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Silica-Coated Fe3O4 Nanoparticles as a
Bifunctional Agent for Magnetic Resonance
Imaging and ZnII Fluorescent Sensing
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Abstract
Bifunctional magnetic/fluorescent core-shell silica nanospheres (MNPs) encapsulated with the magnetic Fe3O4 core and a derivate
of 8-amimoquinoline (N-(quinolin-8-yl)-2-(3-(triethoxysilyl) propylamino) acetamide) (QTEPA) into the shell were synthesized.
These functional MNPs were prepared with a modified stöber method and the formed Fe3O4@SiO2-QTEPA core-shell nano-
composites are biocompatible, water-dispersible, and stable. These prepared nanoparticles were characterized by X-ray power
diffraction (XRD), transmission electron microscopy (TEM), thermoelectric plasma Quad II inductively coupled plasma mass
spectrometry (ICP-MS), superconducting quantum interference device (SQUID), TG/DTA thermal analyzer (TGA) and Fourier
transform infrared spectroscopy (FTIR). Further application of the nanoparticles in detecting Zn2þ was confirmed by the
fluorescence experiment: the nanosensor shows high selectivity and sensitivity to Zn2þ with a 22-fold fluorescence emission
enhancement in the presence of 10 mM Zn2þ. Moreover, the transverse relaxivity measurements show that the core-shell MNPs
have T2 relaxivity (r2) of 155.05 mM�1 S�1 based on Fe concentration on the 3.0 T scanner, suggesting that the compound can be
used as a negative contrast agent for MRI. Further in vivo experiments showed that these MNPs could be used as MRI contrast
agent. Therefore, the new nanosensor provides the dual modality of magnetic resonance imaging and optical imaging.
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Introduction

Compared with the dual-function molecular probes, the intro-

duction of the nanoparticles makes more advantages of

dual-function probes. In addition, as a new type of nanoparti-

cles, magnetic fluorescent composite nanoparticles have

attracted extensive attention in recent years. These composite

nanoparticles take the advantages of molecular fluorescence,

magnetic properties and nano-scaled materials, and can provide

a potential platform for the construction of novel drugs for

biological separation, targeting, biological imaging, tumor cell

localization and even tumor therapy. Many interesting works

have been reported based on these nanocomposites. Dual func-

tional and multifunctional magnetic core shell Fe3O4@SiO2

nanocomposites as a special carrier have attracted more and

more attention.1-6 The silica shell outside the iron oxide core

not only increases the and biocompatibility and stability of

nanoparticles in water environment, but also provides conve-

nient sites for modifying ligands in biomedical applications,

such as biological separation,7-9 drug targeting,10-14 cell

separation,8 enzyme immobilization15-18 and protein purifica-

tion.19 In addition, Fe3O4@SiO2 MNPs are more and more

studied because they are easy to prepare and friendly to aqu-

eous solution,20 and can be designed into various shapes and

sizes. On the other hand, some of which have been approved by

FDA for clinical use. Fe3O4@SiO2 NPs which have superpar-

amagetism have gradually become good drug agents, and FDA

has approved the use of some of them in clinical practice.21 As

a solid-state chemical sensor, sensor modified Fe3O4@SiO2

nanoparticles have many attractive advantages in heteroge-

neous solid-liquid system. Such nanoparticles are easily

obtained by hydrolysis reaction, meanwhile, different func-

tional groups are introduced in the preparation process. For

example, magnetic resonance contrast agents and fluorescent

organic dyes can be constructed together into such nanoparti-

cles, which produces a good platform for many potential

applications.20

A variety of transition metal ions play a wide range of roles

in the environment and biological physiological processes.22-24

Among them, Zinc ions is the second most abundant transition

metal ion in human body.25,26 In human body, most zinc are

closely bound to enzymes and transcription factors,27-30 but

many chelatable Zn(II) ions are still dissociated in certain cells

and play important roles in biological systems.31-38 In the

human body, the brain is one of the organs with the highest

zinc content. Studies showed that the concentration of free zinc

ions in the brain is about 0.1-0.5 mM, and in the serum is about

12 mM. Zinc ions are components of many enzymes in human

body. It is widely involved in cell proliferation and differentia-

tion, nucleic acid and protein synthesis and many other impor-

tant physiological activities.39-41 Zinc ion is closely related to

the central nervous system, for example, the decrease of zinc

concentration in serum and plasma will increase the risk of

Alzheimer’s disease and Parkinson’s disease.42,43 Therefore,

intense research efforts have been devoted to the development

of chemosensors for Zn2þ ion detection. Due to the unique role

of Zinc ions in physiological function, it is of great significance

to detect and image Zinc ions in biological samples. In order to

probe Zinc ions in vivo and in vitro, a large number of scientific

researches have been carried out.44 Among those reported Zn2þ

sensors, quinoline derivatives are commonly chosen, such as

6-methoxy-(8-ptolunesulphonamido) quinoline (TSQ)45 and its

derivative (Zinquin series).46-48 These derivatives containing

quinoline ring have been used for the fluorescence detection

of zinc ions. It is obvious that the quinoline ring of supramo-

lecular system, especially 8-aminoquinoline, has a very good

selectivity for zinc ions.49 However, some studies showed that

zinc ion fluorescent probes containing quinoline ring have poor

solubility in aqueous solution and are also interfered by other

metal ions. In addition, many of the reported probes are diffi-

cult to work in the cellular environment. Therefore, there is still

a great demand for the development of zinc ion fluorescent

probes with wider versatility and higher performance.

With those concepts in mind, our strategy is to synthesize

uniform dual-functionalized nanoparticles which permit

dual-modality detections by incorporating organic fluorescent

dye a chloroacetyl derivate of 8-amimoquinoline, N-(quinolin-

8-yl)-2-(3-triethoxysilyl) propylamino) acetamide (QTEPA)

into silica-coated magnetite core-shell (Figure 1). We utilized

a common stöber method to synthesize the Fe3O4@SiO2

silica-coated MNPs. However, Rastogi et al,50 have reported

the use of silica functional with the same fluorophore, QTEPA

(Chemical structure shown in Figure S1), for the detection of

Zn2þ. In our work, the difference is superparamagnetic Fe3O4

was added as the core. These QTEPA modified MNPs, as far as

we known, are the first to be reported for not only exhibiting

good selectivity and sensitivity for Zn2þ, but also of potential

possibility to work as a T2 contrast agent.

Experimental

The experimental details were provided in the supporting

information.

Results

Characterization of the Modification MNPs

The TEM image of magnetic Fe3O4 obtained in this study is

shown in Figure 2 (left). The result showed that the shapes of

Fe3O4 nanoparticles are nearly spherical, and the average parti-

cle size is about 7 nm.51 After the Fe3O4 NPs were modified with

II, TEM revealed that the Fe3O4 were successfully encapsulated

in silica shell, and the average particle size was about 20-30 nm

as shown in Figure 2 (right). The TGA results indicated that the

grafted ratio of onto Fe3O4@SiO2 is about 10% (Figure S2).

The suspension prepared with Fe3O4 has good stability and

can be kept for several months without obvious change.

Dynamic light scattering (DLS) experiments showed that the

hydrodynamic diameter of Fe3O4 NPs had almost no change in

the first 2 months, and there was no obvious aggregation in

5 months. However, the stability Fe3O4@SiO2-QTEPA is
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much less than pure Fe3O4, and the suspensions only maintain

about 3-4 days (Figure S3).

Zeta potential (Z) reflects the degree of repulsion between

adjacent, similarly charged particles in the dispersion. Particles

with high Z (negative or positive) are electrically more stable

than those with low Z, that is, the solution or dispersion of the

former is more likely to resist aggregation. The zeta potential of

Fe3O4 in aqueous solution is �18.8 mV, while Fe3O4@-

SiO2-QTEPA aqueous solution has a net-negative charge at the

value of �1.25 mV. Therefore, Fe3O4 NPs show higher water

dispersibility than Fe3O4@SiO2-QTEPA do. This is also a

proof that the Fe3O4 was successfully grafted by SiO2-QTEPA.

This suggests that mutual repulsion between the macromole-

cules and subsequent lack of interactions.52

The crystallographys of Fe3O4 and Fe3O4@SiO2-QTEPA

were verified by powder XRD (Figure 3). As shown in

Figure 3, the diffraction patterns of both particles exhibit 6

peaks at 2q of 30.1�, 35.5�, 43.1�, 53.6�, 57.2�, and 62.7�

respectively, corresponding to standard inverse spinel phase

of Fe3O4 (220) (311) (400) (422) (511) and (440) surface of

the diffraction peak. The diffraction patterns and the relative

intensities of all diffraction peaks of the 2 samples indicated

that there were phases in both Fe3O4 and Fe3O4@SiO2-QTEPA

nanoparticles which are consistent with the crystal anti-spinel

structure of magnetite (Fe3O4) and maghemite (gFe2O3). The

results also showed that the crystal Fe3O4 were encapsulated in

the core-shell structure. Compared with the Fe3O4, all the dif-

fraction peaks of Fe3O4@SiO2-QTEPA are weaken, which due

Figure 1. Schematic illustration of the formation of Fe3O4@SiO2-QTEPA.

Figure 2. TEM images of Fe3O4 (left) and Fe3O4 @SiO2-QTEPA (right) (bar ¼ 100 nm).
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to the surface of silica and organic matter. And the broad peak

between 20� and 25 � (2q) is assigned to the mesoporous silica

oxide shell.

FTIR spectroscopy is used to confirm that QTEPA silicon is

successfully immobilized on the Fe3O4@SiO2 nanoparticles.

The FT-IR spectra of Fe3O4@SiO2 and Fe3O4@SiO2-QTEPA

are shown in Figure 4. In Figure 4 (red line), the broad band

centered at 3410.4 cm�1 represents silane and any form of water

adsorbed on the surface of Fe3O4@SiO2 nanoparticles. The band

at 1643.3 cm�1 represents the bending mode of O-H vibrations.

The strong band centered at 1103.04 cm�1 represents the struc-

tural Si-O-Si vibration, while the Si-OH vibration band appears

in the 802-950 cm�1 region. Compared with the infrared spec-

trum of Fe3O4@SiO2, the N-H stretching vibration band of

Fe3O4@SiO2-QTEPA appears at 3402 cm�1 (black line) with

the broad band of the silanol and moisture on the surface. The

band at 1531.4 cm�1 is C ¼ C aromatic stretching band, while

the carbonyl band at 1662.3 cm�1 belongs to the aliphatic C-H

stretching band. The FT-IR spectra clearly showed that II was

successfully modified on the surface of MNPs.

Magnetic Properties Fe3O4@SiO2-QTEPA

The magnetization curve of Fe3O4@SiO2-QTEPA is shown in

Figure 5. The room temperature magnetization (m) curve of the

samples with applied magnetic field (H) shows that the satura-

tion magnetization (MS) is 15.2 emu/g. Due to the existence of

core-shell structure, the room temperature magnetization

Fe3O4@SiO2-QTEPA is lower than that of naked Fe3O4 nano-

particles (69.7 emu/g). Remanence and coercivity are almost

invisible in the amplification curve (inset in Figure 5), which

indicated that both nanoparticles have superparamagnetism at

room temperature. So it can be considered that Fe3O4@SiO2-

QTEPA NPs have enough magnetic attraction to effectively

perform magnetic separation and can be used in nuclear mag-

netic resonance imaging.

The superparamagnetism of magnetic NPs has a strong con-

trast effect on the surrounding tissues, which enables

T2-weighted MRI to display tumor tissues in any plane of the

body.53,54 Therefore, we measured the transverse relaxation

time (T2) to evaluate the negative-contrast effect of Fe3O4@-

SiO2-QTEPA. In order to evaluate the performance and effect

of Fe3O4@SiO2-QTEPA as T2 contrast agent, we measured

the transverse relaxation time (T2) under 3 T magnetic field,

and calculated the transverse relaxivity (r2) according to the

following equation55:

1=T2 ¼ 1=T0
2 þ r2 � ½Fe�

where T2
0 is the standard relaxation time of pure water, [Fe]

is the concentration of Fe3þ calculated of Fe3O4@SiO2-Q-

TEPA NPs (treated with nitric acid digestion). Each point in

the Figure 6 is the transverse relaxation rate (1/T2) of the

solution at different concentrations, and the straight line is

the linear relationship between the reciprocal of relaxation

time and Fe3þ concentration. The linear fitting transverse

relaxation rate is 155.05 mM�1 s�1 (Figure 6), suggesting

that the Fe3O4@SiO2-QTEPA NPs could be used as a

T2-shortening agent to effectively relax the spin of water

proton. These results showed that although Fe3O4 is coated

by silica shell, it can still contact with water molecules, and

the existence of shell structure only slightly affects the

relaxation of Fe3O4.

The T2-weighted magnetic resonance images of Fe3O4@SiO2-

QTEPA in terms of different Fe concentrations are shown in

Figure 7. The Fe3O4@SiO2-QTEPA NPs have good dispersion

in water, which enabled us to detect the relaxivity of the particles

in the solution at 3.0 T MR system. It is obvious from the Figure 7

that the Fe3O4@SiO2-QTEPA NPs displayed a signal enhance-

ment in the T2 weighted MRI image with the decrease of

iron concentration, which means that MNPs may be used as the

negative contrast agent of MRI.

Figure 3. X-ray diffraction pattern of Fe3O4 and Fe3O4@SiO2-

QTEPA.

Figure 4. FTIR spectra of Fe3O4@SiO2 (red line) and Fe3O4@SiO2-

QTEPA (black line).
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In Vitro and In Vivo MRI

The diagnostic potential of Fe3O4@SiO2-QTEPA was first

explored in vitro by testing the negative-contrast effect in

MCF-7 cells. To evaluate the possibility of using Fe3O4@-

SiO2-QTEPA nanoparticles as contrast agent to detect cancer

cells, MCF-7 cells incubated with Fe3O4@SiO2-QTEPA nano-

particles suspension with different concentrations ([Fe] ¼ 0,

0.0025, 0.0050, 0.0075 0.0100, 0.0125, 0.0150, 0.0175, 1.020,

0.0225, 0.025 mM) were detected by nuclear magnetic reso-

nance (NMR). It can be clearly seen from the Figure 8 that the

MR signal of MCF-7 cells treated by this method gradually

decreased with the increase of Fe concentration. This suggested

that Fe3O4@SiO2-QTEPA NPs have a good spatial resolution

for T2 MRI, which is consistent with the data reported in the

literature based on iron oxide NPs.

Further, we carried out in vivo experiments. Fe3O4@-

SiO2-QTEPA suspension was injected into the mice via the

tail vein and the changes of MR signal decline in the target

organ liver were measured before and after injection

(Figure 9A). The results showed that Fe3O4@SiO2-QTEPA

accumulated in the normal liver, while no signal appeared in

other organs, which confirmed that the MNPs eventually tar-

geted and gathered in the liver. Figure 9A is an in vivo MRI

image of mouse liver. Figure 9A shows the images of mice

liver in vivo MRI. The images were acquired 1, 5, 7 and 12 h

respectively after tail vein injection of the Fe3O4@SiO2-Q-

TEPA suspension at 1 mg /mL Fe3O4@SiO2-QTEPA concen-

tration, equivalent to a dose of 5 mg Fe3O4@SiO2-QTEPA/kg

of the mice body weight, the color becomes darker after injec-

tion, and the signal cavity appears in the liver substance. The

liver of mice was normal gray signal, while the signal

becomes darker and daker after injection. After 1 h injection,

the signal intensity in the liver decreased obviously. Com-

pared with 5 and 7 hours after injection, 1 hour was the time

that the MNPs accumulation in the normal liver arrived max-

imum value, and the MNPs gradually metabolized in the nor-

mal liver after 24 hours (Figure 9B).

Figure 5. Room temperature magnetization curves of pure Fe3O4 powder and Fe3O4@SiO2-QTEPA.

Figure 6. T2 relaxivity plot of aqueous of Fe3O4@SiO2-QTEPA.
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Zn2þ Fluorescence Sensing

The fluorescence experiments of all metal ions were carried out

in MNPs buffer solution (100 mg of Fe3O4@SiO2-QTEPA in

3 mL HEPES buffer). Fluorescence titration of Zn2þ was con-

ducted using this suspension. Fe3O4@SiO2-QTEPA showed a

rather weak fluorescence signal in the range between 475 nm

and 510 nm without Zn2þ ions. However, after adding Zn2þ to

the concentration of 10 mM, the fluorescence intensity of the

solution increased by a factor of about 22 times at 490 nm, and

the maximum emission shifted from 420 nm to 490 nm

(Figure 10A). We also determined the fluorescence spectra the

Fe3O4@SiO2-QTEPA suspension in presence of Mn2þ, Fe3þ,

Agþ, Cr3þ, Co2þ, Cu2þ, Cd2þ, Fe2þ, Hg2þ, Pb2þand Ni2þ.

After adding these above metal ions to 20 mM separately, the

changes of fluorescence intensity at 490 nm are shown in

Figure 10B. After adding different metal ions, only the addition

of Hg2þ increased the fluorescence intensity slightly. Adding

other metal ions to the Fe3O4@SiO2-QTEPA suspension did

not cause obvious change of fluorescence spectra. In addition,

the enhancement of fluorescence intensity due to the addition

of Zn2 þ ions was not affected by the subsequent addition of

other metal ions with concentrations of 20 mM except Kþ,

Ca2þ, Naþ, Mg2þ (200 mM). (Figure S7 in the Supporting

Information.)

We applied Fe3O4@SiO2-QTEPA NPs for fluorescent ima-

ging of Zn2þ in living cells to demonstrate the Fe3O4@SiO2-

QTEPA NPs with practical application potential in the buffer

system. Hela cells were incubated with Fe3O4@SiO2-QTEPA

NPs at 37�C for 4 h and washed thoroughly by PBS buffer to

remove the extra Fe3O4@SiO2-QTEPA NPs. Then with the

Figure 7. T2-weighted MRI images of Fe3O4@SiO2-QTEPA in water.

Figure 8. T2-weighted MRI images of Fe3O4@SiO2-QTEPA in MCF-7 cells for 3 h.

Figure 9. A, MR imaging of mouse liver regions after systemic

administration of 150 mL of Fe3O4@SiO2-QTEPA (1 mg /mL). B, The

time-dependent drop in MR T2 signal intensities measured in the liver

after the administration of Fe3O4@SiO2-QTEPA.
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addition of Zn2þ, the living cells were incubated for another

20 minutes. The results showed that Fe3O4@SiO2-QTEPA NPs

could penetrate the cell membrane for imaging Zn2þ in living

cells, free Fe3O4@SiO2-QTEPA NPs in living cells showed

very weak fluorescence (Figure 11B), a bright fluorescence

was observed in the cells (Figure 11C) after adding Zn2þ in

the above cells. Finally, TPEN (a good masking agent for

Zn2þ) solution was added to the above cells for incubating

another 20 minutes and fluorescence decreased (Figure 11D).

These results demonstrated that Fe3O4@SiO2-QTEPA NPs can

be applied for dual-mode in vitro imaging of Zn2þ ions in

living cells and potentially sensitive in vivo MRI imaging as

well. The comparison of Fe3O4-SiO2-QTEPA with another

similar materials in the literatures were summarized in

Figure S4.

Conclusions

In summary, we demonstrate bifunctional nanoparticles based

on silica-coated Fe3O4 MNPs which can be used as biocompa-

tible magnetic T2 MRI contrast agents and for imaging Zn2þ in

living cells. To the best of our knowledge, these QTEPA func-

tionalized MNPs are the first to be reported for not only exhi-

biting good selectivity and sensitivity for Zn2þ, but also of

potential possibility to work as a T2 contrast agent. This kind

of core-shell magnetic nanoparticles has the comprehensive

ability of fluorescence and MR imaging, and has the potential

application for drug loading, which provides a platform for the

research of targeting and biological imaging materials in bio-

logical systems. These results provide considerable foundation

and reference for the construction of bifunctional magnetic

nanoparticles. The magnetic nanoparticles modified by appro-

priate fluorescent probe molecules have good biocompatibility

and can be used in fluorescence imaging and nuclear magnetic

resonance imaging.
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