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Tissue-resident memoryT cells (TRM) comprise a newly defined subset, which comprises
a major component of lymphocyte populations in diverse peripheral tissue sites, includ-
ing mucosal tissues, barrier surfaces, and in other non-lymphoid and lymphoid sites in
humans and mice. Many studies have focused on the role of CD8TRM in protection; how-
ever, there is now accumulating evidence that CD4 TRM predominate in tissue sites, and
are integral for in situ protective immunity, particularly in mucosal sites. New evidence
suggests that mucosal CD4 TRM populations differentiate at tissue sites following the
recruitment of effectorT cells by local inflammation or infection.The resultingTRM popula-
tions are enriched inT-cell specificities associated with the inducing pathogen/antigen.This
compartmentalization of memory T cells at specific tissue sites may provide an optimal
design for future vaccination strategies. In addition, emerging evidence suggests that CD4
TRM may also play a role in immunoregulation and immunopathology, and therefore, target-
ing TRM may be a viable therapeutic approach to treat inflammatory diseases in mucosal
sites.This review will summarize our current understanding of CD4TRM in diverse tissues,
with an emphasis on their role in protective immunity and the mechanisms by which these
populations are established and maintained in diverse mucosal sites.
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INTRODUCTION
The anatomic complexity of vertebrates necessitates an immune
defense system, which provides protection at diverse sites of
pathogen encounter. Earlier views of the immune system as a cir-
culating, surveilling defense force have been supplanted by more
recent evidence that the immune response is both localized and
adapted to specific anatomic compartments. For T lymphocytes,
seminal work by Leo Lefrançois and colleagues first revealed that
virus-specific CD8 T cells that were generated and maintained as
long-lived memory T cells after infection could be maintained in
multiple tissue sites throughout the body (1). Subsequent stud-
ies using parabiosis models provided early evidence that certain
tissues such as intestines contained populations of memory CD8
T cells that did not readily circulate (2). In recent years, non-
circulating populations of memory CD8 T cells have been iden-
tified in skin, lung, vaginal mucosa, brain, and even in lymphoid
tissues (3–7), which are collectively referred to as“Tissue-resident”
memory CD8 T cells (CD8 TRM) (8, 9). TRM are populations
of clonally expanded memory T cells that permanently reside in
peripheral tissues, are maintained independently of lymphoid and
circulating memory T-cell populations, and have the ability to
respond rapidly to re-exposure to cognate antigen.

While most studies in mouse models of infection have focused
on memory CD8 T-cell generation and maintenance to virus infec-
tion, less is understood about memory CD4 T cells and their role
in protection and in tissue-specific responses. In both mice and

humans, CD4 T cells are the most abundant lymphocytes through-
out the body; they predominate in lymphoid tissue and memory
CD4 T cells also outnumber memory CD8 T cells in mucosal
tissues and barrier surfaces (10–12). Tissue-resident CD4 TRM
have been identified in the lung, skin, and mucosal surfaces, and
function to direct protective responses and coordinate recruit-
ment of immune cells to tissues sites (7, 12–15). In addition to
protective responses, there is also potential in any in situ immune
response for collateral tissue damage, resulting in immunopathol-
ogy. Since tissue-specific inflammatory disease can be driven by
CD4 T-cell responses, the contribution of tissue-resident mem-
ory T-cell responses in these contexts is important to consider. In
this review, we will focus on the role of CD4 TRM in immune
responses, both protective and pathogenic and discuss current
research and models for their generation and maintenance.

ANATOMIC HETEROGENEITY OF MEMORY CD4 T CELLS:
EARLY STUDIES
The effectiveness of T-cell mediated immunity against pathogens
is partly derived from the wide distribution throughout the body
of a large repertoire of individual T-cell clones with the ability
to recognize and mount an effector response to a large number
of pathogen-associated antigenic signatures. Naïve T cells express
chemokine receptors such as CCR7 and L-selectin (CD62L) that
target their migration from circulation through lymphoid tis-
sue. This circulatory pattern provides the greatest probability of

www.frontiersin.org July 2014 | Volume 5 | Article 331 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00331/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00331/abstract
http://www.frontiersin.org/people/u/134858
http://www.frontiersin.org/people/u/20757
mailto:df2396@cumc.columbia.edu
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Memory/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turner and Farber Tissue-resident memory CD4 T cells

encounter of naïve T cells with their cognate antigens, which are
presented by mature antigen presenting cells (APC) that ferry anti-
gen from peripheral tissue to lymph nodes. Upon activation by
antigen, naïve cells clonally expand and acquire effector proper-
ties, and in the process, upregulate expression of integrins and
chemokine receptors that direct migration and access to inflamed
peripheral tissues. During the ongoing immune response, effec-
tor cells are thus present in both lymphoid organs and peripheral
tissues. While the majority of these activated and effector T cells
die after antigen clearance, a proportion persists and develops into
long-lived memory T cells.

The identification of memory CD4 T-cell heterogeneity in
humans and mice based on homing receptor expression 15 years
ago provided the initial evidence that T-cell memory was anatom-
ically diverse. In humans, heterogeneity in CCR7 expression was
identified among CD45RO+ memory CD4 T cells in blood in
a landmark study, which designated the CCR7hi memory sub-
set as central-memory (TCM) and the CCR7lo memory subset as
effector-memory (TEM) (16, 17). There were also early indications
of memory T-cell heterogeneity in mice based on CD62L expres-
sion in antigen-specific memory CD4 T cells generated from virus
infection or peptide-specific priming, giving rise to CD62Llo and
CD62Lhi memory subsets (18–20).

Anatomic heterogeneity of memory CD4 T cells was subse-
quently demonstrated in mouse models and some human studies.
Jenkins and colleagues showed in whole mouse studies that mem-
ory CD4 T cells generated in response to peptide immunization
were found in both lymphoid and non-lymphoid sites, including
in lung, liver, intestines, and salivary glands (21). Other studies
identified antigen-specific memory CD4 T cells in mouse lungs
following respiratory virus infection (22), or from adoptive trans-
fer of effector cells (23). Similarly, memory CD4 T cells were
identified in mouse bone marrow (24), female reproductive tract
(FRT) (25), and skin (26). Similarly, early studies in human tissue
identified memory CD4 T cells in tonsils and non-lymphoid tis-
sues isolated from surgical explants (27). Additional populations
of human memory CD4 T cells were also identified in skin (28)
and cerebrospinal fluid (29). These initial findings suggested that
memory T cells may circulate through multiple and diverse sites.
However, early evidence of phenotypic and functional distinction
between memory CD4 T cells in tissues compared to those in
spleen or circulation (23, 28), suggested that these tissue memory
populations may be maintained independent of their counterparts
in circulation.

Several new technological approaches were subsequently
implemented to study whether memory T cells could take up
residence and be retained in tissue sites as well as to distinguish
circulating from tissue-resident memory T cells. Parabiosis exper-
iments in which mouse pairs are surgically conjoined to create
shared circulations provided direct evidence for memory CD4 T
cells retained in lung tissues (13), and for memory CD8 T cells
resident in intestines and skin (2, 3). Imaging via confocal or
intravital microscopy also demonstrated that specific T cells are
localized in niches within tissues (12, 30, 31). However, it is still
difficult to assess whether immune cells isolated from peripheral
tissues are present within microcapillaries of the tissues or are res-
ident within the tissue. To overcome this problem, an increasing

number of studies have used in vivo antibody labeling of T cells
with a fluorescently labeled antibody prior to tissue harvest, such
that T-cell accessible to circulation become labeled in vivo with
antibody, while those within tissues and not in circulation are
protected by in vivo labeling (6, 12, 13, 32). In response to infec-
tion, memory CD4 T cells that are protected from in vivo antibody
labeling have been identified in lungs following respiratory infec-
tion with influenza virus, Mycobacterium tuberculosis (Mtb), and
systemic infection with LCMV (12, 13, 15, 32). When combined
with imaging approaches, both circulating and resident memory
CD4 T cells can be identified in mouse lungs and spleen. In the fol-
lowing sections, we present the current state of knowledge about
CD4 TRM in general and the specific role of CD4 TRM in mucosal
sites.

RESIDENT MEMORY CD4 T CELLS AND PROTECTIVE
IMMUNITY
CD4 TRM: GENERAL PROPERTIES
CD4 TRM are defined as non-circulating, memory CD4 T cells
that are not readily accessible to the vasculature and are retained
locally in specific tissue sites. Phenotypically, mouse CD4 TRM are
distinguished from circulating TEM populations based on upreg-
ulated expression of the early activation marker CD69 and the
integrin CD11a (12, 13, 33). CD69+ memory CD4 T cells have
been identified in mouse lungs, skin, and intestine, while spleen
contains only a minority proportion of CD69+ memory CD4 T
cells (12, 13). In humans, CD4 TEM phenotype cells in lungs,
intestines, lymph nodes, and bone marrow express CD69, with
50–60% of spleen CD4 TEM expressing CD69, while TEM circu-
lating in blood uniformly lack CD69 expression (10, 34, 35). The
specific upregulation of CD69 by tissue memory CD4 T cells sug-
gests that memory CD4 T cells in human tissues perceive distinct
signals compared to those circulating in blood (36). While CD8
TRM are also characterized by upregulation of the αE integrin,
CD103 (9), CD4 TRM in mucosal and lymphoid sites in human
and mice generally do not express CD103 (12, 36), except for a
proportion of skin memory CD4 T cells (31). Whether CD4 TRM
in specific sites express other tissue-specific or TRM-specific inte-
grins or adhesion markers is not known, although expression of
the collagen-binding integrins VLA-1 and α2 are associated with
lung effector CD4 T-cell responses and bone marrow memory
CD4 T cells, respectively (37, 38). Functionally, CD4 TRM exhibit
rapid recall function and can produce IFN-γ and IL-17 in mucosal
sites, although the extent to which their functional profile differs
from circulating memory populations is not well characterized.

These observations support the general concept that TRM are
an effective first line of defense against invading pathogens due
to their localization in mucosal tissues that are frequently the
sites of infection. TRM populations are likely derived from clon-
ally expanded populations of effector T cells responding to an
infection, and therefore, contain relatively high frequencies of
T-cell clones specific for pathogens that target individual tissue
sites. This emerging hypothesis postulates that while TRM pro-
vide an immediate in situ immune response to infection, TCM
and TEM located in lymphoid organs provide a delayed response
due to their reliance on migration of APCs for the initiation of
the response. The relative contribution of each component to
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conferring protective immunity will probably differ based on the
tissue(s) that is infected and the nature of the pathogen; however,
this is currently a major research focus. Our knowledge of CD4
TRM and their properties is quickly expanding and it is likely
that they will be identified in additional tissues and implicated in
immune protection against a variety of tissue-tropic pathogens.
A summary of current observations of CD4 TRM in mucosal
sites and their protective capacities in different pathogen models
is presented in Table 1.

LUNG CD4 TRM
The lung or respiratory tract is a major site for entry of viral
and bacterial pathogens, with respiratory infections constituting
the most prevalent cause of illness globally and throughout an
individual’s lifetime. It has been known for some time that respi-
ratory viral infections induce TEM populations within the lung
that display an activated phenotype (47), and that these popula-
tions persist within the lung tissue and the lung airways following
infection (22). Due to the possible inclusion of cells within the
microcapillaries of the lung, these previous studies found pheno-
typic heterogeneity among lung memory CD4 T-cell isolated from
digested tissue (48). Introduction of virus-specific memory CD4 T
cells directly into the respiratory tract by intranasal delivery, pro-
vided protection to secondary virus challenge (22); however, it was
not established whether these protective subsets were circulating
or remained resident in lung tissue.

CD4 TRM in the lung were the first resident memory CD4 T-
cell population to be extensively characterized and demonstrated
to exhibit protective function. Using the in vivo labeling technique
to analyze lung memory T-cell populations following influenza
virus infection, we found that CD4 TRM were phenotypically dis-
tinct from circulating TEM populations in their expression of high

levels of CD69 and CD11a, and in their residence in a distinct
niche of the lung near airways (12). Further evidence of distinct
properties of lung effector-memory T cells come from adoptive
transfer and parabiosis experiments. These studies showed that
lung memory CD4 T cells specifically migrate back to the lung fol-
lowing adoptive transfer into congenic hosts while spleen-derived
memory CD4 T cells migrate into multiple tissues (13). Parabiosis
further revealed that lung memory CD4 T cells were specifically
retained in lungs while spleen-derived memory CD4 T cells freely
recirculated among multiple lymphoid tissues and entered the
lung, but were not retained there (13). Moreover, lung CD4 TRM
generated following influenza infection were maintained longterm
and were unperturbed in the presence of inhibitors of lymphoid
egress and inducers of lymphopenia (12). Similarly, Mtb infec-
tion in mice resulted in generation of lung-tropic and retentive
CD4 TRM as well as circulating TEM cells (15). Moreover, human
memory CD4 T cells in lung are predominantly a TEM phenotype
with upregulated expression of CD69 (10, 34). Together, these
studies identified a new subset of lung CD4 TRM with distinct
phenotypic, migration, retention, and maintenance properties.

In experimental models of respiratory infection with influenza,
parainfluenza virus, and Mtb, the resulting lung TRM population
is enriched with pathogen-specific CD4 (12, 15, 49) and CD8 T
cells (12). Likewise, the lungs of human subjects that had been
exposed to Mtb contain resident memory CD4 T cells that were
specific for Mtb antigens (50). CD8 T cells specific for influenza
and respiratory syncytial virus are found in higher frequencies
within human lungs than in the spleen, blood, and skin (12, 34,
39). While it is possible to determine Mtb exposure by a PPD skin
test, it is difficult to document the history of influenza and parain-
fluenza virus infection in human subjects. The high prevalence of
IAV infection among the population, however, suggests that the

Table 1 | Observations of CD4TRM in mucosal tissues.

Tissue Pathogen/antigen Features Reference

Lung Influenza virus CD69+, cluster around airways (12, 13)

Unaffected by FTY720 treatment

Lung-tropic, protect against second infection

Influenza virus (humans) Virus-specific memory CD4 T cells enriched in lung, CD69+, VLA-1+ (34, 39)

Mycobacterium tuberculosis CD69+, CXCR3hi, PD-1hi, KLRG1lo, lung-tropic. Protect against second infection (15)

Mycobacterium tuberculosis Lung CD4 TRM generated by BCG vaccination (40)

CD4 TRM enhances MHC II on lung macrophages during 2° challenge

Nippostrongylus brasiliensis Pathogen-specific production of IL-4 and IL-13 (41)

Lung TRM unaffected by FTY720 treatment

Protect against second infection

Female genital

tract

Herpes simplex virus

(humans)

Enrichment of antigen-specific CD4 T-cell clones in cervical cytobrush specimens

and genital lesions

(42, 43)

Herpes simplex virus (mice) CD4 TRM generated in vaginal mucosa (no CD8) (44)

IFN-γ-mediated protection against 2° HSV challenge

Gut Listeria monocytogenes Primary and second oral infection Listeria generates long-lived antigen-specific

T-cell population in LP

(45)

N/A Homeostatic proliferation of naïve CD4 T cells in MLN generates gut-tropic,

α4β7
+, TH17 cells

(46)
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compartmentalization of IAV-specific T cells within the lung is
likely a consequence of local infection.

The elevated precursor frequency of pathogen-specific cells in
the lung is thought to direct an early in situ immune response
against secondary infection. In support of this hypothesis, it has
been reported that there is local activation and expansion of mem-
ory CD4 T cells in the lung upon secondary IAV challenge (49).
We have likewise found that lung CD4 TRM can produce effector
cytokines at early time points following secondary viral infection
(33). Rapid recall of memory CD4 T cells in the lung has also been
suggested as being integral for protection against Mtb in both
mouse and human studies (50–52). Lung CD4 TRM in mice were
found to mediate superior protective responses to influenza virus
challenge compared to spleen-derived memory CD4 T cells (13).
Interestingly, influenza-specific lung CD4 TRM protected from
morbidity of infection while also mediating rapid viral clearance,
and carried out these functions in situ without extensive prolifer-
ative expansion or migration to other sites (13). In a mouse Mtb
infection model, CD4 TRM cells conferred better protection from
secondary Mtb infection in susceptible hosts than their circulating
intravascular counterparts (15). The mechanisms for protection
by CD4 TRM in the lung have not yet been elucidated. While IFN-
γ is important for memory CD4 T-cell-mediated recall responses
to influenza (53, 54), protection for Mtb was not associated with
IFN-γ production (15).

In humans, protection due to resident T cells is difficult to
assess. One group has used the novel approach of bronchoscopic
antigen challenge with purified protein derivative of Mtb (PPD)
to assess the role that local lung memory T cells play in the sec-
ondary immune response to Mtb infection. By comparing the local
lung immune response (after bronchoscopic challenge) of healthy
individuals with a positive PPD skin test to healthy PPD negative
controls they observed rapid mobilization of CD4 T cells into the
lung airways (48 h) resulting in a significant increase in antigen-
specific T cells (55). These early responding cells did not undergo
proliferative expansion as assessed by Ki67 staining, suggesting that
they may represent lung TRM cells that migrate into the airways in
response to antigen challenge (55). Together, these findings indi-
cate the importance of lung TRM in protecting against respiratory
infections, suggesting that targeting generation of persisting CD4
TRM in the lung would provide optimal protection.

REPRODUCTIVE TRACT MUCOSAL CD4 TRM
The mucosal surfaces of the male and FRT are major sites of
entry for sexual transmitted diseases such as herpes simplex virus
(HSV), Neisseria gonorrhoeae, human papillomavirus, and human
immunodeficiency virus (HIV) – all of great public health con-
cern. The reproductive tract is also prone to opportunistic fungal
and bacterial infections with increased incidence in immunocom-
promised (56) and immunosuppressed patients (57), indicating a
role for T-cell mediated immunity in preventing these infections.
CD4 T cells are thought to be especially important in controlling
genital HSV-2 infection, with mouse studies showing that CD8
deficient mice can be successfully vaccinated against disease while
CD4 deficient strains are not (58, 59). The importance of CD4 T
cells in protection against HSV-2 was supported by the finding that
intravaginal HSV-2 infection generates CD4 TRM but little CD8

TRM. These vaginal mucosal memory CD4 T cells in the FRT are
sufficient for protective responses to HSV (44) even in the absence
of CD8 T cells. In humans, CD4 T cells specific for multiple viral
epitopes localize to the uterine cervix (42, 43, 60) and this resi-
dent population is thought to limit the severity of recurrent HSV
infections (43). As is the case with HSV-2, pre-existing CD4 TRM
cells in the RT may be important for conferring protection against
other infections of the urogenital tract such as N. gonorrhoeae,
Chlamydia muridarum, and Candida infections (61–64).

The relative contribution of CD4 and CD8 T cells in providing
protective immunity in the reproductive tract can vary based on
the nature of the invading pathogens; however, new studies indi-
cate that CD4 and CD8 TRM can provide early in situ immune
responses to infection of the FRT. CD8 TRM have been targeted
in the quest to develop a vaccine against HIV because CTLs are
thought to be most important for killing virally infected cells. Non-
human primate models reveal that the simian immunodeficiency
virus (SIV) establishes a small founder population of infected cells
in the local tissue after infection (65, 66). This founder population
serves as an expanding source of virus that contributes to virus
dissemination (66), and presents an opportunity for total elimi-
nation of mucosal viral infections during a narrow window of time
early after infection. This task may require early in situ immune
responses mounted by local TRM populations.

CD4 TRM IN THE INTESTINES
The intestinal mucosa is a major interface where the body is
exposed to environmental antigens, including benign food anti-
gens, beneficial commensal microorganisms as well as dangerous
pathogens. Within the intestine are multiple specialized popu-
lations of adaptive and innate immune cells that contribute to
various immune functions including: oral tolerance to food anti-
gens, tolerance of commensals, and protective immunity against
enteric pathogens (67). These populations include memory CD4
T cells, some of which are permanently resident CD4 TRM. Gut
T cells are distributed throughout the organized lymphoid tissues
that are found throughout the intestines including: Peyers patches,
gut-associated lymphoid tissue (GALT), and isolated lymphoid
follicles (68, 69). Additionally, gut T cells are also found diffused
throughout the lamina propria (LP) and within the intraepithelial
(IEL) compartment. The majority of the IEL T cells are CD8+

T cells that also express CD103 (70–72) with a lower proportion
of CD4 T cells in the IEL compartment. However, CD4 T cells
comprise the majority of T cells in the LP and they express an
effector-memory phenotype (CD62LloCD44hi) (67). In humans,
the vast majority of memory CD4 T cells in healthy small and large
intestines express CD69, the putative TRM marker (10).

Intestinal resident memory CD4 T-cell populations are shaped
by commensal bacterial species. One particular commensal
microbe, segmented filamentous bacteria (SFB), was recently
shown to induce TH17 cells in the LP of mice (73, 74). TH17 cells
provide mucosal immunity against bacterial pathogens through
the production of IL-17 and IL-22 (73, 74). In addition to TH17
cells, commensal bacteria induce resident T-cell populations with
regulatory function. Studies have shown that a significant pro-
portion of Tregs in the intestines are conventional T cells that are
converted to a regulatory phenotype in response to the commensal
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bacterium of the intestinal microbiota (75). Further research
revealed specific strains of Clostridium, within mouse intestinal
commensals, which were sufficient to induce gut resident Tregs in
mice (76). This group further showed that a selected mixture of
Clostridia strains from the human microbiota also induced Tregs

in mice after colonization of the intestines (77). Gut infections
with pathogenic bacteria, likewise, induce CD4 TRM populations
within the LP. In experimental systems, memory CD4 T cells in
the LP are induced by oral infection with bacterial pathogens like
Listeria monocytogenes (45).

Studies have employed parabiosis and tissue-grafting
approaches to show that gut T-cell populations are maintained
independently of systemic populations (2, 78, 79). The mucosal
immune system of the gastrointestinal tract is a compartmental-
ized division, including resident memory T-cell populations with
both pro- and anti-inflammatory functions, which provide impor-
tant functions for the physiology of the intestines. It has been
shown that gut APCs acquire antigen and migrate to the draining
mesenteric lymph nodes where they activate T cells, imprinting
the resulting effector and memory T cells to migrate specifically
back into the intestines from circulation (80). This migration tro-
pism of gut memory CD4 T cells is similar to that observed with
lung CD4 TRM, and may be a distinguishing feature of mucosal
CD4 TRM.

TRM IN CHRONIC INFLAMMATORY DISEASES
CD4 TRM have been investigated mainly for their role in providing
protective immunity to pathogens that target specific tissues. How-
ever, there has been emerging evidence that this population may
play a significant role in the pathogenesis of certain autoimmune,
allergic, and atopic diseases. In mucosal sites, aberrant immune
function and cross-reactivity of CD4 TRM in peripheral tissues
are being investigated in inflammatory bowel disease (IBD) and
asthma as possible causes of chronic or remitting immunopathol-
ogy. In addition, there is evidence that CD4 TRM may play deleteri-
ous roles in inflammatory disorders of barrier surfaces such as skin.
Understanding how CD4 TRM can promote undesirable inflam-
matory effects in the tissues is important to develop more targeted
strategies for therapeutic control of inflammatory diseases.

Allergen-specific TRM populations can be established within
lungs following local immune responses induced by exposure to
allergens. As is the case following pathogen infection of barrier
surfaces, a subset of the effector cells responding to the allergen
is imprinted with a TRM phenotype and retained within the tis-
sue. Memory T cells, particularly TH2 cells, are strongly involved
in the pathogenesis of the chronic manifestations of allergic and
atopic diseases (81–83); therefore, their localization at particular
tissues make them prone to being reactivated and causing chronic
disease. It will be interesting to determine whether CD4 TRM cells
are established and maintained within the lung in mouse mod-
els of allergic asthma and their role in asthma pathogenesis and
also in maintaining the hyper-responsive condition in the tissues.
Pathogenic functions of lung CD4 TRM could involve immune
cell recruitment into the lung airway upon secondary and chronic
allergen exposure.

Inflammatory bowel disease is a chronic inflammatory dis-
ease of the gastrointestinal tract characterized by persistent

inflammation of the gut or, in some cases, is manifested as a
relapsing–remitting syndrome with flare-ups and resolution (84,
85). The chronic recurrence of disease and the restriction of the
inflammation to the gastrointestinal tract suggest a role for resi-
dent memory T cells in the pathogenesis of IBD. TH1 and TH17
cells have both been implicated in the pathogenesis of the disease.
In experimental models of IBD circulating colitogenic memory
CD4 T cells required the presence of gut commensals to induce
inflammation and IBD pathogenesis (86). In mouse models of
IBD transfer experiments of gut CD4 TRM transferred disease
to RAG2−/− mice (87). This demonstrates resident memory CD4
T-cell populations in the gut can propagate local inflammation
leading to chronic IBD symptoms.

Psoriasis is another chronic inflammatory disease caused by
T-cell responses at a barrier surface (88), with pathogenesis of rel-
evance to inflammation in mucosal sites. Disease pathogenesis is
driven by T-cell migration into the epidermis and local produc-
tion of inflammatory cytokines. TH1 and TH17 cells in particular
have been linked to disease pathogenesis (89, 90). Skin resident
memory T cells that are pathological are thought to influence
disease recurrence (91). It was recently found that there were ele-
vated numbers of CD8 and CD4 T cells in the dermis of resolved
psoriasis lesions. These cells expressed markers associated with
TRM (92), including CD103 and the α1β1 integrins expressed
on epidermal CD4 T cells (88, 92). It is thus possible that chronic
inflammation induces expression of integrins, which mediate cell–
cell interactions involved in T-cell retention in the epidermis and
establishment of CD4 TRM. The harmful effects of TRM in cases
of tissue-specific chronic inflammation, as seen in asthma and
psoriasis, make TRM ideal targets for therapeutic interventions.

ESTABLISHMENT AND MAINTENANCE OF CD4 TRM
The factors involved in the establishment and maintenance of
TRM populations within non-lymphoid tissues are not clearly
understood. Entry of effector T cells into non-lymphoid mucosal
sites is controlled by the expression of certain chemokine recep-
tors, selectins, and integrins, which are universally upregulated
after T-cell activation, regardless of the secondary lymphoid tissue
where cells were activated (93). It has also been shown, however,
that T cells primed by dendritic cells in certain lymphoid sites
are programed to home specifically to certain tissues (94, 95).
This tissue-specific homing is mediated through the expression
of various integrins and chemokine receptors, which are involved
in cell migration into specific tissues. For example, chemokine
receptor chemokine receptor 9 (CCR9) and integrin α4β7 tar-
get T cells to the intestines (96, 97), cutaneous leukocyte antigen
(CLA) targets cells to the skin (98), and lung DC promote effec-
tor T-cell homing to the lung through upregulation of CCR4 (99)
(Figure 1). Whether these specific chemokine receptors persist in
TRM remains to be established, and identifying specific tissue sig-
natures for TRM in distinct sites is an active area of study in the
field.

Effector T cells responding to infection/inflammation within
non-lymphoid or mucosal tissues may further respond to inflam-
matory and/or tissue-specific environmental factors, which impart
them with a resident memory phenotype. For CD8 T cells, expres-
sion of transforming growth factor-beta (TGF-β) within certain
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FIGURE 1 | Generation and maintenance of resident memoryT-cell
subsets. Resident memory T cells in mucosal tissues are likely derived from
recruited effector T cells that originate in lymphoid organs. Effector cells can
be imprinted with specific chemokine receptors that direct migration to
individual tissues (Box 1). Most of the effector cells die, but a proportion of
the effector or primed T cells differentiates into long-lived resting memory T
cells. There are three major types: central-memory T cells (TCM), which
migrate back to lymphoid tissue, effector-memory T cells (TEM), which

circulate through peripheral tissues and tissue-resident memory T cells
(TRM), which are retained in mucosal tissue sites and take up long-term
residence there without recirculating. Retention of TRM in peripheral tissues
is thought to be mediated by the inhibition of egress through S1PR1 and by
cell–cell interactions facilitated by integrin expression (Box 2). Maintenance
and homeostasis of TRM in mucosal tissues may depend on pro-survival
cytokines, constitutive low-level inflammation, and the persistence of antigen
at the site (Box 3).

tissues (100, 101) induces the expression of the mucosal integrin,
αE(CD103)β7 (102, 103), which is responsible for retention of
CD8 TRM in non-lymphoid tissues. CD4 TRM at mucosal sites
express CD103 at a much lower frequency compared to CD8 TRM
(10, 12) and may be maintained by other, unknown mechanisms.
Other integrins may be involved in CD4 TRM retention and resi-
dence, which may represent a major difference between CD4 and
CD8 TRM in the same tissue. It has been found that the vast
majority of CD4 T cells persisting in the lung airways following
influenza virus infection express the α1β1 integrin (VLA-1) while
virus-specific cells in lymphoid sites have low expression of VLA-1
(37). Secondary infection with IAV revealed that these VLA-1+

cells represented 80% of the early producers of IFN-γ (37) sug-
gesting that the α1β1 integrin might be a marker of lung CD4
TRM cells. CD11a or LFA-1 is also expressed at higher levels in
lung CD4 TRM compared to circulating CD4 TEM (12, 13), and
may also contribute to tissue retention.

The lectin CD69 is constitutively expressed on CD4 and CD8
TRM in all the tissues that have been described (3, 13, 78, 104). Tra-
ditionally, CD69 has been thought of as an early activation marker
of T cells, being transiently upregulated early after activation
through the T-cell receptor (105) or in response to proinflam-
matory cytokines, including type I interferons (IFN-α and IFN-β)
and tumor necrosis factor-α (106, 107). TRM cells in the lung
constitutively express elevated levels of CD69 while T cells of the

same specificities express low levels of CD69 in the lymph node
and spleen (12). This local expression of CD69 by TRM may be
the result of continued stimulation through encounters with per-
sistent antigen at tissue sites, which has been observed following
influenza virus (108, 109). We found that acquisition of TRM
properties by effector cells adoptively transferred into congenic
hosts in a manner that is independent of antigen (13). Induction
of CD69 expression by T cells within tissues may therefore be the
result of the environmental milieu associated with mucosal tis-
sues, which is likely to be quite different from that of lymphoid
organs.

Tonic signaling, through low levels of cytokines produced in
response to environmental antigens, may also be involved in the
differentiation of effector and effector-memory T cells into TRM.
CD69 is thought to play a functional role in T-cell retention within
tissues because of its regulation of sphingosine-1-phosphate recep-
tor 1 (S1PR1) (110), which play a role in the egress of lymphocytes
from certain tissues (111). A summary of processes involved in
the recruitment, retention, and homeostasis of TRM in periph-
eral tissues is provided in Figure 1. Further studies are needed to
define the exact molecular determinants of CD4 TRM establish-
ment and maintenance. Defining the differences and similarities
between the requirements for CD4 and CD8 TRM development
and maintenance in tissues is also of utmost importance for the
targeting of these new subsets by vaccines and therapeutics.
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IMPLICATIONS FOR VACCINES
As outlined in Table 1, there is now evidence for the presence
CD4 TRM in multiple mucosal sites and roles for this subset in
protection against pathogenic infections (Table 1). These findings
present important implications for future therapeutic develop-
ments for promoting protective responses in situ. In the lung,
generation of TRM populations targeting respiratory pathogens
may significantly reduce the mortality and morbidity associated
with these infections. In the case of influenza virus, the more
common subunit vaccine is administered by intramuscular immu-
nization, while the live attenuated influenza virus vaccine (LIAV),
which is more commonly used for younger individuals, is admin-
istered intranasally. Both types of vaccine have been optimized for
the generation of protective antibodies; however, both vaccines
can induce circulating virus-specific T cells (112, 113) with the
LIAV vaccine thought to generate more tissue-tropic T cells (114).
A vaccine that induces memory T cells that recognize conserved
epitopes from internal viral proteins could form the basis of a
universal influenza virus vaccine. It may also be important that
such a vaccine is administered in a manner that generates protec-
tive memory T-cell populations resident in the lung for optimal
protection, likely via the intranasal route.

In the case of Mtb, current intramuscular bacille Calmette–
Guérin (BCG) vaccination protocols show reliable protection
during childhood but protection wanes during adulthood (115).
This protection is mediated by TH1 memory cells; however, the
exact effector mechanisms by which Th1 memory protect is not
fully understood. Recent attempts to boost BCG protection by
parenteral vaccination have yielded disappointing results. For
example, clinical trials of the recombinant vaccinia virus booster
vaccine, MVA85A, did not show better efficacy than the BCG vac-
cine (116) even though the new vaccine generates highly durable
Mtb-specific TH1 responses (117). This result may have been fore-
shadowed by mouse experiments showing that parenteral boost
with MVA85A after BCG priming showed no improvement in
protection (118–121), compared with BCG vaccination alone,
even with each vaccine showing high immunogenicity. Improved
protection over BCG alone is only observed after multiple immu-
nizations, which induce entry of cells into non-lymphoid tissues
(122). These results suggest that memory T-cell mediated protec-
tion against respiratory Mtb infection may depend on the early
in situ effector functions of TRM populations. Optimal protec-
tion may require both parenteral and mucosal administration of
vaccines, which will generate both TRM and lymphoid memory
populations.

The prevalence and protective capacities of TRM in the FRT has
encouraged efforts for generating in situ vaccines for protection
against sexually transmitted diseases. A new strategy for generating
TRM in the FRT involves a “prime and pull” technique in which
parenteral vaccination (prime) is combined with recruitment of
activated T cells into the genital tract by local application of a
chemokine (pull). When applied to the mouse HSV-2 infection
model, this approach resulted in the recruitment but not reten-
tion of CD4 memory T cells, although HSV-2-specific CD8 TRM
were generated (7). These results suggest that the establishment of
CD4 TRM in the reproductive tract may require additional signals,
such as those present during HSV infection (44, 123, 124). In other

studies for HIV vaccines, intranasal vaccination was found to gen-
erate higher anti-SIV T-cell responses in the colorectal mucosa,
increased numbers of gut-tropic α4β7 cells in circulation, and a
longer disease-free period compared to vaccination via the intra-
muscular route (125). These findings suggest some connections
between mucosal sites important for assessing the optimal route
of administration, and perhaps suggesting that a pull step may not
be necessary. Further studies are needed to define the signals neces-
sary for the local differentiation of CD4 T cells into TRM in order
to develop vaccination and therapeutic protocols that harness the
unique properties of these cells to prevent and fight site-specific
infections.

CONCLUDING REMARKS
Compartmentalization of immunological memory in diverse non-
lymphoid and mucosal tissues may be a central mechanism under-
lying the long-term persistence and efficacy of T-cell memory to
systemic and site-specific pathogens. CD4 TRM in mucosal tissues
may be optimally poised to orchestrate the immune response to
recurring tissue-tropic infections. Developing vaccines that there-
fore generate this important population in targeted tissues should
be a major focus of future research; however, greater understand-
ing of the mechanisms involved in imprinting tissue-resident CD4
T cells is needed. Elucidating strategies to target TRM in mucosal
and tissues will also allow for the development of therapeutics that
reduce TRM populations in various tissues in instances of aberrant
immune responses and immunopathology.
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