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Background: The spread of antimicrobial resistance 
(AMR) is of worldwide concern. Public health policy-
makers and pharmaceutical companies pursuing anti-
biotic development require accurate predictions about 
the future spread of AMR. Aim: We aimed to identify 
and model temporal and geographical patterns of AMR 
spread and to predict future trends based on a slow, 
intermediate or rapid rise in resistance. Methods: We 
obtained data from five antibiotic resistance surveil-
lance projects spanning the years 1997 to 2015. We 
aggregated the isolate-level or country-level data by 
country and year to produce country–bacterium–anti-
biotic class triads. We fitted both linear and sigmoid 
models to these triads and chose the one with the bet-
ter fit. For triads that conformed to a sigmoid model, 
we classified AMR progression into one of three char-
acterising paces: slow, intermediate or fast, based on 
the sigmoid slope. Within each pace category, aver-
age sigmoid models were calculated and validated. 
Results: We constructed a database with 51,670 coun-
try–year–bacterium–antibiotic observations, grouped 
into 7,440 country–bacterium–antibiotic triads. A 
total of 1,037 triads (14%) met the inclusion criteria. 
Of these, 326 (31.4%) followed a sigmoid (logistic) 
pattern over time. Among 107 triads for which both 
sigmoid and linear models could be fit, the sigmoid 
model was a better fit in 84%. The sigmoid model 
deviated from observed data by a median of 6.5%; the 
degree of deviation was related to the pace of spread.
Conclusion: We present a novel method of describ-
ing and predicting the spread of antibiotic-resistant 
organisms.

Introduction
The increasing prevalence of antimicrobial resistance 
(AMR) is of worldwide concern [1-3]. Both the World 
Health Organization (WHO) and the United States (US) 
Centers for Disease Control and Prevention (CDC) have 

published lists ranking the threat posed by various 
resistant pathogens [4,5]. These pathogens have been 
linked to prolonged hospital stays, greater mortal-
ity and higher costs [6-11]. Efforts to control and limit 
the spread of resistant bacteria and to develop new 
antimicrobials targeting them are dependent on accu-
rate information about the magnitude of the problem. 
Policymakers and pharmaceutical corporations looking 
to invest resources require accurate predictions about 
the future spread of AMR based on current data [12].

While the magnitude of the problem could be deter-
mined using data from surveillance systems (which 
are currently inadequate) [13], estimating future trends 
requires modelling. The choice of model type deter-
mines in large part the results it will yield, yet most 
published models of AMR spread provide little justi-
fication for model type [14]. Previous models to pre-
dict AMR spread assumed a linear increase over time 
[15] or assumed a 40% increase over current levels 
[16]. There is evidence that AMR spread tends to fol-
low a sigmoid (logistic) shape [17] i.e. an initial period 
of low-level resistance followed by a rapid increase in 
resistance and then a levelling-off at a level less than 
100% resistance. Furthermore, many models do not 
take into account between-country differences in diffu-
sion rates, which may be marked [18]. While many fac-
tors affect the pace of resistance spread, any attempt 
to predict future AMR levels with a ‘one-size-fits-all’ 
approach risks significant over- or underestimation. 
In the present article, we aimed to identify and model 
temporal and geographical patterns of AMR spread and 
predict future trends based on a slow, intermediate or 
rapid rise in resistance.
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Methods

Data sources
We obtained isolate-level data from three antibiotic 
resistance surveillance projects that were provided to us 
by their owners: (i) the Australian Enterococcal Sepsis 
Outcome Programme (AESOP) and Enterobacteriaceae 
Sepsis Outcome Programme (EnSOP), both from the 
Australian Group on Antimicrobial Resistance (http://
agargroup.org.au), which included blood specimen iso-
lates from the year 2013, (ii) the Tigecycline Evaluation 
Surveillance Trial (TEST; Pfizer, New York, US), which 
included blood and respiratory specimens worldwide 
from 2004 to 2014 and (iii) the Meropenem Yearly 
Susceptibility Test Information Collection (MYSTIC; 
AstraZeneca, Cambridge, United Kingdom), which 
included blood and respiratory specimens worldwide 
from 1997 to 2007. Each surveillance project included 
data on the type of bacterium and its susceptibility 
to at least one antibiotic. Resistance to antibiotics 
was reported as minimum inhibitory concentration 
(MIC) value or as susceptible, intermediate or resist-
ant (SIR). We interpreted MICs according to the Clinical 
and Laboratory Standards Institute (CLSI) 2009 break-
points [19]. The surveillance projects that reported 
SIR followed either CLSI or European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) stand-
ards. We classified intermediately susceptible iso-
lates as resistant. In addition, we used data from two 
publicly available country-level databases from the 
European Centre for Disease Prevention and Control’s 
(ECDC) European Antimicrobial Resistance Surveillance 
Network (EARS-Net) covering the years 1998 to 2014 
[20] and the Center for Disease Dynamics, Economics 
and Policy (CDDEP) covering the years 1999 to 2015 [21]. 
A summary of the data included in each database is 
presented in Supplementary Table S1. We were unable 
to get access to two other large surveillance projects: 
the Study for Monitoring Antimicrobial Resistance 
Trends (SMART, Merck, Kenilworth, US) and the US 
CDC’s National Healthcare Safety Network (NHSN).

We grouped all antibiotics into classes at the ATC4 level 
using the WHO’s Anatomical Therapeutic Chemical 
(ATC) classification method [22]. The one exception 
was the grouping of drugs used to define meticillin-
resistant  Staphylococcus aureus  (MRSA): oxacillin and 
cefoxitin, which belong to different ATC groups but 
were grouped together to reflect diagnostic definitions 
[19]. An isolate was considered resistant to an antibi-
otic class if it was resistant to any drug in the class.

Modelling antimicrobial resistance spread
We aggregated data at the country and year level to 
produce country–bacterium–antibiotic class triads 
(e.g. France–Escherichia coli–third-generation cepha-
losporins). For a triad to be included in the analysis, 
the following two criteria were required: resistance had 
to be reported on at least 100 isolates per year over 
at least 5 years (not necessarily consecutive). These 
criteria were set after examining the data, since lower 

number of isolates per year or shorter time periods 
resulted in high variability and did not allow accurate 
per-year and secular trend estimates.

We defined two states of spread of resistance: The first 
was ‘static’, i.e. no change in the resistance level was 
observed over time. A country was defined as static 
for a particular bacterium–antibiotic combination if: 
(i) the minimum resistance level was less than 2% 
and the maximum level did not exceed 2% or (ii) the 
minimum resistance level was between 2% and 15% 
and the maximum level was no more than 3 percent-
age points higher than the minimum level. The second 
state was ‘changing over time’, which included all the 
triads not in a static state. For these triads, we fit both 
linear and sigmoid models and chose the one with the 
better fit. A triad was considered to have a good fit if 
R2 (for linear models) or Efron’s pseudo R2 (for sigmoid 
models) was ≥ 0.7 [23]. If neither of these models fit the 
data, that triad was classified as noise (no discernible 
pattern). We performed no further analyses on triads 
classified as static or noise.

Using the observed data, we generated sigmoid mod-
els; the models had four parameters (Formula 1) that 
were fit to the ‘changing over time’ triads.

Formula 1:

X1 = resistance range in % (maximum − minimum 
resistance level)

X2 = sigmoid slope

X3 = year of 50% increase in resistance

X4 = initial resistance level in database

t = year

We assumed the following boundaries for the model 
parameters:
1. 0.02 ≤ X1 ≤ 1: the range of resistance was higher than 
2% (otherwise, there was a static trend and the triad 
was excluded);
2. 0.3 ≤ X2 ≤ 3: we restricted the slope so as not to be 
too flat (i.e. a static trend) or too steep (i.e. an illogi-
cally rapid spread of resistance that suggests that 
there were errors in the data);
3. 1990 ≤ X3 ≤ 2012: based on our data, these were 
the relevant years to look for the start of the rise in 
resistance;
4. 0 ≤ X4 ≤ 0.2: the initial resistance level had to be 
less than 20% because a high initial resistance level 
would suggest that a previous rise had occurred in the 
past. Based on one author’s (YC) expert opinion, we 
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Figure 1
Data selection flowchart and overview of analysis of models to predict the spread of antimicrobial resistance, 1997–2015, 75 
countries
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AGAR: Australian Group on Antimicrobial Resistance; CDDEP: Center for Disease Dynamics, Economics and Policy; ECDC: European Centre for 
Disease Prevention and Control; MYSTIC: Meropenem Yearly Susceptibility Test Information Collection.

Number of countries covered by area: Europe (n = 34), Asia (n = 17), South America: (n = 6), Africa (n = 6), Central America (n = 6), North 
America (n = 2), Oceania (n = 2), Caribbean (n = 2).
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assumed that an initial resistance level of up to 20% 
could have been the result of a slow rise over many 
years and our sigmoid model started after that unob-
served initial rise.

For triads that fit sigmoid models but reached the max-
imum bound for the X2 parameter (X2 = 3, i.e. the rise 
in resistance was too steep), we examined whether the 
steep rise was the result of one outlying year by con-
structing several sigmoid models, each omitting 1 year. 
The best fitting model among those omitting 1 year 
was chosen if it did not cross the X2 bound. Otherwise, 
the original model with all years was used. The same 
procedure was used for triads that did not fit sigmoid 
models (pseudo R2 < 0.7): if the triad conformed to a sig-
moid model after omitting 1 year, this was the model 
we used.

If a sigmoid model could not be fitted for a triad, a lin-
ear model was examined. If the R2 of the linear model 
was higher than 0.41, the triad was considered to have 
a linear trend over time. Linear models with positive or 
negative coefficients were considered to have a posi-
tive or negative trend, respectively. Triads with R2 ≤ 0.4 
were classified as noise. In addition, all triads with 
sigmoid models were plotted and visually inspected. If 
the data were inconsistent with prior knowledge (e.g. a 
rapid drop in resistance), the triad was excluded.

Grouping data by pace of resistance spread
For triads that conformed to a sigmoid model, the 
model slope was calculated. The model slope was 
the maximal sigmoid slope (i.e. the maximal rate of 
increase in resistance). This slope best described the 
pace of spread of resistance over time, and was calcu-
lated as X1 × X2/4. The calculated slope was used to 
classify triad progression into one of three character-
ising paces: slow, intermediate or fast. Pace category 
cut-offs were determined for each bacterium–antibiotic 
pair. Within each pace category, average sigmoid mod-
els (over countries) were calculated. Each of the three 
model parameters (X1, X2 and X4) was set to the aver-
age value of all countries in the category and X3 (value 
of middle year of slope, i.e. 50% increase) was set to 0 
(in order to synchronise the maximal slope point).

Validation
In order to validate the prediction in an iterative pro-
cess, predicted and observed values were compared 
within each pace category for each triad, using the 
‘take one out’ method. For example, to test the accu-
racy of our predictions for  E. coli–third-generations 
cephalosporins in Country X in the fast spread cate-
gory, we fitted an average model (as described above) 
using all the other countries in the fast category. Then, 
we calculated the absolute difference between the pro-
portion of resistance predicted by the model and the 
observed proportion of resistance in Country X.
 

Results
Our database included isolate-level data on 510,297 
isolates and country-level data on 23 years from 71 
countries. We grouped the data into 51,670 observa-
tions of country–year–bacterium–antibiotic which 
included 30 bacterial species and 54 antibiotics in 25 
classes (Figure 1). These observations were grouped 
into 7,440 country–bacterium–antibiotic triads. Of the 
triads, 5,730 had less than 100 isolates per year, and 
673 had less than 5 years of data and were therefore 
considered non-informative and excluded from further 
analysis. Thus, 1,037 triads (14%) met the inclusion cri-
teria and formed our analytic sample. An overview of 
the analysis is presented in Figure 1.

When modelling the pattern over time for the 
1,037 triads, 700 triads were informative.  Table 
1  presents the distribution of spread patterns (details 
in  Supplementary Figure S2  and  Supplementary Table 
S3). A third of the triads (n = 326; 31.4%) followed a 
sigmoid (logistic) pattern over time. Among 107 triads 
for which both a sigmoid and linear models could be 
fitted, the sigmoid model was better in 90 (84%).

Figures 2A  to 2C present examples of triads for which 
the sigmoid model was best. Fifty-five triads (5.3%) 
followed a positive linear pattern (Figure 2D), 149 
(14.4%) followed a negative linear pattern (Figure 2E) 
and 170 (16.4%) were static (Figure 2F). The remain-
ing 337 triads (32.5%) followed no discernible pattern 
(Figure 2G).

Among 381 triads in which resistance was rising, in 326 
(85.6%) a sigmoid pattern explained the spread. To 
generate an average rate of spread for each bacterium–
antibiotic class pair, we required the sigmoid models of 
at least four countries. Of the 326 triads, sigmoid mod-
els from at least four countries were available for 259 
triads (representing eight bacteria and 23 bacterium–
antibiotic class pairs) (Table 2  and  Supplementary 
Table S4). The bacteria in the majority of these tri-
ads (181/259, 69.9%) were  E. coli  and  Klebsiella 
pneumoniae.

Based on visual inspection of country-specific graphs, 
126 (48.6%) triads were categorised as having a slow 
spread of resistance, 77 (29.7%) as intermediate 
spread, and 56 (21.6%) as rapid spread. For each bac-
terium–antibiotic class pair, an average sigmoid model 
was calculated for countries with slow, intermediate and 
rapid spread. For example, we calculated the average 
pattern of spread of third-generation cephalosporin-
resistant  E. coli  in countries with a slow, intermediate 
or fast increase in resistance (Supplementary Figure 
S5). Starting at 100% susceptibility, in a country with 
a typically slow spread of resistance, based on our 
models we could expect a level of 10% resistance after 
20 years. In contrast, in countries with fast patterns of 
spread, we could expect almost 30% resistance within 
7 years.



6 www.eurosurveillance.org

Figure 2
Examples of patterns of antimicrobial resistance spread
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A.  Spread of third-generation cephalosporin-resistant 
      Escherichia coli in Sweden, 2001-2014 (n=13 observations) 

      Linear model R2=0.95, sigmoid pseudo R2=0.98; 
      sigmoid slope=0.006 (sigmoid)

B. Spread of meticillin-resistant Staphylococcus aureus 
      in the Czech Republic, 2000-2014 (n=15 observations)

      Linear model R2=0.72, sigmoid pseudo R2=0.96; 
      sigmoid slope=0.039 (sigmoid)

C. Spread of fluoroquinolone-resistant Escherichia coli 
     in Ireland, 2002-2014 (n=13 observations)

     Linear model R2=0.77, sigmoid pseudo R2=0.98; 
     sigmoid slope=0.044 (sigmoid)

D. Spread of fluoroquinolone-resistant Escherichia coli 
     in Belgium, 1999-2014 (n=16 observations)

     Linear model R2=0.924 (positive linear)

E. Spread of meticillin-resistant Staphylococcus aureus 
     in France, 2001-2014 (n=14 observations)

     Linear model R2=0.973 (negative linear)

F. Spread of meticillin-resistant Staphylococcus aureus 
     in Norway, 1999-2014 (n=16 observations) (static)

G. Spread of fluoroquinolone-resistant Acinetobacter 
     baumannii in the United States 1999-2014 (n=16 observations)
     (no discernible pattern)

Black dots: observed proportion of resistance; red lines: sigmoid model; dotted lines: 95% confidence bands. Blue line: linear regression line 
best fitted to the data.
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In order to validate the average models, we compared 
data on observed country-specific resistance rates 
with rates predicted by the model.  Figure 3  presents 
observed data on third-generation cephalosporin 
resistance in  E. coli  from 13 countries in the ‘slow’ 
category over 22 years. Superimposed on these is 
our calculated average model for this ‘slow’ category 
(additional examples in Supplementary Figure S6 a-d). 
Overall, the median difference between observed 
and predicted values was 6.5% (interquartile range: 
2.8–12.6%), with lower median difference for countries 
with a slow spread of resistance and greater differ-
ences for countries with intermediate and fast spread 
(Supplementary Table S7).

Discussion
In this study, we assembled a database of AMR from 
most of the existing large surveillance projects. 
Exploring these data, we found support for our hypoth-
esis that sigmoid models describe the spread of AMR 
more accurately than linear models in most cases. We 
presented new methods for modelling the spread of 
resistant organisms based on country-specific dynam-
ics. For countries with sufficient surveillance data, in 
which resistance in a given antibiotic–bacterium pair 

changed over time, we were able to classify the spread 
of resistance into a slow, intermediate or fast pace. 
Using these methods, we were able to predict the 
future spread of AMR in a given country based on his-
torical observations.

Most previous models and predictions of the spread of 
resistance have assumed linear progression (although 
a very early study of resistance among staphylococci 
hinted at a sigmoid pattern of spread [24]). At the early 
stages of emergence of resistance, there are few car-
riers of AMR who serve as the reservoir for transmis-
sion; thus, few new cases occur. Later, when carriage 
is more prevalent, transmission enters a growth phase. 
Finally, spread reaches a plateau either when the sus-
ceptible population has been exhausted or when the 
number of new acquisitions of AMR equals the number 
of carriers who recover from carriage. The slope of the 
growth phase and the level at which the plateau occurs 
are closely related; both depend on the ease of trans-
mission in a specific location and time. For example, 
in countries with good sanitation, spread of AMR by 
the faecal-oral route will be slower and will plateau at 
a lower level than in countries with poor sanitation. A 
similar pattern will occur among AMR bacteria which 

Table 2
Bacterium–antibiotic pairs classified by rate of resistance spread (n = 259 triads modelled as sigmoid)

Bacterium Antibiotic class
Slow Intermediate Fast

Countries (n)
n %  of 

countries n %  of 
countries n %  of 

countries

Escherichia coli

Third-generation 
cephalosporins 13 46 8 29 7 25 28

Quinolones 24 75 4 13 4 13 32
Aminoglycosides 17 63 5 19 5 19 27

Penicillins 8 57 4 29 2 14 14
BL/BLI 5 50 2 20 3 30 10

Klebsiella pneumoniae

Third-generation 
cephalosporins 5 28 3 17 10 56 18

Carbapenems 4 40 4 40 2 20 10
Aminoglycosides 13 62 6 29 2 10 21

BL/BLI 2 25 3 38 3 38 8
Quinolones 4 31 5 38 4 31 13

Staphylococcus aureus
Oxacillin 1 13 6 75 1 13 8

Rifampicin 2 33 2 33 2 33 6

Acinetobacter baumannii
Carbapenems 2 40 2 40 1 20 5

Third-generation 
cephalosporins 0 0 3 75 1 25 4

Enterococcus faecium
Glycopeptides 3 50 2 33 1 17 6

Aminoglycosides 2 33 2 33 2 33 6
Penicillins 4 57 1 14 2 29 7

Pseudomonas aeruginosa
Carbapenems 2 22 7 78 0 0 9

Piperacillin-tazobactam 4 44 2 22 3 33 9
Quinolones 1 25 2 50 1 25 4

Streptococcus pneumoniae
Penicillins 4 67 2 33 0 0 6
Macrolides 4 100 0 0 0 0 4

Enterobacter Carbapenems 2 50 2 50 0 0 4

BL: beta-lactam; BLI: beta-lactamase inhibitor.
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spread within hospitals in countries with healthcare 
systems with good infection control practices. Notably, 
the levelling off of spread of resistance represented by 
the sigmoid model is in contrast to the linear model in 
which resistance rises indefinitely.

In our dataset, although most country–bacterium–
antibiotic triads with a discernible trend followed a 
sigmoid pattern, some triads followed a positive or 
negative linear pattern. We believe that the positive 
linear patterns represent the growth phase of the sig-
moid pattern in which the initial phase has been cen-
sored, i.e. it occurred before data were collected. We 
assume that the negative linear trends represent either 
clone fatigue (i.e. the clonal fitness cost of resistance 
exceeded its evolutionary advantage) or infection con-
trol interventions that successfully reversed the spread 
of resistance [25,26].

Modelling of AMR and predictions of future prevalence 
contributes considerably to public health policy [27]. 
Our finding of mostly sigmoidal spread of AMR, in 
which there is a close correlation between the slope 
of the growth phase and the level at which resist-
ance reaches a steady state, has important implica-
tions for policymakers. In countries with fast spread, 
the plateau will occur at a higher level of resistance. 
Therefore, interventions to slow the spread of resist-
ance have a long-term impact and will translate into 
lower levels of resistance in the future. For AMR that 
spreads primarily in the community, important factors 
influencing spread include: sanitation and hygiene, 
especially the separation of sewage from the water 

supply, living conditions and crowding, vaccination 
and antibiotic use as well as food safety. For AMR that 
is primarily healthcare-associated, important factors 
are: hand hygiene, patient–staff ratios, antibiotic use, 
environmental cleanliness and interconnectedness of 
healthcare facilities. Thus, the pace of spread is mul-
tifactorial and may change over time. Interventions on 
a country level can successfully reverse the spread of 
resistance [28-30]. On the other hand, emergence of 
new clones and/or mechanisms of resistance may lead 
to an upsurge in AMR. It is important to note that our 
models assume that no intervention has taken place 
to limit the spread of resistance and no new clone has 
arisen. If country level interventions had an important 
impact, one would expect a reduction in resistance, an 
uncommon phenomenon in our data. We hypothesise 
that the emergence of a successful new clone will reset 
the model and a superimposed sigmoid will arise.

Our findings also have implications for researchers 
interested in assessing the impact of interventions to 
slow the spread of antibiotic resistance or predicting 
future resistance. Assuming a linear model may lead 
to erroneous interpretations of the results of interven-
tions; plateauing of resistance levels will be interpreted 
as success when in fact the plateau is the natural 
course of the sigmoid model. Using a sigmoid model, 
a successful intervention should appear as a reduc-
tion in resistance levels. Preferably, local data should 
be used to determine the shape and pace of spread in 
the region of interest. If data are not available, a sig-
moid progression should be assumed, the category 
(slow, intermediate or fast) should be chosen based on 
prior knowledge and the average pace for that category 
should be applied. We have produced such country-
level estimates based on the best publicly available 
data (http://www.epi-ar.org/). The sigmoid models and 
predictions can be updated yearly as data accumulate.

Our study reveals the shortcomings of existing surveil-
lance projects; although we had data from most large 
AMR surveillance projects, only a fraction of the data 
were informative: i.e. there was continuity over time 
from the same country and the number of bacterium–
antibiotic pairs was sufficient to avoid fluctuation by 
chance alone. To allow prediction and modelling of AMR 
based on surveillance data, we recommend including 
at least 100 antibiotic–bacterium pairs per year and 
continuity of at least 5 years in a given country. Other 
recommendations for improvement of surveillance 
have been described previously [13].

Our study has several limitations. Firstly, as noted ear-
lier, although we assembled a large dataset of AMR 
isolates, only a small subset was usable, mainly from 
high-income countries. There were not enough data 
from low- and middle-income countries on which to 
validate our models. Secondly, the sigmoid models, 
which performed best to explain changes in AMR over-
time, still explained only a third of the dynamics of AMR 
spread. Thirdly, surveillance projects, and therefore 

Figure 3
Slow spread of third-generation cephalosporin resistance 
in Escherichia coli, 13 countries
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Grey dashed lines: observed third-generation cephalosporin 
resistance in E. coli over time of in 13 countries. Black dots: 
predicted resistance; interval bars: the 95% confidence intervals. 
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our methods, miss the earliest stages of AMR spread, 
the stages at which interventions are most successful. 
Lastly, modelling of AMR spread is inherently limited 
by the same chance elements that affect all long-term 
predictions in infectious disease epidemiology [31]. All 
these limitations combined suggest that predictions 
of future spread of resistance worldwide carry a high 
degree of uncertainty.

Conclusion
We present a novel method of describing and predict-
ing the spread of antibiotic-resistant organisms. Our 
results can help identify countries at risk of rapid 
spread of resistance and may be used to inform policy. 
We encourage investing in high-quality surveillance 
systems, enabling more accurate future predictions.
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