). We hypothesized that Nrg1 may be a key regulatory

factor for spontaneous remyelination of injured axons in

the CNS by Schwann cells. Nrg1 is also known to modu-

late oligodendrocyte function (Brinkmann et al., 2008;

Taveggia et al., 2008; Makinodan et al., 2012;

Lundgaard et al., 2013) and neural precursor cells in the

spinal cord have been shown to be responsive to Nrg1, as

exogenous Nrg1 promotes oligodendrocyte production and

repair (Zhang et al., 2011; Gauthier et al., 2013). To de-

termine the mechanisms controlling remyelination of CNS

axons by Schwann cells after spinal cord injury and to

avoid confounds of the developmental functions, we intro-

duced Nrg1 mutation in adult mice using a tamoxifen in-

ducible Cre (Meyer and Birchmeier, 1995; Fricker et al.,

2013). To determine the importance of Nrg1 in repair,

we used a clinically relevant spinal cord contusion injury

model (James et al., 2011), and compared myelination in

the injured spinal cord and functional outcome in the pres-

ence and absence of Nrg1. To determine the importance of

specific Nrg1 isoforms in Schwann cell-mediated remyelina-

tion after traumatic spinal cord injury, we also examined

this regenerative process after ablating Ig-containing iso-

forms of Nrg1 (IgNrg1) only, which leaves the type III

Nrg1 intact.

We demonstrate that Nrg1 is essential for remyelination

of dorsal column axons by PNS-like Schwann cells and that

an absence of Nrg1 elicits a profound and persistent

demyelinating phenotype and axonal conduction failure

after spinal cord injury. IgNrg1 isoforms are dispensable

for this process, implicating type III Nrg1 as the key iso-

form mediating this process. We also provide evidence that

the majority of centrally remyelinating Schwann cells derive

from newly generated precursor cells within the spinal

cord. Interference with Nrg1 signalling also significantly

impacts the degree of spontaneous locomotor recovery

after contusive spinal cord injury. These data reveal that

Nrg1 signalling mediates an endogenous regenerative event

in which Schwann cells remyelinate denuded central axons

after traumatic spinal cord injury and that Nrg1 is an im-

portant mediator of spontaneous functional repair after

spinal cord injury.

Materials and methods

Animals

All animal work carried out conformed to UK Home Office
legislation (Scientific Procedures Act 1986). CAG-Cre-ERTM;
Nrg1fl/fl mice, and CAG-Cre-ERTM; IgNrg1fl/fl were bred by
crossing Nrg1fl/fl mice and IgNrg1fl/fl with CAG-Cre-ERTM

mice [JAX(r) mice 004682], respectively; as described previ-
ously (Cheret et al., 2013; Fricker et al., 2013). The generation
and genotyping of mutant mice with floxed alleles of Nrg1
(Nrg1fl/fl) mice has previously been described (Yang et al.,
2001; Brinkmann et al., 2008; Fricker et al., 2013). These
mice are null for �-isoforms of Nrg1 in the absence of Cre
recombination as they carry a premature stop codon in exon
7, which encodes the �-EGF domain (Li et al., 2002). The loxP
sites flank exons 7–9, and exon 8 encodes the b-EGF domain.
Cre recombination therefore results in ablation of all remain-
ing b isoforms. CAG-Cre-ERTM construct detection and ex-
pression evaluation is described previously (Fricker et al.,
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2013). The generation and genotyping of IgNrg1fl/fl has been
described previously (Cheret et al., 2013); briefly, mutant al-
leles have the exon 4 flanked by loxP sites, exons 3 and 4 of
Nrg1 encode the Ig-like domain, mutations specifically inter-
fere with the production of IgNrg1 forms (i.e. Nrg1 type I and
Nrg1 type II), but not CRD-Nrg1 transcripts. In CAG-Cre-
ERTM mice, a tamoxifen inducible form of Cre recombinase
is expressed ubiquitously driven by a chimeric promoter con-
structed from a cytomegalovirus intermediate-early enhancer
and a chicken b actin promoter/enhancer (Hayashi and
McMahon, 2002). Conditional Nrg1 (conNrg1 mutant) and
conIgNrg1 mice were generated by administering tamoxifen
(Sigma T5648, 0.25 mg/g body weight in corn oil) by oral
gavage for five consecutive days to 10-week-old CAG-Cre-
ERTM; Nrg1fl/fl and CAG-Cre-ERTM; IgNrg1fl/fl mice respect-
ively. Tamoxifen was administered 4 weeks prior to surgery.
We have previously assessed Nrg1 expression in conNrg1
mutant within spinal cord at 4 weeks following this treatment
regimen: conNrg1 demonstrate a 83% reduction in the expres-
sion of the bEGF domain of Nrg1 (which is critical for biolo-
gical activity of all isoforms) relative to control (Fricker et al.,
2013) and on assessment of the most abundant Nrg1 type III
isoform protein there was a significant reduction in both the
full length and the cleaved C-terminal fragment. For experi-
ments with CAG-Cre-ERTM; Nrg1fl/fl two types of control ani-
mals were used for comparison: vehicle controls, which were
CAG-Cre-ERTM; Nrg1fl/fl littermates treated with corn oil
alone or tamoxifen control, which were tamoxifen treated
Nrg1fl/fl littermates. For experiments with CAG-Cre-ERTM;
IgNrg1fl/fl mice we used tamoxifen control littermates.
Wherever possible, we included equal numbers of animals of
each gender in each experimental group.

Spinal contusion injury

Mice

Mice were anaesthetized with isoflurane, their backs were
shaved and cleansed, and core temperature was maintained
close to 37 �C using a self-regulating heated blanket. Single
doses of 0.05 mg/kg buprenorphine and 5 mg/kg carprofen
were administered subcutaneously at the time of induction
and the morning after surgery. Animals underwent midthor-
acic laminectomy and received a moderate midline 50 kdyne
spinal contusion injury through the intact dura at spinal level
T10/11 using an Infinite Horizon’s impactor (Precision Systems
Instrumentation). Overlying muscle and skin were sutured in
layers, subcutaneous saline was administered, and animals
were left to recover from anaesthesia in a 37 �C incubator.
Saline and enrofloxacin (5 mg/kg) were given subcutaneously
daily for 3 and 7 days, respectively, after injury. Bladders were
manually expressed three to four times daily during the first 2
to 3 days after surgery and twice daily thereafter until the end
of the study period.

Rats

Adult female Sprague Dawley rats (150–200 g; Harlan
Laboratories) were used, housed under a 12-h light/dark
cycle with ad libitum access to food and water. Animals
were anaesthetized using a mixture of ketamine (60 mg/kg)
and medetomidine 0.25 mg/kg, administered intraperitoneally.
Following midthoracic laminectomy to expose the spinal cord

leaving the dura intact, animals received a moderate midline
150 kdyne spinal contusion injury at spinal level T10/11 using
an Infinite Horizon’s impactor (Precision Systems
Instrumentation) (James et al., 2011). Postoperative care was
performed as above with the exception that bladders were
manually expressed twice daily until reflexive emptying re-
turned (typically 6 to 9 days after injury).

Spinal contusion injury with dorsal
root removal

Adult female Sprague Dawley rats (150–200 g; Harlan
Laboratories) were used and contusion surgeries and post-
operative care were performed as described above. One
cohort of animals received moderate 150 kdyne T10/T11 con-
tusions (n = 6) only. A second cohort of animals received mod-
erate 150 kdyne T10/T11 contusions followed by bilateral
dorsal root removal at thoracic levels T9 to T11/T12 (n = 8).
To ascertain complete removal, roots were post-fixed overnight
in 4% paraformaldehyde in 0.1 M phosphate buffer and
whole mounts were prepared for immunostaining for glial fi-
brillary acidic protein (GFAP) to label reactive astrocytes in the
region of the dorsal root entry zone (rabbit polyclonal anti-
GFAP, 1:2000, DakoCytomation). This experiment was car-
ried out in rats due to the complexity of the surgery and
low survival rate of mice (mainly caused by blood loss follow-
ing lateral bone removal that is necessary to sufficiently expose
roots). However, electron microscopy data and immunohisto-
chemistry confirmed that the pattern and time course of
Schwann cell-mediated remyelination is the same in mice and
rats (James et al., 2011; and see Figs 2 and 5).

Behavioural assessments

Basso Mouse Scale

The Basso Mouse Scale (BMS) (Basso et al., 2006) was used to
assess open field hindlimb locomotor function (n = 7–9 per
group). This involved placing the animal in a circular open
field (diameter �1 m) and assessing both hindlimbs during
locomotion (over a 4-min session). Scores were calculated ac-
cording to the 10 point (0–9) BMS scale. For further detailed
assessments of differences between conNrg1 and conIgNrg1
null mice in additional cohorts of animals, mice were assessed
with the 12 point (0–11) BMS subscore scale, which further
delineates recovery of specific locomotor features that may not
be apparent in the overall BMS score (such as quantifying
improvements in the areas of stepping frequency, coordination,
paw position, trunk stability, and tail position). Testing was
performed by two experimenters blinded to the treatment
groups on Days 2, 5 and 7 after injury and once weekly there-
after for 8 weeks, followed by sacrificing animals for immu-
nohistochemical and ultrastructural analysis. All BMS
behavioural data are presented as mean � standard error of
the mean (SEM) values and statistical significance was ac-
cepted with P50.05 using two-way ANOVA with
Bonferroni post hoc tests (BMS score) or one-way ANOVA
with Tukey’s post hoc tests (BMS subscore).

Inclined beam-walking test

For further detailed assessments of differences between
conNrg1 and conIgNrg1 null mice, animals were also assessed
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on the inclined beam walking test. Beam-walking apparatus
consisted of an inclined beam (100 cm) fixed to a black ‘goal
box’. The horizontal inclined beam consisted of a flat surface
that gradually narrowed (1.5 cm at the widest; 0.5 cm at the
narrowest) and a small ledge underneath on either side.
Animals were trained for seven consecutive days before base-
line readings were obtained. Left and right hind limb scores
were calculated based on number of weight supported steps
taken on the beam as well as lower scores for steps taken on
the small ledges. The beam was divided into quarters; one
point was scored for a weight supported step on the beam
in the first broadest division. This score was doubled, tripled
or quadrupled in the second, third and fourth sections of the
beam due to the increased difficulty of the tapered beam. In all
sections one point was scored for a step taken on the small
ledges. Data (n = 6–9 per group) are presented as mean � SEM
values and statistical significance was accepted with P50.05
using one-way ANOVA with Tukey’s post hoc tests.

Electrophysiology

To carry out electrophysiological assessment of dorsal column
function, mice were deeply anaesthetized with urethane
[0.1 ml/10 g of 12.5% solution administered intraperitoneally
(i.p.)] and depth of anaesthesia was regularly assessed by
monitoring withdrawal reflexes and respiratory rate. Core tem-
perature was maintained close to 37 �C using a self-regulating
heating pad. A laminectomy was performed to expose spinal
tissue from 5 mm rostral to 5 mm caudal of the contusion
injury site. The sural nerve of the left hindlimb was exposed
and freed from connective tissue, and all nervous tissue was
covered with mineral oil. Silver ball stimulating electrodes were
then placed at 5 mm rostral and 5 mm caudal of the injury site
and a pair of silver wire recording electrodes was hooked
underneath the sural nerve with a separation of �3 mm be-
tween the wires. To assess the extent of sensory conduction
through the spinal contusion injury site, recordings were made
from the sural nerve (an almost exclusively sensory nerve)
while first stimulating the spinal cord caudal to the lesion
and then repeating this procedure whilst stimulating rostral
to the lesion site. Stimulation was delivered in 250 ms square
wave pulses at a frequency of 0.5 Hz and at a supramaximal
intensity (typically 600–800 mA). Amplitude analysis was car-
ried out on traces averaged from 16 recordings taken follow-
ing stimulation at each site (rostral or caudal to lesion). The
peak-to-peak amplitude of the averaged potential recorded
whilst stimulating rostral to the lesion site was then calculated
as a percentage of the averaged potential recorded whilst sti-
mulating caudal to the lesion, thus estimating the percentage of
sensory fibres in the sural nerve projecting beyond the injury
site that remain capable of conduction. Although the stimula-
tion technique used here is likely to have activated more than
just the fibres of the dorsal columns, the sural nerve is almost
exclusively composed of sensory fibres and therefore only the
activity of long distance afferent fibres will be recorded using
this protocol. All recordings were made using a PowerLab unit
(AD Instruments) and amplitude analysis was carried out using
LabChart 8 software (AD Instruments). Data (n = 5–6 per
group) are presented as mean � SEM values and statistical sig-
nificance was accepted with P50.05 using one-way ANOVA
with Tukey’s post hoc test.

Tissue preparation and
immunohistochemistry

Animals were deeply anaesthetized with sodium pentobarbital
(Euthatal: 80 mg/kg, i.p) and transcardially perfused with
phosphate-buffered saline (PBS) (containing heparin) followed
by 4% paraformaldehyde in 0.1 M phosphate buffer contain-
ing 1.5% picric acid. Immediately after perfusion, lesion site
tissue was dissected (�10 mm with the lesion epicentre located
centrally). Tissue was post-fixed overnight at 4 �C, cryopro-
tected in 20% sucrose for 48–72 h, then embedded and
frozen in O.C.T. before being cut into serial transverse (20
mm) sections. Sections were immunostained using the following
primary antibodies: rabbit polyclonal anti-glial fibrillary acidic
protein (GFAP) to label reactive astrocytes (1:2000,
DakoCytomation), chicken polyclonal anti-protein zero (P0)
to label Schwann cell-associated myelin (1:500, Abcam),
chicken polyclonal anti-proteolipid protein (PLP) to label
oligodendrocyte-associated myelin (1:200, Millipore), rabbit
polyclonal anti-neurofilament 200 (NF200) to label axons
(1:200, Sigma), rabbit polyclonal anti-laminin to visualize
Schwann cell basal lamina (1:1000, Dako), and rabbit poly-
clonal anti-Olig2, a marker for oligodendrocytes (1:500,
Millipore). Complementary secondary antibodies were goat
anti-chicken biotin (1:400, Abcam), ExtrAvidin FITC conju-
gate (1:500, Sigma), goat anti-chicken Alexa 488 (1:1000,
Invitrogen), goat anti-rabbit Alexa 568 (1:1000, Invitrogen)
and goat anti-rabbit Alexa 488 (1:1000, Invitrogen). Briefly,
after blocking with 10% goat serum in PBS containing 0.2%
TritonTM X-100 (PBST) for 1 h at room temperature, the sec-
tions were incubated in PBST containing primary antibodies
overnight at room temperature. After four washes of 5 min
with PBS, sections were incubated in PBST containing comple-
mentary secondary antibodies for 4 h at room temperature.
After four washes of 5 min in PBS, sections were coverslipped
with Vectashield mounting medium (Vector Laboratories).
Images were acquired using Nikon A1R Si Confocal Imaging
system on an Eclipse Ti-E inverted microscope.

For haematoxylin and eosin staining, spinal sections were
rinsed in tap water, stained with haemalum for 5 min and
then rinsed in running tap water until clear. Slides were then
dipped five times into 0.5% hydrochloric acid in 70% IMS
(acid-alcohol) and quickly returned to running tap water for
1 min, placed in eosin for 5 min, returned to tap water, dehy-
drated and mounted using DPX. Using this technique, nuclei
and any basophilic components are labelled blue, while com-
ponents such as cytoplasm and collagen are labelled as shades
of pink-orange.

Labelling of cellular DNA with EdU
and EdU staining

Wild-type mice (n = 3) received spinal contusion injuries, as
above, followed by administration of 5-ethynyl-2’-deoxyuri-
dine (EdU, Invitrogen) (Salic and Mitchison, 2008; Zeng et
al., 2010), administered by intraperitoneal injection (200 mg
per injection) for 10 consecutive days beginning at 24 h post-
injury. Control uninjured mice (n = 3) received the equivalent
EdU dosing paradigm. At 4 weeks post-injury mice were
deeply anaesthetized with sodium pentobarbital (Euthatal:
80 mg/kg, i.p) and transcardially perfused with PBS (containing
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heparin) followed by 4% paraformaldehyde in 0.1 M phos-
phate buffer, and spinal cords were harvested and prepared for
immunohistochemistry. Tissue was post-fixed with 4% paraf-
ormaldehyde in 0.1 M PBS for 3 h at 4 �C, cryoprotected for
24 h at 4 �C in 30% sucrose in PBS prior to embedding and
sectioned at 30-mm thickness. EdU staining was conducted
using the Click-iTTM EdU imaging kit (Invitrogen) according
to the manufacturer’s protocol but adapted for immunohisto-
chemical double-staining of spinal cord tissue. Slides contain-
ing mounted frozen spinal cord sections were allowed to thaw,
and then rehydrated with PBS. After rehydration with PBS the
sections were incubated in 10% normal donkey serum perme-
abilization/blocking buffer made in PBS containing 0.3%
TritonTM X-100 for 15 min. This was followed by one PBS
rinse and incubation with EdU detection solution (Invitrogen)
for 1 h at room temperature. Slides were then washed three
times with PBS before incubation with permeabilization/block-
ing buffer overnight at room temperature. Subsequently, pri-
mary antibodies made in PBST to label either P0 or PLP were
incubated overnight for �24 h at room temperature. After four
washes of 5 min with PBS, sections were incubated in PBST
containing complementary secondary antibodies for 4 h at
room temperature. After four washes of 5 min in PBS, sections
were coverslipped with Vectashield mounting medium (Vector
Laboratories). Images were acquired using Nikon A1R Si
Confocal Imaging system on an Eclipse Ti-E inverted
microscope.

Immunohistochemistry image
analysis

Quantification of P0 and PLP in mouse spinal cords (n = 4–5
per group) was carried out by measuring the immunopositive
areas in the dorsal column (AxioVision LE software), which
were then expressed as % of total dorsal column area. Total
dorsal column area was measured by taking the mean area of
intact dorsal column, measured rostral and caudal to the lesion
site. Quantification of P0 in the lesion epicentre in rat spinal
cords with or without multiple dorsal root removal (n = 4–5
per group) was carried out by measuring the immunopositive
P0 cluster in the dorsal column, which was then expressed as
per cent of total dorsal column area as above. Quantification
of Olig2 (n = 3 per group) was carried out by unbiased particle
counts following background subtraction (ImageJ software).
Images were acquired sequentially, using the same exposure
parameters. All anatomical quantification was carried out by
an experimenter blinded to the treatment group and data are
expressed as mean � SEM values, using one-way ANOVA
with Tukey’s post hoc tests.

Electron microscopy

Animals were terminally anaesthetized using sodium pentobar-
bital (Euthatal; 80 mg/kg, i.p.) and transcardially perfused with
0.9% saline followed by 3% glutaraldehyde and 4% parafor-
maldehyde in 0.1 M phosphate buffer, a section of thoracic
spinal cord was removed (�10 mm) with the lesion epicentre
located centrally. Two to three millimetre sections were taken
from the lesion epicentre and from the rostral and caudal
lesion borders and postfixed in the same fixative buffer (3%
glutaraldehyde and 4% paraformaldehyde in 0.1 M phosphate

buffer) for a minimum of 48 h at 4 �C and processed as pre-
viously described (James et al., 2011; Fricker et al., 2013).
Semithin and ultrathin sections were cut and stained by the
Centre for Ultrastructural Imaging (King’s College London,
London, UK). Ultrathin sections were mounted on unsup-
ported gilded copper grids (150-square mesh) from TAAB
and were visualized on a Hitachi H7600 transmission electron
microscope. For analysis, photomicrographs of the region con-
taining the ascending dorsal column projection from each
animal were taken at �8000 magnification, the area of
which totalled at least 50% of the total area of the cross-sec-
tion of the dorsal column. Full montages of grid squares were
taken (�100 pictures per mesh) and randomly chosen images
from a given grid square were analysed. The total number of
axons, total number of myelinated axons, Schwann cell-mye-
linated axons, and oligodendrocyte-myelinated axons (using
the criteria described in Supplementary Fig. 5) were counted
from these montages of grid squares and normalized to the
dorsal column area. To calculate G-ratios, axon diameters
and non-myelinated axons with a diameter41 mm from �30
individual pictures at �8000 magnification were randomly
chosen per animal; analysis was performed on all of the
axons within each picture and axon diameter and G-ratio
(axon diameter/fibre diameter) were calculated using
AxioVision LE Rel. 4.2 Software. At least 750 axons were
measured per animal. The examiner was blind to the genotype.
The one-way ANOVA using the Tukey post hoc test was used
for comparison of more than two groups. Cumulative frequen-
cies were compared statistically using the Kolmogorov-
Smirnov test.

Fluorescence in situ hybridization and
immunohistochemistry

Uninjured (n = 3) and injured (4 weeks post-injury; n = 3) wild-
type mice were deeply anaesthetized with sodium pentobarbital
(Euthatal: 80 mg/kg, i.p) and transcardially perfused with
DPEC-treated sterile PBS followed by 4% paraformaldehyde
in 0.1 M phosphate buffer, and spinal cords were harvested
and prepared for immunohistochemistry. Tissue was post-fixed
with 4% paraformaldehyde in 0.1 M PBS for 3 h at 4 �C,
cryoprotected for 24 h at 4 �C in 30% sucrose in diethyl pyr-
ocarbonate-treated PBS prior to embedding and sectioned at
30-mm thickness. Pan-Nrg1 in situ probes (Meyer et al., 1997)
were transcribed in vitro and labelled with digoxygenin (DIG)
according to manufacturer’s instructions (Roche). Following
overnight hybridization at 65 �C, sections were incubated
with anti-DIG antibodies (Roche) and developed as previously
described (Hopman et al., 1998). To examine Nrg1 expression
in different cell types, slides were then co-stained for P0, Olig2
and NeuN immunohistochemically, as described above.

Extraction of fresh tissue

Spinal cord (lesion epicentre) and L4 and 5 DRGs were ex-
tracted from animals at 1 and 4 weeks after injury, snap frozen
on liquid nitrogen and stored at�80 �C. The same tissue from
naı̈ve animals was used as control. Tissue samples were then
homogenized and total RNA obtained using a ‘hybrid’ method
of phenol extraction (TriPure, Roche) and column purification
(High Pure RNA tissue Kit, Roche) according to
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manufacturer’s protocols. All samples were DNase treated to
prevent genomic contamination. RNA was subsequently
synthesized into cDNA using Transcriptor Reverse
Transcriptase (Roche) following the manufacturer’s protocol.

Quantitative polymerase chain
reaction

Quantitative PCR (qPCR) was performed using the LC 480
system. All primers used, shown in Supplementary Table 1,
had an efficiency of 100 � 10% and were designed using
primer blast unless stated otherwise. Gene expression levels
were measured using the ��CT method and normalized
against the reference genes Gadph and Hprt1. The relative
mRNA expression is shown as the amount of transcript in
injured samples versus naive controls. The one-way ANOVA
using the Tukey’s post hoc test was used for comparison of
more than two groups. When the values are not normally
distributed the one-way ANOVA on ranks post hoc Dunn’s
method was used.

Results

Ablation of Nrg1 prevents
spontaneous remyelination of axons
in the injured spinal cord

The molecular control of Schwann cell-mediated axonal

remyelination in the injured CNS is unknown. We asked

whether Nrg1 is required for Schwann cell-mediated remye-

lination of dorsal column axons after spinal contusion

injury, and whether Nrg1 ablation influences the degree

and nature of remyelination. We first confirmed that

there were no differences in the expression of global astro-

cyte and axonal markers (GFAP and NF200, respectively)

or in peripheral and central myelin expression (P0 and PLP,

respectively) in uninjured control mice and mice with con-

ditional Nrg1 mutations (hereafter called conNrg1 mice)

(Supplementary Fig. 1). Immunoreactivity for P0 identifies

Schwann cell-derived peripheral myelin and is normally

only expressed in the PNS. As expected, P0 was detected

in the peripheral dorsal and ventral roots but was absent

from the spinal cord of all uninjured animals

(Supplementary Fig. 1A and C). However, 10 weeks after

contusive spinal cord injury, P0 was present in the dorsal

columns of the injured spinal cord in both vehicle- and

tamoxifen-treated control animals. P0 was most abundant

at the lesion epicentre, where �60% of the dorsal column

area expressed Schwann cell-associated myelin (Fig. 1A, B,

D and Supplementary Fig. 2). Strikingly, there was no P0

immunoreactivity within the injured spinal cord of

conNrg1 mice. Thus, when all Nrg1 isoforms are ablated,

Schwann cell-associated myelin in the spinal dorsal col-

umns is completely absent after injury (Fig. 1C, D and

Supplementary Fig. 2). Interestingly, the presence of

Schwann cell myelin within the spinal cord after injury

was only observed in the dorsal column region of the

spinal cord and not in other white matter tracts or in the

cellular and matrix filled lesion core (Supplementary Figs 2

and 3).

To determine whether abrogation of Schwann cell-

mediated remyelination may trigger compensatory remyeli-

nation by oligodendrocytes, we examined the expression of

PLP, the major protein of oligodendrocyte-derived myelin

which is expressed exclusively in the CNS and absent from

peripheral tissues (Supplementary Fig. 1B and D). PLP

immunohistochemistry revealed that the absence of

Schwann cell-mediated remyelination in conNrg1 mutants

did not evoke compensatory myelination by oligodendro-

cytes, with a similar pattern of PLP expression observed at

10 weeks after spinal cord injury in conNrg1, vehicle- or

tamoxifen-treated control animals (Supplementary Fig. 4).

In particular, abundant PLP staining was observed in white

matter tracts of the spinal cord throughout the rostrocaudal

axis which was dramatically reduced in the dorsal columns

at the injury epicentre (Supplementary Fig. 4D). Double

labelling revealed that areas normally associated with abun-

dant P0 immunoreactivity in control injured animals (Fig.

1A’ and B’) were positive for the axonal marker NF200 but

devoid of central myelin (Supplementary Fig. 4A’ and B’),

while in conNrg1 injured animals these areas remained

negative for both Schwann cell-derived (P0, Fig. 1C’) and

oligodendrocyte-derived (PLP, Supplementary Fig. 4C’)

myelin. To confirm that there was no change in the

number of oligodendrocytes, we also assessed the expres-

sion of the transcription factor Olig2, which is an essential

regulator of oligodendrocyte development. Consistent with

unchanged distribution of PLP, no differences in Olig2 ex-

pression were observed between control and conNrg1 mice

at 4 weeks after injury (Supplementary Fig. 5A–C). At this

stage, remyelination by PNS-like Schwann cells is normally

evident (James et al., 2011; Fig. 5C and F). The profound

interference with Schwann cell-mediated remyelination of

dorsal column axons suggests that Nrg1 is a key regulator

of spontaneous myelin repair.

Ultrastructural analysis reveals
profound demyelination in the injured
spinal cord after Nrg1 ablation

We used electron microscopy to analyse at the ultrastruc-

tural level myelination in the dorsal columns of injured

control and conNrg1 mice. We observed a dramatic reduc-

tion in the number of myelinated axons in the dorsal

column in conNrg1 mice at 10 weeks post injury compared

to control mice (Fig. 2A–C and D) and a corresponding

increase in the percentage of large diameter axons (diam-

eter41 mm) that were unmyelinated (Fig. 2A–C and E).

There was no difference in axon diameter between groups

(Fig. 2H), excluding the possibility of exacerbated axonal

swelling in mice lacking Nrg1. We also assessed the effects

of Nrg1 ablation on remyelination by Schwann cells versus
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oligodendrocytes in the dorsal columns using standard

morphological criteria to differentiate these cell types

(Felts and Smith, 1996; Woodruff and Franklin, 1999)

(Supplementary Fig. 6). Only a negligible number of

axons were remyelinated by Schwann cells in the dorsal

column of conNrg1 mutant animals (Fig. 2A–C and F).

The few remyelinated axons in injured conNrg1 mice

were predominantly remyelinated by oligodendrocytes,

but a compensatory increase in oligodendrocyte remyelina-

tion was not observed (Fig. 2C and I). Furthermore, those

axons that were remyelinated by oligodendrocytes in

conNrg1 mutant animals had significantly thinner myelin

sheaths, quantitatively measured by an increased G-ratio

(Fig. 2A–C and G). These changes were consistently

Figure 1 Ablation of Nrg1 prevents remyelination of spinal axons by Schwann cells after spinal cord injury. (A–C) Co-staining of

astrocytes (GFAP, red) and Schwann cell-associated myelin (P0, green) in serial sections of the spinal cord that span the rostrocaudal axis of the

injury in vehicle control (Vh control, A), tamoxifen control (Tx control, B) and Nrg1-ablated (conNrg1, C) contused mouse spinal cords at 10

weeks post-injury. In all animals, the peripheral myelin protein P0 is apparent outside the spinal cord, in the peripheral dorsal and ventral roots, as

expected. However, 10 weeks after contusion injury, Schwann cell-associated myelin (P0) is also observed in the spinal dorsal columns of control

animals, being particularly abundant in the epicentre of the lesion (A and B). Strikingly, P0 is absent in the spinal dorsal columns of injured mice

lacking Nrg1 (conNrg1; C). (A’–C’) High magnification of boxed areas indicated in A–C. (D) Quantification of P0-positive area in the dorsal

columns assessed in sections that span the rostrocaudal axis of the injury site reveals undetectable levels of P0 in conNrg1 mice, compared to

control groups. Data are presented as mean � SEM. (��P5 0.007, two-way ANOVA, post hoc Bonferroni n = 4–5 animals/group). Scale

bars = 250 mm (C); 50 mm (C’). Images not using the red/green colour scheme are available in the Supplementary material.
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observed between different animals, demonstrating that this

striking demyelination phenotype is caused by the lack of

Nrg1. Total axon counts did not differ between groups

indicating that disruption of Nrg1 signalling had no effect

on axonal survival at 10 weeks after spinal contusion

injury (Fig. 2J).

To verify that remyelinating cells in the injured spinal

cord were indeed ‘classic’ peripheral Schwann cells rather

than type IV oligodendrocytes (which resemble peripheral

Schwann cells but lack a basal lamina; Butt et al., 1995;

Butt and Berry, 2000), we assessed the presence of laminin,

a key component of Schwann cell basal laminae. We

observed prominent ring-like laminin-positive structures in

close association with P0-positive myelin rings, indicating

the presence of basal lamina around remyelinating PNS-like

Schwann cells in the dorsal column of injured control ani-

mals (Fig. 3A–C). Strikingly, the complete absence of P0-

positive myelin rings in the dorsal column of conNrg1 mice

(Fig. 3D) was accompanied by an absence of laminin-posi-

tive rings (Fig. 3E), with only diffuse and disorganized lam-

inin apparent in this region (Fig. 3D–F), which likely

derives from other laminin-producing, but not remyelinat-

ing, cells.

Taken together, our detailed ultrastructural analysis con-

firms that Nrg1 is absolutely required for remyelination of

dorsal column axons by PNS-like Schwann cells.

Furthermore, these data imply that Nrg1 determines not

only the myelinating potential of these cells, but also their

occurrence in the injured spinal cord. Both electron micros-

copy data and immunohistochemistry support the conclu-

sion that the appearance of ‘classic’ PNS-like Schwann cells

in the injured spinal cord and the efficient remyelination of

central axons occurs only in the presence of Nrg1.

Nrg1 expression in normal and
injured spinal cord

To determine the expression pattern of Nrg1 before and

after injury and the possible cellular source of neuregulin,

we performed fluorescence in situ hybridization for Nrg1

using a pan-Nrg1 probe combined with double immunohis-

tochemistry for P0 and NeuN or Olig2 and NeuN (Fig. 4)

in uninjured wild-type mice (Fig. 4A–D) and contused wild-

type mice at 4 weeks post-injury (Fig. 4E–H). As predicted

from the literature (Corfas et al., 1995; Meyer et al., 1997),

the majority of Nrg1 expression in uninjured spinal cords

was neuronal, with high co-localization of Nrg1 in the

cytoplasm of numerous NeuN-positive spinal neurons

(Fig. 4A and B). Nrg1 was also apparent, although less

abundant, in spinal cord white matter; this was not co-

localized with P0, either in uninjured spinal cord where

P0 was restricted to the peripheral dorsal roots (Fig. 4A

and C), or injured spinal cord where P0 was also apparent

in the spinal cord dorsal column (Fig. 4E and G). There

was also little co-localization of Nrg1 with Olig 2 in the

uninjured (Fig. 4B and D) or injured (Fig. 4F and H) spinal

cord. Nrg1 is therefore unlikely to be having autocrine ac-

tions in Schwann cells or oligodendrocytes within the spinal

cord. The majority of Nrg1 influencing Schwann cell

remyelination is likely to be derived either from spinal neu-

rons or axons projecting through the dorsal column: large

diameter myelinated sensory neurons are known to express

Nrg1 (particularly type III Nrg1) at a high level in adult-

hood (Bermingham-McDonogh et al., 1997; Fricker et al.,

2009).

We also assessed mRNA expression of different Nrg1

isoforms and ErbB receptors, to determine whether spinal

contusion injury alters the expression of components of the

Nrg1-ErbB signalling pathway (Supplementary Fig. 7 and

Supplementary Table 1), and determined how this correl-

ates with remyelination after spinal cord injury. In particu-

lar, we assessed expression of Nrg1 isoforms types I and II

(containing Ig-like domains) and type III (containing a cyst-

eine-rich domain). Nrg1 type I expression within the spinal

cord progressively increased at Weeks 1 and 4 post-injury

(Supplementary Fig. 7A). In contrast, Nrg1 type II and type

III expression had significantly decreased at 1 week post-

injury, and recovered to �50% of the naı̈ve levels 4 weeks

post-injury (Supplementary Fig. 7A). These changes in

Nrg1 isoform expression after injury were restricted to

the spinal cord and not observed in peripheral dorsal

root ganglia, where Nrg1 types I and II were unchanged

and type III showed only a small transient decrease

(Supplementary Fig. 8). Typically, Nrg1 exerts its effects

via interaction with ErbB tyrosine kinase receptors

(Birchmeier and Nave, 2008; Mei and Nave, 2014).

Expression of ErbB3 and ErbB4 in the spinal cord followed

a similar pattern to that of Nrg1 types II and III, and was

significantly reduced at 1 week post-injury, with a subse-

quent partial recovery (Supplementary Fig. 7B). ErbB2 ex-

pression was increased at 4 weeks post-injury

(Supplementary Fig. 7B). Thus, changes in expression of

Nrg1 signalling components after injury appear to be

consistent with the timing of Schwann cell-mediated remye-

lination in the spinal cord. Thus, when P0-positive

Schwann cell-derived myelin is abundant in the dorsal

columns (at 4 weeks, but not 1 week, post-injury;

Fig. 5A–F) the expression of type III Nrg1 and ErbB3/4

has recovered and the expression of type I Nrg1 and

erbB2 has increased.

The majority of Schwann cells that
remyelinate injured spinal axons have
a CNS origin

The origin of remyelinating Schwann cells in CNS patholo-

gies has been debated. To investigate the origin of the remye-

linating Schwann cells after spinal cord injury, we removed

peripheral input into the spinal cord with bilateral removal

of multiple dorsal roots directly adjacent and feeding into

the injury site. We used rats, rather than mice for these

studies, due to the complexity of the surgery, after first
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determining that the time course of Schwann cell-mediated

remyelination in the dorsal columns was the same in both

species (Fig. 5A–F and James et al., 2011). Efficient removal

of the entire dorsal root and dorsal root entry zone was

confirmed by the presence of a GFAP-positive astrocytic

‘cap’ on the avulsed root (Fig. 5H’’). No matter whether

the roots were intact or removed, Schwann cell-derived

myelin was apparent in the injured dorsal columns (Fig.

Figure 2 Ultrastructural analysis of Schwann cell-mediated remyelination of spinal axons after injury and its dependence on Nrg1

signalling. (A–C) Electron micrographs of transverse sections of the dorsal column 10 weeks after spinal contusion injury in vehicle control (Vh control;

A), tamoxifen control (Tx control; B) and conditional Nrg1 mutant (conNrg1; C) mice. In control animals, axons are undergoing remyelination and

Schwann cells (white asterisk) can be seen to mediate remyelination; Schwann cells and their myelin are identified by the signet ring-like appearance of

Schwann cell myelin, thicker and more compact myelin, and basal laminae around the Schwann cells. In conNrg1 mutant animals, many large diameter

unmyelinated axons are visible (black asterisk), Schwann cells were rarely detected and the small degree of remyelination is mediated by oligodendrocytes

that produce a thin myelin sheath (arrows). Remyelinating oligodendrocytes do not have nuclei directly apposed to the myelin or surrounding basal lamina

and oligodendrocyte-associated myelin is less dense than the myelin associated with Schwann cells. (D) The number of myelinated axons in the

dorsal column was significantly decreased in conNrg1 mice compared with control (Vh control = 998 � 160, Tx control = 1132 � 256 and

conNrg1 = 134 � 20). (E) The percentage of unmyelinated axons with a diameter41 mm was increased in conNrg1 animals versus control (Vh

control = 8% � 2, Tx control = 5% � 2 and conNrg1 = 26% � 8). (F) A dramatic reduction in the number of Scwann cell-myelinated axons in conNrg1

mutant animals was observed (Vh control = 522 � 192, Tx control = 794 � 227 and conNrg1 = 17 � 16). (G) A significant increase in the G-ratio in the

conNrg1 animals (Vh control = 0.72 � 0.01, Tx control = 0.71 � 0.02 and conNrg1 = 0.81 � 0.02) indicate very thin myelin sheaths. Data shown in D–

G are presented as mean � SEM. (�P5 0.05, one-way ANOVA, post hoc Tukey’s n = 3–4 animals/group). No significant differences were observed

between the two control groups in any of the measures analysed. Scale bar = 2 mm. (H) Scatter plot relating G-ratio and axon diameter of all the axons

analysed show a shift to higher G-ratios in conNrg1 animals (P5 0.001 Kolmogorov-Smirnov test) without significant changes in axon calibre. (I)

Comparison of counts of total myelinated axons and axons myelinated by oligodendrocytes in vehicle control, tamoxifen control and conNrg1 animals.

After ablation of Nrg1 the total number of myelinated axons is decreased (data are presented as mean � SEM, P5 0.05, one-way ANOVA, post hoc

Tukey’s, n = 3–4 animals/group) but the number of axons myelinated by oligodendrocytes is not altered (Vh control = 475 � 326, Tx con-

trol = 338 � 184 and conNrg1 = 117 � 60). (J) The total number of axons present in the dorsal column after spinal cord contusion remains similar in all

groups (data are presented as mean � SEM, one-way ANOVA, post hoc Tukey’s, n = 3–4 animals/group).
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5G and H). Quantification revealed a small reduction in the

amount of P0 myelin in the dorsal columns after multiple

root avulsion, although this did not reach significance

(Supplementary Fig. 9), indicating that the majority of the

Schwann cell myelin in the dorsal columns derives from a

central source, but at least some of the remyelinating

Schwann cells may be peripherally derived. Alternatively,

the amount of Schwann cell-mediated central remyelination

may have been altered by changes in astrogliosis following

multiple dorsal root removal, in line with recent findings

(Monteiro de Castro et al., 2015).

To further determine whether remyelinating Schwann

cells originate from a central source, we administered

EdU to mice following spinal contusion and assessed for

the presence of newly dividing cells in the spinal cord at 4

weeks post-injury (a time point when myelinating Schwann

cells are present in the dorsal columns; Fig. 5C and F). Co-

localization of EdU with P0 in spinal sections from these

animals (Fig. 6) revealed numerous EdU-positive cells dir-

ectly adjacent to P0-positive Schwann cell myelin rings

(Fig. 6B and C), providing evidence that myelinating

Schwann cells were newly generated endogenous precursor

cells. We observed a striking comparison between the histo-

logical observations of EdU positive nuclei in close appos-

ition to P0-positive Schwann cell myelin (Fig 6C’) and the

electron microscopy observations of a one-to-one relation-

ship of a Schwann cell remyelinating a central axon in the

dorsal columns (Fig 6C’’). Co-localization of EdU with PLP

revealed far fewer oligodendrocyte-derived myelin rings in

the injured dorsal columns (Fig. 6D).

These data provide evidence that peripherally invading

Schwann cells do not play a significant role in remyelina-

tion of spinal axons after spinal cord injury. Rather, the

majority of these remyelinating Schwann cells derive from a

CNS origin and are the major contributor to this endogen-

ous repair mechanism. Our results suggest that Nrg1 is the

molecular switch that drives precursor cells residing in the

spinal cord to differentiate into PNS-like Schwann cells and

to remyelinate spinal axons.

Figure 3 Nrg1-dependent central axon remyelination after spinal cord injury is mediated by typical Schwann cells. (A–F)

Co-staining of basal lamina (laminin, red) and Schwann cell-associated myelin (P0, green) in tamoxifen control (Tx control, A–C) and Nrg1-

ablated (conNrg1, D–F) mouse spinal cords 10 weeks after contusion injury reveals defined ring-like structures immunoreactive for laminin.

These ring-like structures represent the typical basal lamina associated with Schwann cells, and are apparent in close proximity to P0-positive

myelin rings in injured control spinal cord. No Schwann cell-associated myelin and only sparse and diffuse laminin staining is observed in

spinal cords from conNrg1 mice. Scale bar = 25 mm. Images not using the red/green colour scheme are available in the Supplementary

material.
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Figure 4 Expression of Nrg1 before and after spinal cord injury. Fluorescent in situ hybridization using a pan-Nrg1 probe (red) co-stained

with markers for neurons (NeuN, blue), Schwann cell associated myelin (P0, green, A, C, E, G) and oligodendrocytes (Olig2, green, B, D, F and H).

In the uninjured spinal cord (A–D) Nrg1 labelling can be seen within neurons. The highest level of expression is seen in motor neurons within the

ventral horn; however Nrg1 is also expressed by neurons of the dorsal horn. In the uninjured state there is no co-localization of Nrg with P0 (A and

C) and very few oligodendrocytes express Nrg1 (B and D). Four weeks after spinal contusion injury, compact myelin, which is P0 immunoreactive,

can be seen within the dorsal column and there is little co-localization with Nrg1 (E and G). Similarly, few Olig2 immunoreactive profiles express

Nrg1 (F and H). Scale bars = 250 mm (B); 100 mm (H). Images not using the red/green colour scheme are available in the Supplementary material.
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Immunoglobulin-containing isoforms
of Nrg1 are dispensable for Schwann
cell remyelination

Given the complex changes in Nrg1 isoform expression after

spinal cord injury, we used isoform-specific mutant mice to

distinguish functions of particular Nrg1 isoforms in spinal

axon remyelination and recovery of locomotor function. To

do this we used a strain of mice in which Ig domain-contain-

ing Nrg1 isoforms (Nrg1 types I and II) are ablated after tam-

oxifen treatment (conIgNrg1 mice), but the type III Nrg1

isoform remains intact (Cheret et al., 2013). We first con-

firmed that after tamoxifen treatment, levels of IgNrg1 tran-

scripts in the thoracic spinal cord and in dorsal root ganglia

were significantly reduced when compared to tamoxifen-trea-

ted control littermates not expressing Cre (Supplementary

Fig. 10A and B). Expression of type III Nrg1 was unchanged

(Supplementary Fig. 10C and D). To analyse remyelination in

these animals, we assessed the expression of Schwann cell-

derived myelin throughout the lesion site after injury. P0

immunohistochemistry at 10 weeks after contusive spinal

cord injury revealed that Schwann cell-mediated axonal

remyelination is indistinguishable between tamoxifen-treated

control and conIgNrg1 animals, with a similar rostrocaudal

spread of P0 expression observed in the dorsal column (Fig.

7A–C). Schwann cell-associated myelin was most abundant

at the lesion epicentre where�60% of the dorsal column area

expressed peripheral myelin (Fig. 7C). This is therefore in

stark contrast to conNrg1 animals in which all Nrg1 isoforms

are ablated and suggests that type I and II isoforms (contain-

ing the Ig domain) are dispensable for central remyelination

after spinal cord injury. Thus, the presence of the type III

Nrg1 isoform suffices to trigger the remyelination process.

Conditional ablation of Nrg1 has a
significant impact on the level of
spontaneous locomotor recovery
after spinal cord injury

To evaluate the functional consequences of Nrg1 ablation

we first assessed gross locomotor function in conNrg1 and

conIgNrg1 mice using the BMS open field hindlimb

Figure 5 Schwann cell-mediated remyelination in mouse and rat spinal cords follows the same time course and is unhindered

by avulsion of multiple dorsal roots at and adjacent to the injury site. (A–C) Co-staining of astrocytes (GFAP, red) and Schwann cell-

associated myelin (P0, green), shows the time course of the appearance of Schwann cell myelin the injured mouse spinal course. Peripheral myelin

(P0) is not apparent in uninjured mouse spinal cord (A) or at 1 week post-injury (B), but is present in the dorsal columns by 4 weeks after injury

(C). C’ shows a high magnification of the boxed area in panel C. (D–F) Co-staining of astrocytes (GFAP, red) and Schwann cell-associated myelin

(P0, green), shows the time course of the appearance of Schwann cell myelin the injured rat spinal course. Peripheral myelin (P0) is not apparent in

uninjured rat spinal cord (D) or at 1 week post-injury (E), but is present by 4 weeks after injury (F). F’ shows high magnification of the boxed area

in panel F. (G and H) At 10 weeks post-injury Schwann cell-mediated remyelination is apparent after spinal contusion injury irrespective of

presence (G) or absence (H) of dorsal roots, one of the main possible peripheral sources of the Schwann cells. G’ and H’ show high magni-

fications of boxed areas in panels G and H. (H’’) Example of an avulsed dorsal root, which encompasses the entire rootlet including the dorsal

root entry zone that is visualized by staining of the astroglial marker GFAP. Scale bars = 250 mm (A and D); 50 mm (C’ and F’). Images not using

the red/green colour scheme are available in the Supplementary material.
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Figure 6 Centrally remyelinating Schwann cells are produced de novo in the injured spinal cord. (A and B) Immunohistochemical

staining for Schwann cell myelin (P0, green), nuclear EdU (red) and DAPI (blue) shows abundant P0-positive myelin rings in close apposition with

EdU-positive cell nuclei 4 weeks after contusion injury (B) but not in control uninjured spinal cords (A). (C) High magnification image showing the

boxed area in B, demonstrating remyelinating EdU-positive Schwann cells in association with P0-positive Schwann cell-derived myelin. (D) High

magnification image of dorsal column axons associated with central PLP-positive myelin. (C’ and C’’) High magnification image showing the boxed

area in C. Co-labelling clearly reveals direct apposition of a EdU-positive Schwann cell with a P0-positive myelin ring (C’) alongside an electron

microscopic comparison of a Schwann cell in the dorsal columns that has remyelinated a CNS axon (C’’). Scale bars = 100 mm (B); 20 mm (D); 2

mm (C’). Images not using the red/green colour scheme are available in the Supplementary material.
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locomotor scale (Fig. 8A–D; BMS behaviour displayed sep-

arately as these were separate studies). In the conNrg1

study (Fig. 8A and B), no differences in baseline BMS rat-

ings were detected in uninjured animals, regardless of

whether Nrg1 was present or ablated. However, following

spinal cord contusion Nrg1 ablation was associated with

significant long-term impaired locomotor recovery (Fig. 8A

and Supplementary Videos 1 and 2). Furthermore, we

observed impaired paw rotation and forelimb-hindlimb co-

ordination post-injury in conNrg1 mice compared to con-

trol mice, i.e. processes that require proprioceptive control

mediated by dorsal column axons (Kanagal and Muir,

2008). However, it should be noted that the impact of

Nrg1 ablation on spontaneous locomotor recovery started

to emerge during the first 2 weeks after injury, a time

where significant remyelination in the dorsal columns is

not yet apparent following spinal contusion injury (James

et al., 2011). Therefore, in addition to the deficient

remyelination, other mechanisms might also contribute to

the changed locomotor recovery, such as deficient muscle

spindle feedback, which has recently been shown to be im-

portant for locomotor recovery after spinal cord injury

(Takeoka et al., 2014). Indeed, Nrg1 is an important

signal for muscle spindle maintenance and muscle spindles

atrophy after Nrg1 ablation in the adult (Cheret et al.,

2013). We then assessed BMS scores in conIgNrg1 mice

(Fig. 8C and D), where Schwann cell-mediated remyelina-

tion remains intact. Interestingly, in spite of preserved

spontaneous remyelination, locomotor recovery was also

impaired in conIgNrg1 mice compared to control injured

animals (Fig. 8C). In general, animals showed impairments

in coordination similar to, but not as extensive as, the ani-

mals lacking all Nrg1 isoforms (cf. Fig. 8A and C).

To further elucidate the contribution of Nrg1 to func-

tional repair after spinal cord injury, we performed add-

itional functional studies in new cohorts of conNrg1 and

Figure 7 Ablation of Ig-containing isoforms of Nrg1 (Nrg1 types 1 and 2) does not interfere with Schwann cell-mediated

remyelination after spinal contusion injury. (A and B) Co-staining of astrocytes (GFAP, red) and Schwann cell-associated myelin (P0, green)

shows appearance of Schwann cell myelin the injured mouse spinal cord of tamoxifen control (Tx control, A) and IgNrg1-ablated mice

(conIgNrg1, B). Ten weeks after contusion injury, Schwann cell-associated myelin (P0) is abundant in the dorsal column of spinal cords from both

control animals and mice lacking the IgNrg1 isoforms, being particularly abundant in the lesion epicentre. (A’ and B’) High magnification of boxed

areas in A and B. (C) Quantification of P0-positive area in sections spanning the rostrocaudal axis of the injury site reveals similar levels in

conIgNrg1 and control mice (nsP4 0.05, two-way ANOVA, post hoc Bonferroni, n = 4 animals/group). Scale bars = 250 mm (B); 50 mm (B’).

Images not using the red/green colour scheme are available in the Supplementary material.

1408 | BRAIN 2016: 139; 1394–1416 K. Bartus et al.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww039/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww039/-/DC1


Figure 8 Ablation of Nrg1 leads to impaired spontaneous functional recovery after spinal contusion injury. Functional recovery

assessed by BMS open field locomotion scores in conNrg1 (A) and conIgNrg1 (C) mice show a similar initial deficit in all groups acutely after

spinal contusion injury. BMS scores gradually improve over the first few weeks and begin to plateau �3 weeks post-injury. Spontaneous functional

recovery is significantly impaired in both conNrg1 (A) and conIgNrg1 (C) mutant mice, compared to vehicle and tamoxifen controls. Baseline

(Continued)
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conIgNrg1 mice to enable side-by-side comparisons in a

number of additional behavioural outcomes (Fig. 8E and

F). The 12-point BMS subscore scale, which further delin-

eates recovery of specific locomotor features that may not

be apparent in the overall BMS score (Basso et al., 2006),

revealed that while both cohorts were significantly impaired

in comparison to control injured mice, the conNrg1 mice

were also significantly worse than conIgNrg1mice at 8

weeks post-injury (#P5 0.05, conNrg1 versus conIgNrg1;

average score 0.4 � 0.26 and 3 � 0.65, respectively; Fig.

8E) on aspects of behaviour related to stepping frequency,

coordination, paw position, trunk stability, and tail pos-

ition. Furthermore, functional performance was also as-

sessed on the beam walking task, which requires co-

ordination, balance and proprioception (functions that are

directly related to dorsal column function; Kanagal and

Muir, 2008). Again, conNrg1 mice performed significantly

worse than injured conIgNrg1mice on the beam walking

task (#P5 0.05, conNrg1 versus conIgNrg1; average

score 14 � 3.7 and 33 � 1.5, respectively; Fig. 8F). These

data clearly demonstrate that there was significantly worse

functional outcome in conNrg1 mice (with the profound

dorsal column demyelinating phenotype) than in

conIgNrg1 mice (where Schwann cell-mediated remyelina-

tion was not altered), particularly in tasks that require

dorsal column function.

Conditional ablation of Nrg1 leads to
conduction failure in dorsal column
axons after spinal cord injury

Although behavioural differences suggest an association be-

tween the profound demyelinating phenotype in conNrg1

mice and worse functional outcome, a more robust measure

for determining the functional importance of Schwann cell-

mediated remyelination after spinal cord injury and how

this is compromised by Nrg1 ablation is to assess the elec-

trophysiological properties of dorsal column axons in con-

trol and Nrg1 mutant mice following spinal contusion. In a

protocol adapted from a previous method in rats (James et

al., 2011), terminal electrophysiological recordings taken

from the sural nerve revealed a clear difference in the abil-

ity of long distance sensory fibres travelling in the dorsal

columns to conduct through the T10 spinal contusion site

(Fig. 8G). Sensory dorsal column fibres were activated anti-

dromically by firstly stimulating 5 mm caudal of the lesion

site. Recordings taken from the sural nerve whilst stimulat-

ing supramaximally therefore represented the function of

the intact portion of this pathway. Stimulation was then

moved 5 mm rostral of the lesion site to determine what

extent of this function remained through the lesion site.

Recordings taken when stimulating at each site were aver-

aged and the amplitude of the response in the sural nerve

when stimulating rostral to the lesion was calculated as a

percentage of the response evoked when stimulating caud-

ally. In both of the tamoxifen control cohorts and the con

IgNrg1 cohort, all animals displayed obvious evoked activ-

ity in the sural nerve when stimulating rostrally; in contrast

to this, the majority of conNrg1 animals (four of five) dis-

played no detectable evoked activity in the sural nerve, and

in the single animal which displayed some activity this was

minimal (representative traces in Fig. 8G). Quantification

revealed that this difference in the conduction of dorsal

column fibres was highly significant (graph in Fig. 8G;

��P5 0.01, #P5 0.05, one-way ANOVA, Tukey’s post

hoc), with the conNrg1 group having a mean conduction

of only 5.05% � 1.03 and all other groups having conduc-

tion of �25% (conNrg1 tamoxifen control: 25.27% �

3.42; IgNrg1 tamoxifen control: 23.26% � 3.96;

conIgNrg1: 23.45% � 3.77). These data provide robust in

vivo evidence firstly, that dorsal column axons remyeli-

nated by Schwann cells after spinal cord injury are func-

tional and secondly, that the profound demyelinating

Figure 8 Continued

BMS scores were not different between groups. Data are presented as mean � SEM. (���P5 0.001, two-way ANOVA, post hoc Bonferroni, n = 9–

11 animals/group). (B and D) Contusion impact data showing the actual force applied to individual mice was within 10% of the intended force of

50 kdyne and mean values for each group were not significantly different (P4 0.05; one-way ANOVA), confirming that any group differences were

not due to differences in the impact force during surgery. (E) BMS subscores reveal significantly reduced functional recovery both in conNrg1 and

conIgNrg1 animals compared to controls at 8 weeks post-injury. However, conNrg1 mice were significantly more impaired than conIgNrg1 mice

in areas including stepping frequency, coordination, paw position, trunk stability, and tail position. (F) Beam-walking scores reveal reduced beam-

walking performance both in conNrg1 and conIgNrg1 animals compared to controls at 8 weeks post-injury. However, conNrg1 mice were

significantly more impaired than conIgNrg1 mice. Data are presented as mean � SEM (��P5 0.01, #P5 0.05, one-way ANOVA, post hoc Tukey’s,

n = 6–9 animals/group). �Significantly different to tamoxifen controls; #significantly different to conIgNrg1. (G) In vivo electrophysiological

recordings assessing dorsal column function. Example traces (each averaged from 16 raw traces) show conduction through the lesion site in

control, conNrg1 and conIgNrg1 animals (the representative control trace is taken from a conNrg1 tamoxifen control mouse). In control and

conIgNrg1 injured animals stimulation artefacts, which have been cropped on the x-axis to allow appropriate scaling, were followed by evoked

afferent activity at a latency of �1.5 ms, whereas little or no activity was evoked in conNrg1 animals. All stimulation was supramaximal.

Quantification of the percentage of axons capable of conducting through the contusion site confirmed significant levels of dorsal column function

in injured controls and conIgNrg1 mice at 10 weeks post-injury (when significant Schwann cell-mediated remyelination of the dorsal columns is

apparent), which was dramatically reduced in conNrg1 animals (where Schwann cell-mediated remyelination is absent). Data are presented as

mean � SEM (��P5 0.01, #P5 0.05, one-way ANOVA, post hoc Tukey’s, n = 5–6 animals/group); ��significantly different to tamoxifen controls;
#significantly different to conIgNrg1.
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phenotype observed in the dorsal columns of conNrg1

knockout mice, and the associated functional impairment,

corresponds to axonal conduction failure.

Discussion
Our data show that Nrg1 is a key regulator of remyelina-

tion of CNS axons by PNS-like Schwann cells after spinal

cord injury. The majority of these centrally occurring

Schwann cells are derived from the CNS, and arise most

likely through (trans)-differentiation of precursor cells that

reside in the spinal cord. Furthermore, we show that inter-

ference with Nrg1 signalling significantly reduces the degree

of spontaneous locomotor recovery after injury. Using

Nrg1 isoform-specific mutant mice, we found that IgNrg1

isoforms are dispensable for Schwann cell myelination,

indicating that type III (cysteine-rich domain containing)

isoforms have a critical role in this repair process.

Although IgNrg1 isoforms do not mediate Schwann cell

remyelination, they contribute to recovery of locomotor

function. We assign this to the role of IgNrg1 in muscle

spindle maintenance. The functional impairment in those

animals in which all Nrg1 isoforms are inactivated is

greater than in the IgNrg1 specific mutants, particularly

in measures relating to dorsal column function correspond-

ing with profound conduction block observed on electro-

physiological assessment of sensory axons projecting

through the injury site within the dorsal column. Our

data emphasize the distinct roles of Nrg1 isoforms in in-

trinsic repair processes after traumatic spinal cord injury.

Manipulating Nrg1 signalling might thus lead to novel

therapeutic strategies, or form part of a combinatorial ther-

apy, for enhancing repair after spinal cord injury.

The injured CNS has some intrinsic capacity to spontan-

eously repair. Understanding the mechanisms that regulate

or restrict these natural regenerative processes may lead to

novel clinical paradigms that enhance spontaneous recovery

after spinal cord injury or augment the efficacy of existing

therapeutic approaches. Experimental contusive spinal cord

injury resembles many human spinal cord injuries (Bunge et

al., 1993; Kakulas, 1999; Norenberg et al., 2004). An im-

portant feature of contusion-type injuries is the sparing of a

peripheral rim of tissue that contains viable axons.

Demyelination is a key pathological characteristic of surviv-

ing axons that limit their ability to function properly, as

these focally demyelinated axons are unable to efficiently

conduct action potentials (Koles and Rasminsky, 1972;

Nashmi and Fehlings, 2001). These surviving axons

remain non-functional but represent an important thera-

peutic target (James et al., 2011). Remyelination and res-

toration of conduction may lead to detectable functional

improvement (Smith et al., 1979; Waxman et al., 1994).

Robust spontaneous myelin repair can occur, which is

mediated by both immature oligodendrocytes and

Schwann cells (Harrison et al., 1975; McDonald, 1975).

Schwann cell-mediated remyelination in the CNS has been

reported after spinal cord injury in many species including

rodents (Beattie et al., 1997; James et al., 2011), cats

(Bunge et al., 1961; Blight and Young, 1989), monkeys

(Bresnahan, 1978) and humans (Bunge et al., 1993; Bruce

et al., 2000; Guest et al., 2005). It has also been observed

in other central pathologies such as multiple sclerosis

(Ghatak et al., 1973; Itoyama et al., 1985) and compressive

spondylotic myelopathy (Fehlings and Skaf, 1998).

Moreover, central axons that are remyelinated by

Schwann cells can regain function (Blight and Young,

1989). Thus, the phenomenon of Schwann cell-mediated

remyelination of central axons is well known, but the mo-

lecular mechanism of this spontaneous regenerative event

has remained obscure. We now show for the first time that

a lack of Nrg1 entirely prevents remyelination of spinal

axons by PNS-like Schwann cells after spinal cord injury.

We observed abundant peripheral myelin in the dorsal col-

umns of the injured spinal cord, which was completely

absent when Nrg1 is lacking. This striking phenotype was

confirmed by detailed ultrastructural analysis, which

demonstrated a complete lack of PNS-like Schwann cells

in the central dorsal columns accompanied by remyelina-

tion failure. Oligodendrocytes, which myelinate different

calibre axons in the mammalian CNS, are heterogenous.

Type IV oligodendrocytes morphologically resemble

Schwann cells that myelinate PNS axons but lack the char-

acteristic basal laminae of Schwann cells (Cornbrooks et

al., 1983; Butt et al., 1995). We observed clear laminin

immunoreactivity surrounding P0-positive myelin rings in

the injured spinal cord, demonstrating that the cells respon-

sible for remyelination contain a basal lamina. Thus,

remyelinating cells are typical Schwann cells rather than

type IV oligodendrocytes. This ring-like association of lam-

inin-positive basal lamina with Schwann cell derived P0-

positive myelin was entirely absent in mice lacking Nrg1,

which is consistent with the absence of Schwann cells.

However, diffuse laminin staining was still observed in

the injured spinal cord from Nrg1-ablated animals, which

is likely to be derived from other cells present at the injury

site such as fibroblasts or vascular components (Elkhal et

al., 2004; Soderblom et al., 2013).

In a number of other CNS disorders (such as stroke),

Nrg1 has been shown to have neuroprotective effects

(Croslan et al., 2008; Iaci et al., 2010). Therefore we per-

formed axonal counts in the dorsal columns to determine

the effects of Nrg1 on axonal survival after spinal cord

injury. Although we observed no differences between

injured controls and conNrg1 mice in the total number of

surviving axons 10 weeks after spinal cord injury, it is

conceivable that axons that remain persistently demyeli-

nated in Nrg1-ablated animals would be more susceptible

to axonal loss and degeneration at later time points and

this would likely exacerbate functional impairment, as has

been observed in other CNS pathologies (Bjartmar et al.,

2000; Lovas et al., 2000; McGavern et al., 2000; Lee et al.,

2012).
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Despite significant spontaneous remyelination, some

axons remain chronically demyelinated after spinal cord

injury (Blight and Decrescito, 1986; Waxman, 1989;

Bunge et al., 1993; Crowe et al., 1997; Guest et al.,

2005). Recent work showed that the time course of demye-

lination and remyelination corresponded to functional

changes, and demonstrated that a population of chronically

demyelinated axons retain the potential to conduct (James

et al., 2011). Our data confirm that demyelinated axons

persist into the chronic period after contusive injury, but

a large population of axons are robustly remyelinated by

PNS-like Schwann cells. The importance of such remyelina-

tion is emphasized by the profound conduction failure in

sensory axons projecting through the dorsal columns in

conNrg1 mice. Our findings also highlight the poor cap-

acity of oligodendrocytes to mediate remyelination after

spinal cord injury. In the presence or absence of Nrg1,

only a few axons were surrounded by abnormally thin

oligodendrocyte-produced myelin. The lack of compensa-

tory remyelination by oligodendrocytes in Nrg1-ablated

mice was also evident by the unchanged expression of

PLP-positive central myelin and the oligodendrocyte-specific

transcription factor Olig2 at time points when axons are

normally robustly remyelinated by Schwann cells

(Brinkmann et al., 2008; Makinodan et al., 2012). Nrg1

ablation might have potentially influenced oligodendrocyte-

mediated remyelination. However, our analysis presented

here, as well as previous work, indicates that oligodendro-

cyte-mediated myelination/remyelination is not absolutely

dependent on Nrg1 (Brinkmann et al., 2008; Lundgaard

et al., 2013). Schwann cell remyelination of central axons

after injury appears to be limited to the dorsal column

region of the spinal cord, as we observed here, while

other lateral and ventral white matter tracts remain persist-

ently demyelinated, or are remyelinated predominantly by

oligodendrocytes derived from precursor cells (Siegenthaler

et al., 2007). Here we focused on the effects of Nrg1 on

demyelination and remyelination in the dorsal column. It

remains to be seen whether Nrg1 also affects remyelination

in other white matter tracts, and whether increasing Nrg1

expression could increase remyelination in other regions of

the spinal cord.

The cues that govern the occurrence of endogenous

PNS-like Schwann cells in the injured CNS are unknown.

Schwann cells have been suggested to migrate from per-

ipheral sources such as the dorsal roots into the spinal

cord after an injury (Sims et al., 1998; Jasmin et al.,

2000; Perlin et al., 2011), or to originate from endogenous

oligodendrocyte precursor cells in the spinal cord

(Zawadzka et al., 2010). The predominant localization

of remyelinating Schwann cells in the dorsal columns,

close to the dorsal root entry zone PNS/CNS interface,

logically favours a peripheral source. However, here we

demonstrate for the first time that removing the peripheral

source of Schwann cells by multiple dorsal root removal

had little impact on Schwann cell-mediated remyelination

of dorsal column axons. The small reduction in P0

following multiple root removal indicates that a minor

proportion of the remyelinating Schwann cells may

derive from the periphery. However, as the majority of

P0 myelin expression still remained in the dorsal columns

after removal of peripheral input, this supports the notion

that the majority of these remyelinating Schwann cells

derive from the spinal cord, possibly from spinal cord-

intrinsic progenitor populations. A potential mechanism

is a spontaneous, injury induced (trans)-differentiation of

endogenous oligodendrocyte precursors into Schwann

cells, which is consistent with evidence obtained in

models of focal demyelination, where fate mapping of pro-

genitor cells in the adult spinal cord revealed a previously

unappreciated capacity of CNS precursors to generate

myelinating Schwann cells (Zawadzka et al., 2010). Our

data demonstrate that this phenomenon also occurs after

traumatic spinal cord injury, with the observation of EdU

and P0 co-expression providing direct evidence that mye-

linating Schwann cells in the contused spinal cord were

newly generated cells. This is also in line with recent lin-

eage tracing studies, which used genetic reporters of en-

dogenous precursor cells to demonstrate that remyelinating

Schwann cells after spinal contusion are primarily central

in origin (Assinck et al., 2015). Together, these findings

provide strong evidence for a central origin of remyelinat-

ing Schwann cells following clinically relevant traumatic

spinal contusion injury.

Concomitantly with the initiation of Schwann cell-

mediated remyelination of dorsal column axons, we noted

complex changes in expression of Nrg1 isoforms and their

receptors. Analysis of isoform-specific mRNA expression

showed parallels to the changes observed within peripheral

nerve following injury. In particular, type I Nrg1 was upre-

gulated (Cohen et al., 1992; Carroll et al., 1997; Stassart et

al., 2013) and the expression of type II and III Nrg1 iso-

forms were reduced 1 week after injury, but expression

began to recover towards naı̈ve levels 4 weeks after

injury. Lumbar dorsal root ganglia (containing the cell

bodies of dorsal column projecting axons) did not display

major changes in Nrg1 isoform expression. Erbb3 and

Erbb4 receptor mRNA within the spinal cord was reduced

at Week 1 but largely recovered by Week 4 post-injury;

Erbb2 showed increased expression at Week 4 post-

injury. Given that many cell types including neurons, glia

(Mei and Nave, 2014) and immune cells (Calvo et al.,

2010) express these receptors, this dynamic pattern of ex-

pression is likely to reflect in addition to altered expression

in individual cells the changed cellular composition that is

influenced by cell death, acute inflammation and subse-

quent endogenous repair following spinal cord injury. In

general, by 4 weeks post-injury the expression of Nrg1

signalling components is replenished or enhanced, and

this coincides with progressive remyelination of demyeli-

nated axons by Schwann cells in the injured spinal cord.

Our in situ hybridization expression data indicated that the

main source of Nrg1 influencing Schwann cell remyelina-

tion after spinal cord injury is likely to be derived from
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spinal neurons or axons projecting through the dorsal

column, as Nrg1 was apparent in the dorsal columns but

did not co-localize with markers of Schwann cell myelin or

oligodendrocytes. This is consistent with previous work

which has shown high levels of expression of Nrg1 (par-

ticularly type III Nrg1) in the large diameter myelinated

sensory neurons (Bermingham-McDonogh et al., 1997;

Fricker et al., 2009), whose axons project in the dorsal

column.

Nrg1 isoforms signal in distinct fashions: Types I and II

(containing Ig domains) are directly secreted or shed from

the cell membrane while type III (containing a cysteine rich

domain) typically remains tethered to the cell membrane to

signal in a juxtacrine fashion, although further processing

can release the EGF domain in certain contexts (Fleck et al.,

2013). In the PNS, type III Nrg1 is the key factor that

regulates many aspects of Schwann cell development and

function, including myelination, which is absolutely de-

pendent on type III Nrg1 (Garratt et al., 2000; Nave and

Salzer, 2006; Mei and Nave, 2014). In contrast, although

both type I and type III Nrg1 isoforms have been shown to

influence central myelination, oligodendrocytes (unlike per-

ipheral Schwann cells) have evolved a Nrg1-independent

mechanism of myelination (Brinkmann et al., 2008; Nave

and Werner, 2014). Interestingly after peripheral nerve

injury in adulthood there is evidence that both axonal

(which is principally type III Nrg1) (Fricker et al., 2011)

and Schwann cell-derived type I Nrg1 contribute to

Schwann cell remyelination (Stassart et al., 2013). In con-

trast, we did not observe Nrg1 expression by Schwann cells

within the injured spinal cord. We have taken advantage of

isoform-specific mutant mice to investigate the relative con-

tribution of the different isoforms in adulthood after CNS

injury. Schwann cell-mediated remyelination of the dorsal

columns was absent in mice lacking all active Nrg1 iso-

forms, while the lack of only IgNrg1 isoforms did not inter-

fere with Schwann cell-mediated remyelination,

emphasizing the role of type III Nrg1 in this repair process.

The fact that IgNrg1 is dispensable for Schwann cell remye-

lination in the spinal cord is consistent with the previous

finding that infusion of glial growth factor (Ig containing

type II Nrg1 isoform) did not improve Schwann cell-

mediated remyelination after a gliotoxic injury to the cere-

bellar peduncle (Penderis et al., 2003). Unexpectedly, how-

ever, spontaneous locomotor recovery was significantly

compromised irrespective of the presence or absence of

type III Nrg1. This indicates that the functional deficits

were not entirely due to the striking demyelination

phenotype observed in mice lacking all Nrg1 isoforms.

The importance of Ig-containing Nrg1 in the regulation

of muscle spindle development and physiology has previ-

ously been demonstrated (Hippenmeyer et al., 2002; Cheret

et al., 2013). Thus, the behavioural phenotype observed in

our study may involve deficient muscle spindle-dependent

sensory feedback to the spinal cord, which has recently

been shown to be critical for basic locomotor recovery

after spinal cord injury (Takeoka et al., 2014).

However, to elucidate further the contribution of dorsal

column demyelination to the locomotor deficits, we per-

formed further detailed functional assessments in additional

cohorts of animals. We directly compared functional recov-

ery in conNrg1 mice (in which all Nrg1 isoforms are inac-

tivated) and in conIgNrg1 animals in which there is

selective inactivation of Ig isoforms. Although both mutants

showed functional deficits, these were most marked in the

conNrg1 compared to conIgNrg1, emphasizing the role of

Schwann cell remyelination within the dorsal column for

optimal recovery. This was apparent both on the BMS

subscale and the inclined beam walking task, which re-

quires co-ordination, balance and proprioception—

functions that relate to the dorsal column pathway,

through which myelinated proprioceptive sensory afferents

transit. To directly localize this deficit to the dorsal column

we undertook electrophysiological assessment by anti-

dromic stimulation of sural afferents (which are principally

sensory) within the dorsal column rostral and caudal to the

injury site. While afferents projecting through the injury

site could be detected in control animals (the evoked

compound sensory action potential recorded in the sural

nerve following rostral stimulation was 25% of that

following caudal stimulation) there was a profound deficit

in conduction in the conNrg1 mice (which in most cases

showed no conduction through the injury site). In contrast,

the conIgNrg1 mice demonstrated impulse conduction

which was no different to controls, consistent with the

fact that Schwann cell remyelination was unchanged in

these animals.

In summary, our data demonstrate that Nrg1 is abso-

lutely essential for Schwann cell-mediated spinal axon

remyelination following spinal cord injury. We provide evi-

dence that these central Schwann cells derive from the

injured spinal cord and are required for action potential

conduction in axons passing through the injury site.

IgNrg1 isoforms are dispensable for this process; however,

compromised IgNrg1 signalling also significantly impairs

spontaneous locomotor recovery after spinal cord injury,

likely a consequence of its role in muscle spindle mainten-

ance. However, mice in which all Nrg1 isoforms are inac-

tivated show greater functional deficits than IgNrg1 specific

mutants, emphasizing the importance of Schwann cell

remyelination of dorsal column axons for optimal func-

tional recovery following spinal cord injury. Our data pro-

vide novel evidence for the molecular mechanisms that

govern a spontaneous endogenous regenerative event after

traumatic spinal cord injury, which may lead to the devel-

opment of new therapeutic strategies. Enhancing levels of

Nrg1 may accelerate this remyelination process and/or

prime the injury site to facilitate integration of transplanted

cells and/or enhance their remyelinating capacity. Schwann

cell-mediated remyelination of spinal axons is also observed

in other pathologies such as multiple sclerosis in humans

(Ghatak et al., 1973; Itoyama et al., 1985); as such, these

data may be exploited to improve or facilitate this

Nrg1 controls an endogenous repair mechanism after SCI BRAIN 2016: 139; 1394–1416 | 1413



regenerative process following spinal cord injury or other

pathologies where demyelination occurs.

Acknowledgements
The authors would like to thank Michaela Iberl and Ning

Zhu for mouse breeding and husbandry, Leanne Glover

from the Centre for Ultrastructural Imaging at King’s

College London and Carl Hobbs for technical help.

Funding
This work was supported by Wings for Life (WFL-GB-020/

13 and WFL-GB-046/14 to E.J.B. and D.L.H.B.), the

International Spinal Research Trust and the Henry Smith

Charity (STR101 to E.J.B.), the United Kingdom Medical

Research Council (SNCF award G1002055 to E.J.B.) and

the Wellcome Trust (SWCS award 095698z/11/z to

D.L.H.B.).

Supplementary material
Supplementary material is available at Brain online.

References
Assinck PL, Duncan G, Plemel J, Lee M, Liu J, Bergles D, et al.

PDGFR�-positive progenitor cells form myelinating oligodendro-

cytes and Schwann cells following contusion spinal cord injury.

Society for Neuroscience Abstract 2015, Program No. 338.03.

Chicago; 2015.

Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM,

Popovich PG. Basso Mouse Scale for locomotion detects differences

in recovery after spinal cord injury in five common mouse strains.

J Neurotrauma 2006; 23: 635–59. May;

Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M,

Anderson DK, et al. Endogenous repair after spinal cord contusion

injuries in the rat. Exp Neurol 1997; 148: 453–63.;

Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM,

et al. ProNGF induces p75-mediated death of oligodendrocytes fol-

lowing spinal cord injury. Neuron 2002; 36: 375–86.
Bermingham-McDonogh O, Xu YT, Marchionni MA, Scherer SS.

Neuregulin expression in PNS neurons: isoforms and regulation by

target interactions. Mol Cell Neurosci 1997; 10: 184–95.
Birchmeier C, Nave KA. Neuregulin-1, a key axonal signal that drives

Schwann cell growth and differentiation. Glia 2008; 56: 1491–7.

Nov 1;

Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological

disability correlates with spinal cord axonal loss and reduced

N-acetyl aspartate in chronic multiple sclerosis patients. Ann

Neurol 2000; 48: 893–901.

Black JA, Waxman SG, Smith KJ. Remyelination of dorsal column

axons by endogenous Schwann cells restores the normal pattern of

Nav1.6 and Kv1.2 at nodes of Ranvier. Brain 2006; 129: 1319–29.

Blight AR, Decrescito V. Morphometric analysis of experimental

spinal cord injury in the cat: the relation of injury intensity to sur-

vival of myelinated axons. Neuroscience 1986; 19: 321–41. Sep;

Blight AR, Young W. Central axons in injured cat spinal cord recover

electrophysiological function following remyelination by Schwann

cells. J Neurol Sci 1989; 91: 15–34. Jun;

Bresnahan JC. An electron-microscopic analysis of axonal alterations

following blunt contusion of the spinal cord of the rhesus monkey

(Macaca mulatta). J Neurol Sci 1978; 37: 59–82. Jun;

Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T,

Wende H, et al. Neuregulin-1/ErbB signaling serves distinct func-

tions in myelination of the peripheral and central nervous system.

Neuron 2008; 59: 581–95.
Bruce JH, Norenberg MD, Kraydieh S, Puckett W, Marcillo A,

Dietrich D. Schwannosis: role of gliosis and proteoglycan in

human spinal cord injury. J Neurotrauma 2000; 17: 781–8. Sep;

Bunge MB, Bunge RP, Ris H. Ultrastructural study of remyelination in

an experimental lesion in adult cat spinal cord. J Biophys Biochem

Cytol 1961; 10: 67–94. May;

Bunge RP Bunge MB, Rish H. Electron microscopic study of demye-

lination in an experimentally induced lesion in adult cat spinal cord.

J Biophys Biochem Cytol 1960; 7: 685–96.

Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM.

Observations on the pathology of human spinal cord injury: a

review and classification of 22 new cases with details from a case

of chronic cord compression with extensive focal demyelination.

Adv Neurol 1993; 59: 75–89.

Buss A, Pech K, Merkler D, Kakulas BA, Martin D, Schoenen J, et al.

Sequential loss of myelin proteins during Wallerian degeneration in

the human spinal cord. Brain 2005; 128: 356–64. Feb;

Butt AM, Berry M. Oligodendrocytes and the control of myelination

in vivo: new insights from the rat anterior medullary velum.

J Neurosci Res 2000; 59: 477–88.

Butt AM, Ibrahim M, Ruge FM, Berry M. Biochemical subtypes

of oligodendrocyte in the anterior medullary velum of the rat as re-

vealed by the monoclonal antibody Rip. Glia 1995; 14: 185–97.

Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA, et al.

Neuregulin-ErbB signaling promotes microglial proliferation and

chemotaxis contributing to microgliosis and pain after peripheral

nerve injury. J Neurosci 2010; 30: 5437–50.

Cannon B. Sensation and loss. Nature 2013; 503: S2–3.
Carroll SL, Miller ML, Frohnert PW, Kim SS, Corbett JA. Expression

of neuregulins and their putative receptors, ErbB2 and ErbB3, is

induced during Wallerian degeneration. J Neurosci 1997; 17:

1642–59.

Cheret C, Willem M, Fricker FR, Wende H, Wulf-Goldenberg A,

Tahirovic S, et al. Bace1 and Neuregulin-1 cooperate to control

formation and maintenance of muscle spindles. EMBO J 2013; 32:

2015–28.

Chevalier Z, Kennedy P, Sherlock O. Spinal cord injury, coping and

psychological adjustment: a literature review. Spinal Cord 2009; 47:

778–82.
Cohen JA, Yachnis AT, Arai M, Davis JG, Scherer SS. Expression of

the neu proto-oncogene by Schwann cells during peripheral nerve

development and Wallerian degeneration. J Neurosci Res 1992; 31:

622–34.

Corfas G, Rosen KM, Aratake H, Krauss R, Fischbach GD.

Differential expression of ARIA isoforms in the rat brain. Neuron

1995; 14: 103–15.

Cornbrooks CJ, Carey DJ, McDonald JA, Timpl R, Bunge RP. In vivo

and in vitro observations on laminin production by Schwann cells.

Proc Natl Acad Sci USA 1983; 80: 3850–4. Jun;

Croslan DR, Schoell MC, Ford GD, Pulliam JV, Gates A,

Clement CM, et al. Neuroprotective effects of neuregulin-1 on

B35 neuronal cells following ischemia. Brain Res 2008; 1210:

39–47.
Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS.

Apoptosis and delayed degeneration after spinal cord injury in rats

and monkeys. Nat Med 1997; 3: 73–6. Jan;

Dietz V, Fouad K. Restoration of sensorimotor functions after spinal

cord injury. Brain 2014; 137: 654–67.

1414 | BRAIN 2016: 139; 1394–1416 K. Bartus et al.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww039/-/DC1


Duncan ID, Brower A, Kondo Y, Curlee JF Jr, Schultz RD. Extensive

remyelination of the CNS leads to functional recovery. Proc Natl

Acad Sci USA 2009; 106: 6832–6.

Elkhal A, Tunggal L, Aumailley M. Fibroblasts contribute to the de-

position of laminin 5 in the extracellular matrix. Exp Cell Res 2004;

296: 223–30.

Falls DL. Neuregulins: functions, forms, and signaling strategies. Exp

Cell Res 2003; 284: 14–30.

Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH,

Lammertse D, et al. Guidelines for the conduct of clinical trials

for spinal cord injury as developed by the ICCP panel: spontaneous

recovery after spinal cord injury and statistical power needed for

therapeutic clinical trials. Spinal Cord 2007; 45: 190–205.

Fehlings MG, Skaf G. A review of the pathophysiology of cervical

spondylotic myelopathy with insights for potential novel mechan-

isms drawn from traumatic spinal cord injury. Spine 1998; 23:

2730–7.

Felts PA, Smith KJ. Conduction properties of central nerve fibers

remyelinated by Schwann cells. Brain Res 1992; 574: 178–92.

Felts PA, Smith KJ. Blood-brain barrier permeability in astrocyte-free

regions of the central nervous system remyelinated by Schwann cells.

Neuroscience 1996; 75: 643–55.

Fitch MT, Silver J. CNS injury, glial scars, and inflammation:

Inhibitory extracellular matrices and regeneration failure. Exp

Neurol 2008; 209: 294–301.

Fleck D, van Bebber F, Colombo A, Galante C, Schwenk BM, Rabe L,

et al. Dual cleavage of neuregulin 1 type III by BACE1 and

ADAM17 liberates its EGF-like domain and allows paracrine signal-

ing. J Neurosci 2013; 33: 7856–69.

Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from

biology to therapy. Nat Rev Neurosci 2008; 9: 839–55.

Fricker FR, Antunes-Martins A, Galino J, Paramsothy R, La Russa F,

Perkins J, et al. Axonal neuregulin 1 is a rate limiting but not es-

sential factor for nerve remyelination. Brain 2013; 136: 2279–97.

Fricker FR, Bennett DL. The role of neuregulin-1 in the response to

nerve injury. Future Neurol 2011; 6: 809–22.
Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N, et al.

Axonally derived neuregulin-1 is required for remyelination and re-

generation after nerve injury in adulthood. J Neurosci 2011; 31:

3225–33.

Fricker FR, Zhu N, Tsantoulas C, Abrahamsen B, Nassar MA, Thakur

M, et al. Sensory axon-derived neuregulin-1 is required for axoglial

signaling and normal sensory function but not for long-term axon

maintenance. J Neurosci 2009; 29: 7667–78. Jun 17;

Garratt AN, Voiculescu O, Topilko P, Charnay P, Birchmeier C. A

dual role of erbB2 in myelination and in expansion of the schwann

cell precursor pool. J Cell Biol 2000; 148: 1035–46.

Gaudet AD, Popovich PG. Extracellular matrix regulation of inflam-

mation in the healthy and injured spinal cord. Exp Neurol 2014;

258: 24–34.

Gauthier MK, Kosciuczyk K, Tapley L, Karimi-Abdolrezaee S.

Dysregulation of the neuregulin-1-ErbB network modulates en-

dogenous oligodendrocyte differentiation and preservation after

spinal cord injury. Eur J Neurosci 2013; 38: 2693–715.

Ghatak NR, Hirano A, Doron Y, Zimmerman HM. Remyelination in

multiple sclerosis with peripheral type myelin. Arch Neurol 1973;

29: 262–7.

Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell

responses adjacent to injury epicenter cavities following chronic

human spinal cord injury. Exp Neurol 2005; 192: 384–93.

Hagg T, Oudega M. Degenerative and spontaneous regenerative pro-

cesses after spinal cord injury. J Neurotrauma 2006; 23: 264–80.

Harrison BM, Gledhill RF, McDonald WJ. Remyelination after tran-

sient compression of the spinal cord. Proc Aust Assoc Neurol 1975;

12: 117–22.

Hayashi S, McMahon AP. Efficient recombination in diverse tissues by

a tamoxifen-inducible form of Cre: a tool for temporally regulated

gene activation/inactivation in the mouse. Dev Biol 2002; 244:

305–18.

Hippenmeyer S, Shneider NA, Birchmeier C, Burden SJ, Jessell TM,

Arber S. A role for neuregulin1 signaling in muscle spindle differen-

tiation. Neuron 2002; 36: 1035–49.

Hopman AH, Ramaekers FC, Speel EJ. Rapid synthesis of biotin-,

digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides

and their application for In situ hybridization using CARD amplifi-

cation. J Histochem Cytochem 1998; 46: 771–7.

Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al.

Bace1 modulates myelination in the central and peripheral nervous

system. Nat Neurosci 2006; 9: 1520–5.

Iaci JF, Ganguly A, Finklestein SP, Parry TJ, Ren J, Saha S, et al. Glial

growth factor 2 promotes functional recovery with treatment

initiated up to 7 days after permanent focal ischemic stroke.

Neuropharmacology 2010; 59: 640–9.

Irvine KA, Blakemore WF. Remyelination protects axons from demye-

lination-associated axon degeneration. Brain 2008; 131: 1464–77.

Itoyama Y, Ohnishi A, Tateishi J, Kuroiwa Y, Webster HD. Spinal

cord multiple sclerosis lesions in Japanese patients: Schwann cell

remyelination occurs in areas that lack glial fibrillary acidic protein

(GFAP). Acta Neuropathol 1985; 65: 217–23.

James ND, Bartus K, Grist J, Bennett DL, McMahon SB, Bradbury EJ.

Conduction failure following spinal cord injury: functional and ana-

tomical changes from acute to chronic stages. J Neurosci 2011; 31:

18543–55.

Jasmin L, Janni G, Moallem TM, Lappi DA, Ohara PT. Schwann cells

are removed from the spinal cord after effecting recovery from para-

plegia. J Neurosci 2000; 20: 9215–23.

Kakulas BA. A review of the neuropathology of human spinal cord

injury with emphasis on special features. J Spinal Cord Med 1999;

22: 119–24.

Kanagal SG, Muir GD. Effects of combined dorsolateral and dorsal

funicular lesions on sensorimotor behaviour in rats. Exp Neurol

2008; 214: 229–39.

Koles ZJ, Rasminsky M. A computer simulation of conduction in

demyelinated nerve fibres. J Physiol 1972; 227: 351–64.

Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN,

et al. Oligodendroglia metabolically support axons and contribute to

neurodegeneration. Nature 2012; 487: 443–8.

Li L, Cleary S, Mandarano MA, Long W, Birchmeier C, Jones FE. The

breast proto-oncogene, HRGalpha regulates epithelial proliferation

and lobuloalveolar development in the mouse mammary gland.

Oncogene 2002; 21: 4900–7.

Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S. Axonal

changes in chronic demyelinated cervical spinal cord plaques.

Brain 2000; 123: 308–17.

Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire

M, et al. Neuregulin and BDNF induce a switch to NMDA receptor-

dependent myelination by oligodendrocytes. PLoS Biol 2013; 11:

e1001743.

Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social

experience-dependent oligodendrocyte maturation and myelination.

Science 2012; 337: 1357–60.

McDonald JW, Belegu V. Demyelination and remyelination after

spinal cord injury. J Neurotrauma 2006; 23: 345–59.

McDonald WI. Mechanisms of functional loss and recovery in spinal

cord damage. Ciba Found Symp 1975; 34: 23–33.
McGavern DB, Murray PD, Rivera-Quinones C, Schmelzer JD, Low

PA, Rodriguez M. Axonal loss results in spinal cord atrophy, elec-

trophysiological abnormalities and neurological deficits following

demyelination in a chronic inflammatory model of multiple sclerosis.

Brain 2000; 123: 519–31.

Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system

and neuropsychiatric diseases. Neuron 2014; 83: 27–49.

Meyer D, Birchmeier C. Multiple essential functions of neuregulin in

development. Nature 1995; 378: 386–90.

Nrg1 controls an endogenous repair mechanism after SCI BRAIN 2016: 139; 1394–1416 | 1415



Meyer D, Yamaai T, Garratt A, Riethmacher-Sonnenberg E, Kane D,

Theill LE, et al. Isoform-specific expression and function of neure-

gulin. Development 1997; 124: 3575–86.

Monteiro de Castro G, Deja NA, Ma D, Zhao C, Franklin RJ.

Astrocyte activation via Stat3 signaling determines the balance of

oligodendrocyte versus schwann cell remyelination. Am J Pathol

2015; 185: 2431–40. Sep;

Nashmi R, Fehlings MG. Changes in axonal physiology and morph-

ology after chronic compressive injury of the rat thoracic spinal

cord. Neuroscience 2001; 104: 235–51.

Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1.

Curr Opin Neurobiol 2006; 16: 492–500.

Nave KA, Werner HB. Myelination of the nervous system: mechan-

isms and functions. Annu Rev Cell Dev Biol 2014; 30: 503–33.

Newbern J, Birchmeier C. Nrg1/ErbB signaling networks in Schwann

cell development and myelination. Semin Cell Dev Biol 2010; 21:

922–8.
Norenberg MD, Smith J, Marcillo A. The pathology of human spinal

cord injury: defining the problems. J Neurotrauma 2004; 21: 429–

40.
Oudega M, Bradbury EJ, Ramer MS. Combination therapies. Handb

Clin Neurol 2012; 109: 617–36.
Papastefanaki F, Matsas R. From demyelination to remyelination: the

road toward therapies for spinal cord injury. Glia 2015; 63: 1101–

25.
Penderis J, Woodruff RH, Lakatos A, Li WW, Dunning MD, Zhao C,

et al. Increasing local levels of neuregulin (glial growth factor-2) by

direct infusion into areas of demyelination does not alter remyelina-

tion in the rat CNS. Eur J Neurosci 2003; 18: 2253–64.
Perlin JR, Lush ME, Stephens WZ, Piotrowski T, Talbot WS.

Neuronal Neuregulin 1 type III directs Schwann cell migration.

Development 2011; 138: 4639–48.
Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK,

et al. Remyelination after spinal cord injury: is it a target for repair?

Prog Neurobiol 2014; 117: 54–72.
Potter PJ. Disordered control of the urinary bladder after human

spinal cord injury: what are the problems? Progr Brain Res 2006;

152: 51–7.
Raineteau O, Schwab ME. Plasticity of motor systems after incomplete

spinal cord injury. Nat Rev Neurosci 2001; 2: 263–73.

Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal

cord injury: towards clinical translation of experimental strategies.

Lancet Neurol 2014; 13: 1241–56.

Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after SCI: a

patient survey. Spinal Cord 2000; 38: 611–14.

Salic A, Mitchison TJ. A chemical method for fast and sensitive de-

tection of DNA synthesis in vivo. Proc Natl Acad Sci USA 2008;

105: 2415–20.

Schwab ME, Bartholdi D. Degeneration and regeneration of axons in

the lesioned spinal cord. Physiol Rev 1996; 76: 319–70. Apr;

Siegenthaler MM, Tu MK, Keirstead HS. The extent of myelin path-
ology differs following contusion and transection spinal cord injury.

J Neurotrauma 2007; 24: 1631–46.

Sims TJ, Durgun MB, Gilmore SA. Schwann cell invasion of ventral

spinal cord: the effect of irradiation on astrocyte barriers. J
Neuropathol Exp Neurol 1998; 57: 866–73.

Smith KJ, Blakemore WF, McDonald WI. Central remyelination re-

stores secure conduction. Nature 1979; 280: 395–6.

Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J,
et al. Perivascular fibroblasts form the fibrotic scar after contusive

spinal cord injury. J Neurosci 2013; 33: 13882–7.

Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH,
Meijer D, et al. A role for Schwann cell-derived neuregulin-1 in

remyelination. Nat Neurosci 2013; 16: 48–54.

Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feed-

back directs locomotor recovery and circuit reorganization after
spinal cord injury. Cell 2014; 159: 1626–39.

Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL,

et al. Type III neuregulin-1 promotes oligodendrocyte myelination.

Glia 2008; 56: 284–93.
Waxman SG. Demyelination in spinal cord injury. J Neurol Sci 1989;

91: 1–14.

Waxman SG, Utzschneider DA, Kocsis JD. Enhancement of action

potential conduction following demyelination: experimental
approaches to restoration of function in multiple sclerosis and

spinal cord injury. Prog Brain Res 1994; 100: 233–43.

Weidner N, Tuszynski MH. Spontaneous plasticity in the injured
spinal cord-implications for repair strategies. Mol Psychiatry 2002;

7: 9–11.

Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A,

et al. Control of peripheral nerve myelination by the beta-secretase
BACE1. Science 2006; 314: 664–6.

Woodruff RH, Franklin RJ. Demyelination and remyelination of the

caudal cerebellar peduncle of adult rats following stereotaxic injec-

tions of lysolecithin, ethidium bromide, and complement/anti-galac-
tocerebroside: a comparative study. Glia 1999; 25: 216–28.

Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, et al.

Patterning of muscle acetylcholine receptor gene expression in the
absence of motor innervation. Neuron 2001; 30: 399–410.

Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F,

et al. CNS-resident glial progenitor/stem cells produce Schwann cells

as well as oligodendrocytes during repair of CNS demyelination.
Cell Stem Cell 2010; 6: 578–90.

Zeng C, Pan F, Jones LA, Lim MM, Griffin EA, Sheline YI, et al.

Evaluation of 5-ethynyl-2’-deoxyuridine staining as a sensitive and

reliable method for studying cell proliferation in the adult nervous
system. Brain Res 2010; 1319: 21–32.

Zhang JF, Zhao FS, Wu G, Kong QF, Sun B, Cao J, et al. Therapeutic

effect of co-transplantation of neuregulin-1-transfected Schwann
cells and bone marrow stromal cells on spinal cord hemisection

syndrome. Neurosci Lett 2011; 497: 128–33.

1416 | BRAIN 2016: 139; 1394–1416 K. Bartus et al.


