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Abstract Mechanical forces between cells and extracellular matrix (ECM) influence cell shape

and function. Tendons are ECM-rich tissues connecting muscles with bones that bear extreme

tensional force. Analysis of transgenic zebrafish expressing mCherry driven by the tendon

determinant scleraxis reveals that tendon fibroblasts (tenocytes) extend arrays of microtubule-rich

projections at the onset of muscle contraction. In the trunk, these form a dense curtain along the

myotendinous junctions at somite boundaries, perpendicular to myofibers, suggesting a role as

force sensors to control ECM production and tendon strength. Paralysis or destabilization of

microtubules reduces projection length and surrounding ECM, both of which are rescued by muscle

stimulation. Paralysis also reduces SMAD3 phosphorylation in tenocytes and chemical inhibition of

TGFb signaling shortens tenocyte projections. These results suggest that TGFb, released in

response to force, acts on tenocytes to alter their morphology and ECM production, revealing a

feedback mechanism by which tendons adapt to tension.

DOI: https://doi.org/10.7554/eLife.38069.001

Introduction
Cells in all multicellular organisms are exposed to mechanical forces through adhesions to neighbor-

ing cells and to the extracellular matrix (ECM), as well as the ebb and flow of the environment. Force

has been shown to influence cellular processes such as cell division, survival, migration, and differen-

tiation (Behrndt et al., 2012; Culver and Dickinson, 2010; Hamada, 2015; Keller et al., 2008;

Roman and Pekkan, 2012). Cellular responses to force include the activation of cell surface recep-

tors such as integrins (Itgs), G-protein-coupled receptors (GPCRs), transient receptor potential (TRP)

ion channels, and Piezo channels (Busch et al., 2017; Chachisvilis et al., 2006; Maartens and

Brown, 2015; Mederos y Schnitzler et al., 2008; Popov et al., 2015; Wu et al., 2017). Despite

recent insights into the nature of such responses, few in vivo studies have investigated how cells

adapt to force and alter the ECM landscape to strengthen or weaken it accordingly (Maeda et al.,

2011; Ng et al., 2014).

The musculoskeletal system bears among the strongest forces experienced by any tissue, such as

the tensional forces exerted upon tendons and ligaments (Heinemeier et al., 2013; Wang, 2006).

Tendons can withstand such forces due to the specialized organization of collagen (Col) fibers and

proteoglycans within each tendon fibril. Tendon injuries are extremely common and debilitating,

especially in athletes, the elderly, and patients with neuromuscular diseases such as muscular
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dystrophy (Bönnemann, 2011; Walden et al., 2017). Despite their prevalence, little is known about

how tendon fibroblasts (tenocytes) respond in vivo to tensional force at muscle attachments, or how

they adapt to changes in mechanical load. Tendons form a variety of attachment sites - connecting

muscles to cartilages and bones as well as other muscles and soft tissues. A myotendinous junction

(MTJ) is a specialized ECM-rich region at the interface of muscle-tendon attachment sites that func-

tions as the primary sources of force transmission. Each type of attachment bears varying levels of

force, which correlates with distinct composition and organization of its tendon ECM (Ker et al.,

2000; Wang, 2006). While extensive research has been conducted to evaluate the effects of exer-

cise on size and strength of muscle fibers, less is known about how it effects tendon morphology

and function. Understanding this is key to gaining insights into the causes of tendon defects and

developing new treatments for tendon injuries or atrophy.

Previous studies in vitro have suggested that tenocytes actively respond to changes in force in

their environment by modulating ECM composition and organization (Maeda et al., 2010;

Rullman et al., 2009). Excised tendons stretched in collagen gels, as well as tissue samples from

chronic Achilles tendonitis patients, upregulate various collagens and ECM-modulating proteins, par-

ticularly Col3, Matrix Metalloproteinase 9 (MMP9) and MMP13 (Ireland et al., 2001; Pingel et al.,

2014). In addition, collagen fibril size decreases and fibril packing increases in tendinopathies, likely

due to increased ECM turnover (Pingel et al., 2014). These studies have suggested ECM modifica-

tions and morphological changes in tendinopathies but they have largely been limited to cultured

tendons or tendon fragments. In vivo, several growth factor signaling pathways and transcription fac-

tors have been implicated downstream of mechanical force in tendon development and repair in

mice. These include several members of the Transforming Growth Factor (TGF) superfamily, includ-

ing TGFb and Bone Morphogenetic Proteins (BMPs), as well as Fibroblast Growth Factors (FGF)

(Gumucio et al., 2015; Nourissat et al., 2015). Mice lacking the transcription factor Scleraxis (Scx)

show severe defects in force-transmitting and load-bearing tendons, suggesting that Scx is essential

for maintenance of tendon ECM in response to mechanical force (Murchison et al., 2007). In addi-

tion, Scx directly regulates transcription of tendon ECM components, including Col1a1 (Havis et al.,

2014; Subramanian and Schilling, 2015). Our studies of the ECM protein Thrombospondin 4b

eLife digest Tendons – the fibrous structures that attach muscles to bones – must withstand

some of the strongest forces in the body. Little is known about how tendons develop or adapt to

withstand these forces. Studies have shown that muscles respond actively to force, as seen during

exercise. Do tendons respond in similar ways?

Tendons consist of collagen fibers surrounded by a ‘matrix’ of proteins. Also embedded in the

matrix are specialized cells called tenocytes, which regulate the production of the different

components of the tendon. A genetic modification allows tenocytes to be tracked using a

fluorescent gene product that can be viewed using a microscope. Subramanian et al. have now used

this technique in zebrafish to watch how the behaviors of the tenocytes change in response to forces

applied to the tendon.

Subramanian et al. show that at the start of muscle contraction, tenocytes put forth long

projections from their cell bodies that extend perpendicular to the muscle fibers. This suggests that

the projections act as force sensors. Consistent with this idea, paralyzing the muscle causes the

projections to shrink. This shrinkage correlates with changes in how the tendon matrix proteins are

organized.

Further investigation reveals a force-responsive signaling pathway in the tenocytes that controls

how these cells grow and produce key tendon matrix proteins. Subramanian et al. believe this

pathway is central to how tendons adapt to the forces applied during muscle contraction.

A better knowledge of how force affects tendon structure could ultimately help to improve

treatments for tendon injuries and tendon atrophy. In particular, understanding how force affects

how tenocytes develop could help researchers to develop new ways to regenerate and repair

tendons.

DOI: https://doi.org/10.7554/eLife.38069.002
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(Tsp4b) in zebrafish have shown that it is an essential scaffolding protein for tendon ECM assembly,

required to maintain muscle attachments subjected to mechanical force via muscle contraction, and

able to strengthen attachments when overexpressed (Subramanian and Schilling, 2014).

Here, we show that mechanical force causes remarkable morphological changes in tenocytes in

zebrafish, which form a dense curtain of projections at MTJs, and in their surrounding ECM. Teno-

cyte projections have been reported in electron micrographs of mammalian tendon fascicles yet how

they form and their functions in tendon development remain largely unexplored (Kalson et al.,

2015; Knudsen et al., 2015). Our results suggest that tenocytes play an active role in sensing force

and thereby regulating ECM composition and overall tendon strength. In addition, we show that the

force of muscle contraction regulates the growth and branching of tenocyte projections via TGFb

signaling. Such feedback between tenocytes and ECM may be a common mechanism for force adap-

tation within the musculoskeletal system.

Results

Tenocytes elongate with the onset of muscle contraction
Tenocytes in zebrafish express two Scx orthologues, scxa and scxb (Chen and Galloway, 2014).

Using a bacterial artificial chromosome (BAC) transgenic line that expresses mCherry under the con-

trol of regulatory elements for scxa, Tg(scxa:mCherry), we examined the morphogenesis of teno-

cytes during embryonic (20 hr post fertilization (hpf) to 72 hpf) and early larval (72 hpf to 5 dpf)

zebrafish development. Expression of scxa:mCherry was first detected at 20 hpf in muscle and ten-

don progenitors of the somites. In a developing zebrafish embryo, muscles in the trunk establish

attachments at bilateral, ‘chevron’ shaped somite boundaries that subdivide each muscle segment

forming the vertical myoseptum (VMS). In addition, dorsal and ventral compartments within each

somite are subdivided by a horizontal myoseptum (HMS), which extends laterally from the

notochord (NC), along which oblique myofibers attach. By 24 hpf, as the first myofibers differenti-

ated, scxa:mCherry expression in muscle progenitors diminished and became progressively

restricted to scattered tendon progenitors along the HMS and VMS (~24 cells per VMS) (Figure 1A,

D,G) (Figure 1—video 1). Cells with the highest levels of scxa:mCherry expression were located lat-

erally, adjacent to the HMS, while more medial cells expressed lower levels (Figure 1A’, D’, G’). By

36 hpf, scxa:mCherry+ cells doubled in number (~44/VMS) and became increasingly localized to the

HMS and VMS at future MTJs (Figure 1B,E,H) (Figure 1—video 1). At this stage, cells with the high-

est scxa:mCherry expression that were located medially and in the ventral somites began to extend

projections laterally along the VMS, perpendicular to the orientation of muscle fibers (Figure 1B’, E’,

H’). By 48 hpf these projections extended 70–80 mm (Figure 1C,F,I). 3D-reconstructions of confocal

stacks at 60 hpf revealed that this polarized network of tenocyte projections covered the entire VMS

(Figure 1C’, F’, I’; Figure 1—figure supplement 1). Time-lapsed videos of Tg(scxa:mCherry)

embryos capturing images at 20 min intervals from 48 to 60 hpf showed that tenocyte projections

are dynamic and constantly changing in length and branching pattern (Figure 1—video 2). Teno-

cytes along the HMS near the NC have shorter, more convoluted projections than tenocytes along

the VMS (Figure 1I’; Figure 1—figure supplement 1B). Thus, during the period in which axial

muscles in the trunk begin to contract and embryos become motile, tenocytes align along future

MTJs and undergo dramatic changes in cell shape that correlate with the establishment and

strengthening of muscle attachments.

Cranial tendons also undergo dramatic morphological changes during the onset of muscle attach-

ment and contractility. A cluster of scxa:mCherry+ tenocyte progenitors is first observed at 36 hpf in

the ventral midline near the future attachment sites of the sternohyoideus (SH) and adductor mandi-

bulae (AM), which are among the earliest muscles to differentiate at 53 hpf (Schilling and Kimmel,

1997). By 48 hpf, three major clusters of scxa:mCherry+ tenocytes are visible ventrally, one anterior

that forms ventral mandibular, hyoid, and oculomotor muscle tendons and two posterior clusters

associated with each SH (Figure 1—figure supplement 2A). The anterior cluster subdivides over 14

hr into separate attachment sites for mandibular (IMA, IMP, AM) and hyoid (IH) muscles (Figure 1—

figure supplement 2B). Double labeling with anti-MHC and anti-mCherry antibodies revealed a

tight correlation between the timing of the onset of muscle contraction and tenocyte morphogenesis

in each of these clusters (Figure 1—figure supplement 2A,B,D,E,G,H). Cranial myofibers remain
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immotile at 48–62 hpf and their corresponding tenocytes form clusters of rounded cells at future

attachment sites. These tenocytes then undergo compaction and elongation as contractions begin

at 72 hpf (Figure 1—figure supplement 2C,F,I).

Tenocyte elongation requires muscle contraction
Based on the close correlation between the onset of muscle contraction and tenocyte morphogene-

sis, we hypothesized that mechanical force serves as a cue for tenocytes to elongate and form

Figure 1. Axial tenocyte morphogenesis. (A–C) Lateral views of live Tg(scx:mCherry) embryos showing developing tenocytes (A - 24 hpf, B - 36 hpf, C -

48 hpf). (A’–C’) Transverse views from 3D projections showing the positions of developing tenocytes in relation to the notochord (NC) and neural tube

(NT) along the horizontal (HMS) and vertical myosepta (VMS) (arrows). Tenocytes form projections at 36–48 hpf (B’ and C’). (D–F) Diagrams of lateral

views showing the morphology of tenocytes in the developing somites. (D’–F’) Diagrams of transverse views from 3D projections of live Tg(scx:mCherry)

embryos show the development of tenocyte projections (E’ and F’). (G–I) Lateral views of co-immunostained Tg(scx:mCherry) embryos showing

developing tenocytes (anti-mCherry - white) and muscle fibers (anti-MHC - green) (G – 24 hpf, H – 36 hpf, I – 48 hpf). (G’–I’) Transverse views from 3D

projections of live Tg(scx:mCherry) embryos showing the positions of developing tenocytes (arrowheads in G’ and H’) in relation to the myotome. Scale

bars = 20 microns.

DOI: https://doi.org/10.7554/eLife.38069.003

The following video and figure supplements are available for figure 1:

Figure supplement 1. Axial tenocytes form polarized projections orthogonal to muscle fibers.

DOI: https://doi.org/10.7554/eLife.38069.004

Figure supplement 2. Cranial tenocyte morphogenesis correlates with onset of muscle contraction.

DOI: https://doi.org/10.7554/eLife.38069.005

Figure 1–video 1. Axial tenocyte progenitors align along HMS and VMS following muscle fiber differentiation.

DOI: https://doi.org/10.7554/eLife.38069.006

Figure 1–video 2. Tenocyte projections are dynamic.

DOI: https://doi.org/10.7554/eLife.38069.007
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projections. To test this idea, we first injected full-length mRNA encoding codon-optimized a-bun-

garotoxin (aBtx), a specific irreversible antagonist of acetylcholine receptors that blocks neuromus-

cular synapses and prevents skeletal muscle contractions (Swinburne et al., 2015;

Westerfield et al., 1990). Embryos injected with aBtx mRNA at the one-cell stage were completely

paralyzed until 60 hpf, after which they gradually recovered motility as aBtx activity declined. Depth-

coded, 3D-reconstructed images of living trunk tenocytes along the MTJs of somites 16–17 at 48

hpf revealed an average reduction of 13 mm (18%) in axial tenocyte projection length in aBtx-

injected embryos compared to uninjected controls (Figure 2A,B,E). Paralyzed embryos also showed

reduced branching complexity in their projections (Figure 2F) and projection density along the VMS

(Figure 2—figure supplement 1). To restore mechanical force, we electrically stimulated aBtx-

injected embryos to induce muscle contractions, as described previously (Subramanian and Schil-

ling, 2014). Stimulation at 48 hpf for 2 min at 20V caused no visible muscle damage or significant

change in tenocyte projection lengths compared to controls (Figure 2C,E) while the same stimula-

tion of aBtx-injected embryos rescued both tenocyte projection length and density along the VMS

almost completely (Figure 2D,E; Figure 2—figure supplement 1). The observed reductions in pro-

jection length and density were caused by paralysis rather than any unanticipated effect of aBtx,

since homozygous mutants paralyzed due to lack of a functional voltage-dependent L-type calcium

channel subtype beta-1 (Cacnb1), necessary for excitation-contraction coupling in muscle, showed

similar (10–15 mm) reductions in projection length (Figure 2—figure supplement 2) (Zhou et al.,

2006). Tenocytes in cacnb1 mutant embryos fail to compact and elongate. Since aBtx-injected

embryos recover from paralysis at 65 hpf, prior to cranial muscle contractions, we compared cranial

tenocyte patterning in immunostained 4 dpf cacnb1 mutant embryos with their siblings. We

observed both a failure of cranial tenocytes to compact and elongate, as well as reduced projections

and frayed myofibers (Figure 2—figure supplement 3). These results indicate a strong correlation

between mechanical force from muscle contraction and tenocyte morphogenesis, suggesting that

force stimulates the dynamic growth and branching of tenocyte projections.

ECM organization at MTJs requires muscle contraction
We previously showed that Tsp4b secreted by tenocytes is essential for ECM organization at MTJs

and strengthens muscle attachments (Subramanian and Schilling, 2014). We hypothesized that

force stimulates tenocytes to secrete Tsp4b from the projections they extend into the tendon ECM.

Consistent with this, injection of tsp4b-gfp full length mRNA into Tg(scxa:mCherry) embryos pro-

duced Tsp4b-GFP protein that localized to MTJs along the attachment sites at 48 hpf (Figure 3A–C,

I). This exogenous Tsp4b-GFP protein was dramatically reduced in aBtx-injected embryos, particu-

larly around projections, and became diffuse compared to uninjected controls (Figure 3D–F,I). Like-

wise, immunohistochemical staining for Tsp4b at 48 hpf in aBtx-injected embryos showed dramatic

reductions along the attachment sites compared to controls (Figure 3G,H,J). In contrast, other ECM

proteins such as laminin (Lam) at 48 hpf and and fibronectin (Fn) at 24 hpf showed no significant

changes at the MTJ in aBtx-injected embryos at 48 hpf (Figure 3—figure supplement 1). Defects in

Tsp4b distribution were due to the lack of mechanical force, since restoring force in paralyzed

embryos through electrical stimulation rescued both local levels and the overall area of Tsp4b pro-

tein localization along the VMS (Figure 3—figure supplement 2). To test the hypothesis that

changes in Tsp4b localization were due to reduced tsp4b gene expression in response to lack of

force, we performed real-time PCR and found a significant reduction in tsp4b expression at 48 hpf in

aBtx-injected embryos, while no significant change in expression was observed at 24 hpf (Figure 3—

figure supplement 3). These results suggest a role for mechanical force in both assembly of tendon

ECM and expression of key MTJ ECM genes during development and demonstrate that muscle con-

tractions regulate the composition and organization of the tendon ECM.

Microtubules maintain tenocyte projections and their interactions with
tendon ECM
Cellular projections in neurons, keratinocytes and pigment cells are rich in microtubules (MTs) and in

some cases F-actin, while filopodial extensions of cells are typically more actin-based (Eom et al.,

2015; Witte et al., 2008). To determine the cytoskeletal structure of tenocyte projections we

injected full-length mRNA encoding eGFP-atubulin and found that this fusion protein localized to
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Figure 2. Tenocyte projection length and branching density is regulated by mechanical force. Lateral views of live Tg(scx:mCherry) embryos (48 hpf)

showing tenocyte projections. Images are pseudocolored by depth from medial (red) to lateral (blue). Control embryos were imaged without

stimulation (A) and after stimulation (B), and the length of tenocyte projections was compared with embryos injected with aBtx and imaged without (C)

and with stimulation (D). Dot plot shows individual data points of tenocyte projection length under different conditions (E). The data points from each

embryo are connected by a vertical line. NS – Not Stimulated, S – Stimulated. (n > 50 data points/embryo in three embryos/sample, p value was

determined through ANOVA 1-way analysis ***<0.00001, **<0.0001). Histogram shows quantification of branch points along tenocyte projections per

tenocyte in 36 hpf control and aBtx injected embryos for every level of branching (1o – primary, 2o – secondary, 3o – tertiary, 4o – quaternary). (n = 4, p

value was determined through ttest *<0.01, ***<0.00001). The measurements used for quantitative analysis and creation of the plots can be accessed

from Figure 2—source data 1 and Figure 2—source data 2.

DOI: https://doi.org/10.7554/eLife.38069.008

The following source data and figure supplements are available for figure 2:

Source data 1. Measurements of tenocyte projection length along VMS.

DOI: https://doi.org/10.7554/eLife.38069.014

Source data 2. Measurement of tenocyte projection branching complexity along VMS.

DOI: https://doi.org/10.7554/eLife.38069.015

Figure supplement 1. Density of tenocyte projections is regulated by mechanical force.

DOI: https://doi.org/10.7554/eLife.38069.009

Figure supplement 1—source data 1. Measurements of projection density along VMS.

DOI: https://doi.org/10.7554/eLife.38069.010

Figure supplement 2. cacnb1 mutants show reduced length and branching of tenocyte projections.

DOI: https://doi.org/10.7554/eLife.38069.011

Figure supplement 2—source data 1. Measurements of Tsp4b localization area.

DOI: https://doi.org/10.7554/eLife.38069.012

Figure supplement 3. Cranial tenocyte patterning and morphogenesis is disrupted in pet mutants.

DOI: https://doi.org/10.7554/eLife.38069.013
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Figure 3. Tsp4b localization to VMS and tenocyte projections requires mechanical force. Lateral views of live control (A–C) and aBtx injected (D–F) Tg

(scx:mCherry) embryos (48 hpf), injected with tsp4b-gfp mRNA showing localization of Tsp4b-GFP (green) (arrowheads) along the VMS and tenocyte

projections (red). (I) Histogram shows the percentage of embryos with Tsp4b-GFP localized to VMS (n = 27, p value calculated by chi-squared

test <0.05). (G–H) Lateral views of immunostained embryos showing Tsp4b protein localization detected immunohistochemically along VMS in control

(G) and aBtx injected (H) embryos. (J) Dot plot shows individual data points of the fluorescent intensity of localized Tsp4b along the VMS in control and

aBtx injected embryos. Three VMSs/embryo were sampled in control and aBtx-injected embryos. (n = 9, p value calculated by Wilcoxon Rank Sum Test

- < 0.0001). Scale bars = 20 microns. The measurements used for quantitative analysis and creation of the plots can be accessed from Figure 3—source

data 1 and Figure 3—source data 2.

DOI: https://doi.org/10.7554/eLife.38069.016

The following source data and figure supplements are available for figure 3:

Source data 1. Count of embryos showing localized or diffuse Tsp4b-GFP.

DOI: https://doi.org/10.7554/eLife.38069.023

Source data 2. Measurements of Tsp4b fluorescence intensities along VMS.

DOI: https://doi.org/10.7554/eLife.38069.024

Figure supplement 1. Early Lam and Fn organization do not depend on mechanical force.

DOI: https://doi.org/10.7554/eLife.38069.017

Figure supplement 1—source data 1. Measurement of Laminin fluoresence intensity along VMS.

DOI: https://doi.org/10.7554/eLife.38069.018

Figure supplement 1—source data 2. Measurement of Fibronectin fluoresence intensity along VMS.

DOI: https://doi.org/10.7554/eLife.38069.019

Figure supplement 2. Tsp4b organization requires mechanical force.

DOI: https://doi.org/10.7554/eLife.38069.020

Figure supplement 2—source data 1. Measurements of Tsp4b localization area.

Figure 3 continued on next page
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MTs along the length of tenocyte projections (Figure 4A–C) (Rusan et al., 2001). Similar injec-

tions of plasmids encoding EGFP-Lifeact-7 failed to show labeled actin in the projections. To deter-

mine if MTs are critical for maintaining projections, we treated embryos with Nocodazole, which

caused them to fragment (Figure 4D,E). Immunohistochemical staining of Nocodazole-treated

embryos for Tsp4b showed scattered Tsp4b + puncta localized at MTJs along the VMS and reduced

Tsp4b protein levels in the VMS (Figure 4F,G,H,I). These results suggest that MTs are the key struc-

tural components of tenocyte projections required to sustain the organization of tendon ECM.

TGFb signaling is required for tenocytes to extend projections in
response to force
Previous studies from primary cultures of tenocytes and stretch tests on isolated tendons in vitro

have proposed a mechanoresponsive role for TGFb signaling (Gumucio et al., 2015; Havis et al.,

2016; Maeda et al., 2011). TGFb secreted by muscles or latent in the ECM of the MTJ could be

released in response to force and thereby regulate both tenocyte morphogenesis and ECM produc-

tion. To address this hypothesis, we treated Tg(scxa:mCherry) embryos with a chemical inhibitor of

TGFb signaling (SB431542 – which blocks TGFb receptors) for 12 hr from 24 to 36 hpf (Chen and

Galloway, 2014). This treatment severely reduced signaling in both muscle fibers and tenocytes as

confirmed by immunostaining for phosphorylated SMAD3 (pSMAD3) in SB431542-treated embryos

compared to controls (Figure 5A–C,E–G,I). In addition, tenocyte projections were reduced in length

by an average of ~20 mm in SB431542-treated embryos (Figure 5D,H,J), similar to the effects of

aBtx (Figure 2B,E). However, unlike embryos injected with aBtx, SB431542-treated embryos contin-

ued to swim actively. These results suggest that TGFbsignaling acts downstream of muscle contrac-

tion to stimulate growth and branching of tenocyte projections. To confirm if muscle contraction is

essential for activation of TGFb signaling, we stained control and aBtx-injected, Tg(scx:mCherry)

embryos with anti-pSMAD3. While control embryos showed strong pSMAD3 localization in the

nuclei of muscles and tenocytes, pSMAD3 staining was strongly reduced in the nuclei of tenocytes in

aBtx-injected embryos (Figure 6A–G). Here, in contrast to embryos treated with SB431542

(Figure 5C,G), paralysis specifically reduced pSMAD3 in tenocytes and not in muscle nuclei. This cor-

related with the reduction in length of tenocyte projections (Figure 6H). These results suggest that

mechanical force from muscle contraction serves as a cue for TGFb mediated signaling in tenocytes

to control their morphogenesis and differentiation.

To further confirm that mechanical force has a role in induction of TGF-b responses in tenocytes,

we stained control and aBtx-injected embryos with or without electrical stimulation, with anti-

pSMAD3 antibody to verify if localization of pSMAD3 in nuclei of tenocytes could be rescued. aBtx-

injected embryos stimulated with mild electric current showed increased pSMAD3 localization in

tenocyte nuclei strongly suggesting that mechanical force from muscle contraction can rescue TGFb

signaling in tenocytes (Figure 6—figure supplement 1).

Tenocyte projections regulate force-dependent gene expression
Previous studies have linked mechanical force with the expression of tenogenic and myogenic genes

(Chen et al., 2012; Maeda et al., 2011). Our results showing similar tenocyte projection defects in

Nocodazole-treated, aBtx-injected and SB431542 treated embryos suggest that they induce similar

changes in expression of force-responsive genes. Real-time PCR analysis on cDNA prepared from 48

hpf control and aBtx-injected embryos revealed that paralysis led to an almost complete loss of

expression of tsp4b, as well as TGFb-induced protein (tgfbip) and, connective tissue growth factor a

(ctgfa), while expression levels of other tendon genes, such as scxa, were unaffected (Figure 6—fig-

ure supplement 2A). All three genes (tsp4b, tgfbip and ctgfa) were restored to control levels of

expression with electrical stimulation (Figure 6—figure supplement 2A). We further validated the

results with digital droplet PCR (ddPCR) on cDNA prepared from FACS sorted tenocytes and whole

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.38069.021

Figure supplement 3. Mechanical force regulates expression of Tsp4b.

DOI: https://doi.org/10.7554/eLife.38069.022
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Figure 4. Microtubule-rich tenocyte projections control tendon ECM localization. Lateral views of live 48 hpf Tg(scx:mCherry) embryos injected with

EGFP-alpha-Tubulin mRNA (A–C) showing localization of a-Tubulin along the length of projections colocalized with mCherry to mark in tenocytes.

Transverse views of 3-D reconstructed live 60 hpf embryos showing tenocyte projections in DMSO-treated (D) and Nocodazole (Noco)-treated (E)

embryos. Transverse view of 3-D reconstructed 60 hpf embryos immunostained for Tsp4b showing localization of Tsp4b in DMSO treated (F) and Noco

treated (G) samples. Quantification of Tsp4b localization intensity in VMS (H) and distribution of Tsp4b aggregates in VMS (I) of DMSO-treated and

Noco-treated embryos. (p value calculated by t-test for samples with unequal variance *<0.05, ***<0.0005). Scale bars = 20 microns. The measurements

used for quantitative analysis and creation of the plots can be accessed from Figure 4—source data 1 and Figure 4—source data 2.

DOI: https://doi.org/10.7554/eLife.38069.025

The following source data is available for figure 4:

Source data 1. Mesurements of Tsp4b fluorescence intensities along VMS.

DOI: https://doi.org/10.7554/eLife.38069.026

Source data 2. Count of Tsp4b aggregates along VMS.

DOI: https://doi.org/10.7554/eLife.38069.027
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embryos respectively. Our ddPCR results from whole embryo cDNA preparation agreed with the

real-time PCR analysis (Figure 6—figure supplement 2B). Real-time PCR analysis of SB431542-

treated embryos showed significant reductions in expression of tsp4b and tgfbip genes (Figure 6—

figure supplement 3A). Loss of tenocyte projections through destabilization of microtubules in

nocodazole-treated embryos also led to reduced expression of tsp4b and tgfbip while expression of

ctgfa and scxa were elevated (Figure 6—figure supplement 3B). Taken together, these results are

consistent with the hypothesis that mechanical force acts through TGFb signaling to regulate teno-

cyte-specific transcription including ECM components such as Tsp4b.

Figure 5. TGFb signaling regulates tenocyte morphogenesis. Lateral views of immunostained Tg(scx:mCherry) control (A–D) and SB431542-treated (E–

H) embryos showing nuclei (DAPI), tenocytes (anti-mCherry) and pSMAD3 (anti-pSMAD3). (I) Localization of pSMAD3 was quantified as fluorescent

intensity of nuclear pSMAD3 signal (marked by yellow dotted ROI) and plotted as a dot plot showing data points (n = 9, p value was calculated by t test

***<0.000005). (D, H) Pseudocolored 3D projections show tenocyte cell projections in control (D) and SB 431542 treated embryos (H). (J) Dot plot shows

individual data points representing tenocyte projection lengths (n = 50 data points/embryo in nine embryos/sample, p value was calculated by

Wilcoxon Rank Sum test ***<0.00005). Representative muscle nuclei are marked by a blue continuous ROI. Scale bars = 10 microns. The measurements

used for quantitative analysis and creation of the plots can be accessed from Figure 5—source data 1 and Figure 5—source data 2.

DOI: https://doi.org/10.7554/eLife.38069.028

The following source data is available for figure 5:

Source data 1. Measurements of pSMAD3 fluorescence intensities in tenocyte nuclei along VMS.

DOI: https://doi.org/10.7554/eLife.38069.029

Source data 2. Measurements of tenocyte projection length along VMS.

DOI: https://doi.org/10.7554/eLife.38069.030
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Figure 6. TGFb signaling in tenocytes requires mechanical force. Lateral views of 48 hpf immunostained Tg(scx:mCherry) control (A–C) and aBtx

injected (D–F) embryos showing nuclei (DAPI), tenocytes (anti-mCherry) and pSMAD3 (anti-pSMAD3) (marked by yellow-dotted ROI). (G) Localization of

pSMAD3 was quantified as fluorescent intensity of nuclear pSMAD3 signal and plotted as a dot plot (n = 4, p value was calculated by t-test **<0.005).

(H) Dot plot shows individual tenocyte projection lengths (p value was calculated by t-test **<0.00005). Representative muscle nuclei are marked by a

blue continuous ROI. Scale bar = 10 microns. The measurements used for quantitative analysis and creation of the plots can be accessed from

Figure 6—source data 1 and Figure 6—source data 2.

DOI: https://doi.org/10.7554/eLife.38069.031

The following source data and figure supplements are available for figure 6:

Source data 1. Measurements of Tenocyte projection length along VMS.

DOI: https://doi.org/10.7554/eLife.38069.036

Source data 2. Measurements of tenocyte nuclei pSMAD3 fluorescence intensity along VMS.

Figure 6 continued on next page
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Discussion
Mechanical forces generated by cells adhering to ECM alter their shapes and functions during devel-

opment, but few studies have investigated the underlying mechanisms in vivo (Dan et al., 2015;

Hamada, 2015; Ladoux et al., 2015). Here we show that early developing tenocytes in zebrafish

express the tenogenic fate determinant, scxa, prior to the differentiation of muscle fibers and

respond to the onset of muscle contraction by elongating and extending an array of polarized pro-

jections. These projections are disrupted by changes in force as is the corresponding organization of

the tendon ECM, which is critical for MTJ function (Subramanian and Schilling, 2014). Our results

show for the first time in vivo that TGFb signaling responses induced by mechanical force from mus-

cle contraction correlate with changes in tenocyte morphogenesis and tendon ECM composition

during tendon development. These results suggest a novel role for tenocyte projections as force

sensors and responders in the feedback between tenocyte and ECM that physically balance

responses to mechanical force (Figure 7).

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.38069.037

Figure supplement 1. TGFb signaling is elevated in response to mechanical force.

DOI: https://doi.org/10.7554/eLife.38069.032

Figure supplement 1—source data 1. Measurements of tenocyte nuclei pSMAD3 fluorescence intensity along VMS.

DOI: https://doi.org/10.7554/eLife.38069.033

Figure supplement 2. Mechanical force regulates expression of genes involved in tendon development.

DOI: https://doi.org/10.7554/eLife.38069.034

Figure supplement 3. TGFb signaling and tenocyte projection integrity affect tendon gene expression.

DOI: https://doi.org/10.7554/eLife.38069.035

Figure 7. TGFb-mediated mechanotransduction is essential for tenocyte differentiation and morphogenesis. (A) In the presence of tensile force from

muscle contraction (1) changes in ECM organization and other factors lead to release of active Tgfb ligand (2). Tgfb ligand binds to receptors on

tenocytes to increase pSMAD3 signaling (3), secretion of ECM components (4) and growth/branching of microtubule rich projections (5). Cartoon

depiction of tenocyte morphogenesis in the presence of mechanical force (during onset of muscle contraction in embryonic development or through

electrical stimulation of paralyzed embryos). (B) In the absence of mechanical force (before onset of muscle contraction or in paralyzed embryos) there

is reduced active Tgfb ligand, pSMAD3 signaling, expression of ECM proteins and growth/branching of projections. Depiction of tenocyte

morphogenesis in the absence of mechanical force.

DOI: https://doi.org/10.7554/eLife.38069.038
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Roles for tensional force in tendon morphogenesis
Tendons primarily experience tension from muscle contractions (Lavagnino et al., 2015;

Wang, 2006). In contrast, skeletal cell types (e.g. osteocytes, osteoblasts, chondrocytes) are

exposed to compressive forces (Klein-Nulend et al., 2012) or shear forces in the case of chondro-

cytes in joints exposed to fluid flow (Servin-Vences et al., 2017).We show that in the absence of ten-

sion during development, tenocytes reduce the extent and spread of their projections into the

tendon ECM and this can be rescued by a short bout of contraction. Tendon defects and injuries

result from dramatic changes in tension experienced either instantly or periodically over extended

periods of muscle disuse or overuse (Franchi et al., 2013; Gaut and Duprez, 2016; Wang et al.,

2012). Embryonic tenocyte progenitors experience muscle contractions at early stages and must

continuously adapt to changes in muscle strength. Our results support the idea that the establish-

ment and adaptation of MTJs occurs in response to mechanical force from muscle contraction and

involves both changes in tenocyte morphogenesis and ECM production.

We show that paralysis reduces tenocyte branching and tendon ECM, which can be rescued by

restoring muscle contractions through electrical stimulation. Early experiments on developing chick

embryos have shown that induced lack of muscle activity (either by lack of neuronal innervation or by

injecting paralysis-inducing drugs) negatively affects the growth of associated skeletal structures, sug-

gesting a role for force from muscle contraction as an essential cue for proper growth and differentia-

tion of the skeleton (Hall and Herring, 1990; Hamburger and Waugh, 1940). During development,

the skeleton is exposed to two major types of force – contractile (tension) force frommuscles and com-

pressional force (e.g. gravity). A contractile force from muscles has a greater impact on the growth of

bones when compared to compression, indicating a primary role for muscle function in guiding the

growth of associated skeletal tissues (Ellman et al., 2014;Warden et al., 2013). Recent studies in par-

alyzed limbs have shown that the development of a tendon-bone attachment unit, the enthesis, is

affected by lack of muscle contraction (Schwartz et al., 2013; Tatara et al., 2014). Our studies sug-

gest that muscle contraction has a similar role in the development of tendons. Immobilization experi-

ments performed on canine models have shown that mechanical force is required for repair of tendon

injuries (Gelberman et al., 1982). More recent studies using paralysis and restricted movement have

shown that mechanical force has multiple roles in the maintenance of tenogenic gene expression,

secretion of tendon ECM, and tenocyte survival (Gaut et al., 2016; Hettrich et al., 2011;

Maeda et al., 2011).

Microtubules are essential for tenocyte projection stability and function
Cellular filopodia and neuronal axons require either F-actin and MTs or both in the formation and

maintenance of projections, and new classes of cellular projections are emerging from recent studies

such as cytonemes and airinemes (Bornschlögl, 2013; Eom et al., 2015; Huang and Kornberg, 2015;

Witte et al., 2008). MTs also serve as pathways for trafficking various proteins, RNA, and other intra-

cellular components along projections. Tenocytes in Drosophila rely on a network of polarized MTs for

the maintenance of cellular structure and function (Subramanian et al., 2003), but similar require-

ments for cytoskeletal components have not been investigated in vertebrate tendons. Here, we show

that zebrafish tenocytes are rich in MTs, which are required to maintain projections. Pharmacological

disruption of MTs destabilized the projections without affecting tenocyte cell bodies. This reduced

Tsp4b localization suggesting that tenocyte projections both sense force and respond to it by altering

ECM organization in an MT-dependent manner. A caveat to this result is that treatment of embryos

with Nocodazole causes global destabilization of MT in the entire embryo. Hence, the effects on teno-

cyte projections and tendon ECM organization could also arise in response to MT destabilization in

neighboring muscle fibers, axons and other cells. Similar roles for cellular projections have been

observed in pigment cells, where airinemes composed of both F-actin and MTs play a role in long-

range signaling by secreting signaling ligands at the tips of their projections (Eom et al., 2015). We

find that loss of tenocyte projections leads to upregulated expression of scxa and ctgfa in MT-deficient

embryos, suggesting that they revert to a more dedifferentiated state.

Tenocyte projections are force sensors in the tendon ECM
Previous EM studies of human and rat tendons have described tenocytes projecting into the tendon

matrix, but their functional significance has remained unclear (McNeilly et al., 1996; Pingel et al.,
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2014). 3D reconstructions from EM studies suggest a role for these projections, referred to as ‘fibro-

positors’ in one study, in secreting collagen fibrils (Canty et al., 2004). Analysis of Scx expression in

chick and mouse using immunostaining and transgenic reporter lines, respectively, have shown that

limb tendons elongate as the musculoskeletal system matures (Brent et al., 2003; Kardon, 1998;

Pryce et al., 2007). Our results in zebrafish reveal that such elongated projections are conserved,

but quite distinct in different classes of tenocytes. While cranial tenocytes resemble those in the limb

in that they extend in parallel to the direction of force, axial tenocytes extend their projections per-

pendicular to the plane of muscle contraction (with opposing directions of contractile force) (Figure 1

and Figure 1—figure supplement 2). Based on our results, we propose that these distinct morphol-

ogies reflect a more structural, load-bearing role for cranial (and limb) tenocytes, while early larval

axial tenocytes in zebrafish function as tension sensors in the myoseptum. Many important questions

remain and form the basis of future studies, including why these cells are so polarized and how this

mediolateral polarity develops. Consistent with the tension-sensor hypothesis, the timing of the out-

growth of tenocyte projections tightly correlates with the onset of muscle contraction. Tension sens-

ing projections are observed in other musculoskeletal tissues as osteocytes extend projections into

the bone matrix where they are thought to form a network of force sensors (Cowin et al., 1991) that

modulate bone formation and resorption (Klein-Nulend et al., 2012; Schaffler et al., 2014). Like-

wise, the cues that cause osteoblasts to form these projections as they differentiate into osteocytes

remain unknown (Franz-Odendaal et al., 2006). Similar to our results with zebrafish tenocytes, mam-

malian osteocyte projections increase in density in response to force, consistent with a role as force

sensors and responders in both cases.

In both bone and tendon, the ECM undergoes dynamic changes in expression of collagens, fibro-

nectin, laminin and MMPs, and this is also the case in the developing somites of zebrafish embryos

(Jenkins et al., 2016; Snow and Henry, 2009). Tenocyte projection formation also correlates with the

establishment of tendon ECM. Previous studies have shown remodeling of MTJ ECM between

24 and 48 hpf with a progressive reduction of Fn, which is replaced by increased in levels of Lam at the

MTJ (Jenkins et al., 2016). Our results suggest that initial production and accumulation of Fn is inde-

pendent of force at 24 hpf, when tsp4b also shows force-independent expression. The later force-

dependent expression and localization of Tsp4b at 48 hpf indicates that dynamic regulation of tendon

ECM occurs after the onset of muscle contraction, which suggests a role for mechanical force in the

process. Mammalian tenocytes actively sense mechanical force in vitro, resulting in changes in gene

expression, cytoskeletal organization and ECM secretion (Banos et al., 2008; Gaut et al., 2016;

Havis et al., 2016; Maeda et al., 2010; Maeda et al., 2013; Maeda et al., 2011). This depends, at

least in part, on gap junctional complexes that localize to tenocyte projections (Maeda et al., 2012).

Exercise induces Tenomodulin (Tnmd) and Col1a1 expression and tenocyte proliferation in rats

(Eliasson et al., 2009; Zhang and Wang, 2013) and stress induces COL4A1 and COL6A1 expression

in chick tenocytes (Marturano et al., 2014). Despite these changes in gene expression, the molecular

mechanisms underlying these cellular signaling responses to force are unclear. Embryonic tenocyte

projections in zebrafish end in bouton-like structures close to the dermis (Figure 1—figure supple-

ment 1A,B), which may act as signaling beacons and ECM secreting centers.

The strong correlation between onset of muscle function, changing myotendinous ECM and teno-

cyte morphogenesis suggests a model in which force is transduced through cues from the ECM that

induce the formation of projections (Figure 7A). Similar processes may underlie the projections of

osteocytes and other mesenchymal cell types. Such feedback likely allows tendons to adapt to chang-

ing mechanical force during normal development and exercise, as well as in healing and repair of ten-

don injuries.

Mechanical forces and signaling
Our results show for the first time that activation of TGFb signaling in response to mechanical force

is required for tenocyte morphogenesis, in particular the growth and branching of tenocyte projec-

tions. Paralyzed embryos (aBTX-injected) lose pSMAD3 expression in tenocytes and projections

shorten, which is rescued by restoring muscle contraction. Similarly, pharmacological inhibition of

TGFb receptors reduces pSMAD3 expression and shortens tenocyte projections. Studies of mecha-

notransduction have identified several putative signaling pathways involved, depending on the tis-

sue, including TGFb, YAP/TAZ, and Integrins, as well as membrane channels such as TrpV4 and

Piezo receptors (Busch et al., 2017; Gumbiner and Kim, 2014; Lavagnino et al., 2015; Servin-
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Vences et al., 2017). Some of these pathways such as TGFb and YAP/TAZ share intermediate signal-

ing components and targets, which complicates our understanding of their role in mechanotransduc-

tion in specific tissues (Qin et al., 2018; Szeto et al., 2016). This could help explain the modest

reduction in expression of tgfbip and ctgfa2 in SB431542-treated embryos, as other mechanotrans-

duction signaling pathways may still function in these embryos to partially maintain expression levels

of these genes (Figure 6—figure supplement 3) In vitro studies of tenocyte primary cultures and

excised tendon tissue have shown elevated TGFb signaling in response to mechanical load

(Heinemeier et al., 2003; Heinemeier et al., 2007; Maeda et al., 2013; Maeda et al., 2011;

Yang et al., 2004) and mice show elevated TGFb signaling in muscles and tendons following exer-

cise (Maeda et al., 2011). These studies suggest that TGFb signaling, in addition to its earlier role in

tenocyte specification (Havis et al., 2016), is involved in mechanotransduction in these cells after

they differentiate. TGFb signaling is activated by many factors, including integrins, BMP1 and MMPs

which can act on the large latent complex (LLC), to release active TGFb ligand from the ECM

(Horiguchi et al., 2012; Keski-Oja et al., 2004; Todorovic et al., 2005). This could be the critical

cue from the ECM that induces and modulates the formation of tenocyte projections. One candidate

for initiating these events is Tsp4, since Tsps can activate TGFb signaling by destabilizing latency-

associated peptide (LAP) (Bailey Dubose et al., 2012). The tendon matrix is rich in MMPs and Tsps,

which dynamically change in composition and activity depending on mechanical force

(Jenkins et al., 2016; Popov et al., 2015; Subramanian and Schilling, 2014). The dynamic reduc-

tions in Tsp4b that we have shown in response to paralysis could fail to activate latent TGFb in the

tendon ECM. Furthermore, because we see reductions in Tsp4b expression in paralyzed embryos,

our results support a model where force triggers TGFb signaling leading to increased expression of

Tsp4b, which in turn activates TGFb expression, creating a positive feedback loop (Figure 7A,B).

Transection of tendons or injection of botulinum toxin (Botox) to induce paralysis in mice causes

tenocyte death and reduced expression of tenogenic genes (Maeda et al., 2011). In contrast, we

observe neither cell death nor significant changes in tenogenic gene expression in paralyzed (cacnb1

mutant) zebrafish embryos until 5 dpf, several days after tenocyte differentiation. We interpret such

a response as a separate response to prolonged disuse rather than an adaptation to force.

These studies have shown a direct relationship between mechanical force and tendon develop-

ment through TGFb signaling in tenocytes. How do tenocyte progenitors begin the process of elon-

gation and growth of projections? What are the roles of these projections during tendon embryonic

development and in adult tendons? Osteocytes are known to induce repair pathways in bone when

cracks or stress damage their processes (Dooley et al., 2014; Mulcahy et al., 2011). Do tenocyte

projections perform a similar role in tendon repair? These are some of the questions that need to be

addressed in the field of tendon biology. Understanding the relationship between force and tendon

development is essential for developing effective treatment strategies that include engineering ten-

dons to treat tendon injuries. Force sensing projections that allow cells to adjust their surrounding

ECM, such as those we have described in tenocytes, may also be a more general feature of cells,

particularly within the musculoskeletal system.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Rabbit anti Tsp4b Schilling lab RRID: AB_2725793 1:500 dilution

Antibody Mouse anti Myosin
heavy chain

DSHB Cat# A4.1025,
RRID: AB_528356

1:250 dilution

Antibody Chicken anti GFP Abcam Cat# ab13970,
RRID: AB_300798

1:1000 dulution

Antibody Rat anti mCherry Molecular Probes Cat# M11217,
RRID: AB_2536611

1:500 dilution

Antibody Rabbit anti Fibronectin Abcam Cat# ab2413,
RRID: AB_2262874

1:200 dilution

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Rabbit anti Laminin Abcam Cat# ab11575,
RRID: AB_298179

1:200 dilution

Antibody Rabbit anti pSMAD3 Antibodies-online Cat# ABIN1043888,
RRID: AB_2725792

1:500 dilution

Antibody Alexa Fluor 488
conjugated Donkey
anti Chicken IgY

Jackson Immunoresearch Cat# 712-586-153 1:1000 dulution

Antibody DyLight 549 conjugated
Donkey anti Rabbit IgG

Jackson Immunoresearch Cat# 711-506-152,
RRID: AB_2616595

1:1000 dulution

Antibody Alexa Fluor 488
conjugated Donkey
anti Rabbit IgG

Jackson Immunoresearch Cat# 711-545-152,
RRID: AB_2313584

1:1000 dulution

Antibody Cy5 conjugated
anti Mouse IgG

Jackson Immunoresearch Cat# 115-176-071 1:1000 dulution

Antibody Alexa Fluor 594
conjugated Donkey
anti Rat IgG

Jackson Immunoresearch Cat# 712-586-153,
RRID: AB_2340691

1:1000 dulution

Antibody Alexa Fluor 488
conjugated anti Mouse
IgG

Jackson Immunoresearch Cat# 715-546-150;
RRID: AB_2340849

1:1000 dulution

Antibody DiAmino PhyenylIndole
(DAPI)

Invitrogen Cat# D1306,
RRID: AB_2629482

1:1000 dulution

Cell line (E. coli) Chemically competent
DH5alpha cells

Schilling Lab

Chemical compound, drug SB431542 Tocris Cat# 1614,
SID: 241182574

50 mM stock solution,
10 mM final concentration

Chemical compound, drug Nocodazole Sigma-Aldrich Cat#1404,
SID: 24278535

33 mM stock solution,
0.33 mM final concentration

Chemical compound, drug Trizol Invitrogen Cat# 15596018

Chemical compound, drug 3-aminobenzoic acid
ethyl ester
methanesulfonate

Sigma-Aldrich Cat# A5040,
SID: 329770864

Commercial assay
or kit

mMessage mMachine
T7 ultra transcription
kit

Ambion Cat# AM1345,
RRID: SCR_016222

Commercial assay
or kit

mMessage mMachine
T3 transcription kit

Ambion Cat# AM1348,
RRID: SCR_016223

Commercial assay
or kit

mMessage mMachine
SP6 transcription kit

Ambion Cat# AM1340,
RRID: SCR_016224

Commercial assay
or kit

Protoscript II first
strand cDNA synthesis
kit

New England Biolabs Cat# E6560,
RRID: SCR_016225

Commercial assay
or kit

Luna universal
qPCR master mix

New England Biolabs Cat# M3003,
RRID: SCR_016226

Commercial assay
or kit

Direct-zol RNA
Miniprep

Zymo Research Cat# R2061,
RRID: SCR_016227

Commercial assay
or kit

QX200 EvaGreen
653 ddPCR Supermix

Bio-Rad Cat# 1864033
RRID: SCR_008426

Commercial assay
or kit

QX200 Droplet Generation
Oil for EvaGreen

Bio-Rad Cat# 1864005,
RRID: SCR_008426

Commercial assay
or kit

QX200 Droplet
Generator

Bio-Rad Cat# 1864002,
RRID: SCR_008426

Commercial assay or kit QX200 Droplet 657 Reader Bio-Rad Cat# 1864003,
RRID: SCR_008426

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial assay
or kit

Qubit SSDNA assay kit Invitrogen Cat# Q10212,
SCR_008817

Commercial assay
or kit

Qubit 2.0 fluorometer Invitrogen Cat# Q32866,
SCR_008817

Gene (Danio rerio) Tg(scx:mCherry) Galloway lab N/A

Gene (Danio rerio) Cacnb1+/- Schilling lab N/A

Sequence-based reagent Primers for RT-PCR,
see Table S1

This paper N/A 0.5 mM final concentration

Recombinant DNA
reagent

pmtb-t7-alpha-bungarotoxin Addgene Cat# 69542,
RRID: SCR_002037

Recombinant DNA
reagent

pIRESneo-EGFP-alpha
tubulin

Addgene Cat# 12298,
RRID: SCR_002037

Recombinant DNA
reagent

pmEGFP-Lifeact-7 Addgene Cat# 54610,
RRID: SCR_002037

Software, algorithm Simple Neurite Tracer Fiji

Zebrafish transgenics and mutants
Tg(scx:mCherry) transgenics were generated by injecting a BAC construct (CH211-251g8) containing

mCherry ORF inserted in frame after the start codon of the scxa gene (McGurk et al., 2017). A new

mutant allele of cacnb1 was identified in a forward genetic screen and outcrossed with Tg(scxa:

mCherry) to create a cacnb1;Tg(scxa:mCherry) line. All embryos were raised in embryo medium at

28.5˚C (Westerfield, 2007), and staged as described previously (Kimmel et al., 1995). Craniofacial

muscles and cartilages were labeled as described previously (Schilling and Kimmel, 1997). Adult

fish and embryos were collected and processed in accordance with approved UCI-IACUC guidelines.

mRNA injections and drug treatments
A Pmtb-t7-alpha-bungarotoxin (aBtx) vector (Megason lab, Addgene, 69542) was used to synthesize

aBtx mRNA following a previously published protocol and injected into Tg(scx:mCherry) embryos at

the 1–2 cell stage (Subramanian and Schilling, 2014; Swinburne et al., 2015). A pIRESneo-EGFP-

alpha Tubulin plasmid (Wadsworth lab, Addgene, 12298) was used to synthesize EGFP-a Tubulin

mRNA following a previously published protocol and injected into Tg(scx:mCherry) embryos at the

1–2 cell stage (Rusan et al., 2001; Subramanian and Schilling, 2014).

A stock solution of 50 mM SB431542 (Tocris 1614, SID: 241182574)), a selective inhibitor of TGFb

type I receptor was prepared in DMSO (Fisher Scientific D1281, SID: 349996472) and diluted to a

final working concentration of 10 mM in embryo medium. Embryos were incubated in 10 mM

SB431542 for 12 hr. Treated embryos were rinsed in pre-warmed (28.5˚C) embryo medium before

fixation for immunostaining or RNA extraction.

A stock solution of 33 mM Nocodazole (Sigma M1404, SID: 336851328), an inhibitor of tubulin

polymerization, was prepared in DMSO and diluted to a final working concentration of 0.33 mM in

embryo medium. Embryos were incubated in 0.33 mM Nocodazole for 12 hr at 28.5˚C. Treated
embryos were either mounted for live imaging or fixed for immunostaining.

RT-PCR
Whole embryo RNA was extracted from control and paralyzed embryos collected at 48 hpf accord-

ing to standard protocols using Trizol (Invitrogen 15596018) and Direct-zol RNA MinipPrep kits

(Zymo Research R2061). RNA concentration was normalized between samples and used as a tem-

plate for cDNA synthesis. cDNA was synthesized with oligodT primers using the standard protocol

of ProtoScript II First Strand cDNA Synthesis Kit (NEB E6560). The synthesized cDNA was diluted to

1:20 and used as a template for RT-PCR using the protocol for the Luna Universal qPCR master mix

(NEB M3003S). The primers used for RT-PCR are listed in Table 1. The reaction was run on a Light-

Cycler 480 II Real time-PCR Instrument (Roche) and analyzed using LightCycler 480 Software. Each
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qPCR experiment was designed with triplicates of reactions for every biological sample and two bio-

logical samples were used for each analysis (Subramanian and Schilling, 2014).

ddPCR
cDNA was prepared from whole embryo RNA using the standard protocol of ProtoScript II First

Strand cDNA Synthesis Kit (NEB E6560). The cDNA concentration was determined following stan-

dard protocol and reagents from the Qubit SSDNA assay kit (Invitrogen Q10212) and fluorescence

was read on a Qubit 2.0 fluorometer (Invitrogen Q32866). A total concentration of 1 ng was used

from each sample to prepare 20 ml of ddPCR reaction following the instructions and reagents from

QX200 EvaGreen ddPCR Supermix (Bio-Rad 186–4033).Primers for the PCR are listed in Table 1.

The droplets were generated using QX200 Droplet Generation Oil for EvaGreen (Bio-Rad 1864005)

on a QX200 Droplet Generator (Bio-Rad 1864002). The PCR reaction was run on a standard thermo-

cycler under standard cycling conditions. Following the PCR the droplets were analyzed using

QX200 Droplet Reader (Bio-Rad 1864003). The data were analyzed using QuantaSoft Analysis Pro

Software.

Muscle stimulation
Electrical stimulation was used to induce muscle contraction, as previously described

(Subramanian and Schilling, 2014). Both aBtx injected and control embryos or larvae were anaes-

thetized with Tricaine (ethyl 3-aminobenzoate methanesulfonate, Sigma A5040, SID: 329770864),

placed on a silicone plate in embryo medium and stimulated for 2 min at 20V, 6 msec duration, 4

pulses/sec frequency and 6 msec delay between successive pulses. With these settings neither con-

trol nor paralyzed embryos showed any muscle detachment. Embryos were allowed to recover in

embryo medium for 12 hr and further processed for immunostaining or RT-PCR.

Whole embryo immunohistochemistry
All embryos used for immunofluorescence experiments were fixed in 4% neutral pH buffered para-

formaldehyde (PFA) for 2 hr at room temperature (25˚C) or overnight at 4˚C. The embryos were

washed with 1X Phosphate Buffered Saline (PBS, CID: 24978514) and permeabilized with cold ace-

tone (Fisher Scientific A94, SID: 349996362) for 15 min at �20˚C. Following permeabilization, they

were rehydrated in PBDT (PBS with 2% DMSO and 1% Triton X-100 (Sigma T9284)) and processed

according to a standard antibody staining protocol. Primary antibodies used: rabbit anti-Tsp4b

(1:500)(RRID: AB_2725793), mouse anti-myosin heavy chain (MHC) (Developmental Hybridoma -

1:250, A1025, RRID: AB_528356), chicken anti-GFP (Abcam – 1:1000, ab13970, RRID: AB_300798),

rat monoclonal anti-mCherry (Molecular Probes �1:500, M11217, RRID: AB_2536611), rabbit anti-

Laminin (Abcam – 1:200, ab11575, RRID: AB_298179), rabbit anti-Fibronectin (Abcam – 1:200,

Table 1. List of primer sequences used for RT-PCR.

Name Sequence Gene

rpl13a-fp-qpcr TCTGGAGGACTGTAAGAGGTATGC ribosomal protein L13a

rpl13a-rp-qpcr AGACGCACAATCTTGAGAGCAG

rps13-fp-qpcr ATAGGCGAAGTGTCCCCACA ribosomal protein S13

rps13-fp-qpcr CAGTGACGAAACGCACCTGA

scxa-fp-qpcr GGAGAACTCGCAGCCCAAA scleraxis A

scxa-rp-qpcr AATCCCTTCACGTCGTGGTTT

tsp4b-fp-qpcr ACAATCCACGAGACAACAGC thrombospondin 4b

tsp4b-rp-qpcr GCACTCATCCTGCCATCTCT

ctgfa-fp-qpcr CTTTACTGTGACTACGGCTCC connective tissue growth factor a

ctgfa-rp-qpcr ACAACTGCTCTGGAAAGACTC

tgfbip-fp-qpcr CCCCAATGTTTGTGCTATGC tgfb induced peptide

tgfbip-rp-qpcr CTCCAATCACCTTCTCATATCCAG

DOI: https://doi.org/10.7554/eLife.38069.039
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ab2413, RRID: AB_2262874 and rabbit anti-pSMAD3 (Antibodies-online – 1:500, ABIN1043888,

RRID: AB_2725792). DiAmino PhenylIndole (DAPI) (Invitrogen – 1:1000, D1306, RRID: AB_2629482)

was used to mark cell nuclei. Preabsorbed secondary antibodies were all obtained from Jackson

ImmunoResearch and used for indirect immunofluorescence at 1:1000, including: Alexa Fluor 488

conjugated donkey anti-mouse IgG (715-546-150, RRID: AB_2340849), DyLight 549 conjugated don-

key anti-rabbit IgG (711-506-152, RRID: AB_2616595), Alexa Fluor 488 conjugated donkey anti-rab-

bit IgG (711-545-152, RRID: AB_231358), Cy5 conjugated Goat anti-mouse IgG (115-176-071), Alexa

Fluor 594 conjugated donkey anti-rat IgG (712-586-153, RRID: AB_2340691), and Alexa Fluor 488

conjugated donkey anti-chicken IgY (703-486-155). After staining, embryos were mounted in 1% low

melt agarose in PBS and imaged.

Microscopy and image analysis
Embryos processed for fluorescent immunohistochemistry were imaged using a Nikon A1 confocal

system with an Nikon Eclipse Ti inverted microscope using a CFI Plan Apochromat VC 60XC (water

immersion) objective. Confocal stacks were analyzed using Image J software. The depth-coded 3D

reconstructions were created using Nikon software (NIS-Elements AR 4.60.00 64-bit). To better visu-

alize tenocyte projections along the Z-axis, the 3D reconstructed image was rotated to about 45o.

The length of projections was measured using the Neurite Tracer plugin on Image J.

Statistical analysis
Sample size and number of data points required for each experiment were determined using a

power analysis calculator (www.powerandsamplesize.com). The embryos were collected from a sin-

gle tank of fish and processed for injection and downstream stimulation together to minimize varia-

tion introduced during handling. Fixation and staining of embryos were also performed together for

all samples in a given experiment. Imaging of embryos within each experiment was performed with

identical parameters. In order to control for variation in position of tenocyte cell bodies and antibody

penetrance variation, projection length, fluorescence intensity of ECM proteins and pSMAD3 were

always measured in the ventral half of the VMS in somites 16–19. In experiments where a normal dis-

tribution was not present, we analysed the significance using a Wilcoxon Rank Sum test. In datasets

involving two samples of unequal variance, a t-test was used. In experiments with more than two

experimental conditions, an ANOVA single-factor analysis was performed with posthoc multiple

comparisons using Tukey method on R. Data were also quantified and analyzed separately by two of

the authors to account for user bias and they obtained similar results. Fluorescence Intensity (FI) to

quantify protein localization was measured as described previously (Subramanian and Schilling,

2014).
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