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Mesenchymal Stem Cell Exosomes
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Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

Diabetes mellitus (DM) is a metabolic disease, now prevalent worldwide, which is
characterized by a relative or absolute lack of insulin secretion leading to chronically
increased blood glucose levels. Diabetic patients are often accompanied by multiple
macrovascular complications, such as coronary heart disease, hypertension,
macrovascular arteriosclerosis, and microvascular complications. Microvascular
complications include diabetic kidney injury, diabetic encephalopathy, and diabetic foot,
which reduce the quality of life and survival status of patients. Mesenchymal stem cell
exosomes (MSC-Exos) possess repair functions similar to MSCs, low immunogenicity,
and ease of storage and transport. MSC-Exos have been proven to possess excellent
repair effects in repairing various organ damages. This study reviews the application of
MSC-Exos in the treatment of DM and its common complications. MSC-Exos may be
used as an effective treatment for DM and its complications.
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INTRODUCTION

Diabetes mellitus (DM) is a metabolic disease, now prevalent worldwide, characterized by chronic
hyperglycemia, accompanied by disorders of glucose, adipose tissue, and protein metabolism, which
are caused by defects in insulin secretion or action (1). The global prevalence of diabetes is
continuously rising, perhaps due to social and economic development, changes in lifestyles, and
population aging (2). DM is clinically common with type 1 and type 2 diabetes. Currently, type 1
diabetes is common in adolescents and requires lifelong insulin therapy because of the elimination
of pancreatic islet b-cells by the immune response, resulting in an absolute lack of insulin secretion.
Type 2 diabetes, commonly arising in elderly and obese patients, occurs due to the decreased insulin
sensitivity of peripheral tissues, accompanied by defective insulin secretion in pancreatic islet b-cells
(3, 4). Patients with type 2 diabetes mainly control blood glucose by taking drugs that increase the
sensitivity of insulin target tissues or increase pancreatic islet b-cells, combined with individualized
therapy, such as regulating blood lipids, controlling their body weight, and improving their lifestyle
(5). Unfortunately, most patients with diabetes have unstable blood glucose levels. Long-term high
levels of blood glucose can cause systemic macrovascular and microvascular damage, potentially
leading to chronic complications in multiple tissues and organs, such as the eyes, kidneys, nerves,
and heart, which is an important cause of cardiorenal failure, blindness, amputation, and even
n.org April 2021 | Volume 12 | Article 6462331

https://www.frontiersin.org/articles/10.3389/fendo.2021.646233/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.646233/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.646233/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:pathology2000@163.com
mailto:dosjh@126.com
https://doi.org/10.3389/fendo.2021.646233
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.646233
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.646233&domain=pdf&date_stamp=2021-04-29


Xiong et al. MSC Exosomes for Diabetes Complications
death (6). Therefore, the management of DM and its related
chronic complications is particularly important.

Chronic diabetic patients often have multiple complications,
such as diabetic kidney injury, diabetic encephalopathy, and
diabetic foot, which reduce the quality of life and survival status
of patients. Currently, there is no way to eliminate diabetes, and
changes in patients’ lifestyles combined with drug therapy are the
main ways to control blood glucose. However, the therapeutic
methods for diabetes complications are insufficient and new
methods are urgently required to improve the quality of life
and survival rate of patients.

Mesenchymal stem cells (MSCs) are pluripotent progenitor
cells that can differentiate into adipocytes, osteoblasts,
chondrocytes, and other cell types of mesodermal origin (7).
MSCs are characterized by their high self-renewal ability, low
immunogenicity, and immune regulation ability, and play an
important role in clinical cell therapy. MSCs originate from a
wide range of sources and were first isolated from bone marrow
(8). Subsequent studies have found that MSCs can be isolated
from various human tissues, such as adipose tissue, umbilical
cord, synovium, gingiva, menstrual blood, and urine (9, 10). The
low immunogenicity of MSCs makes them a good material for
transplantation. After transplantation, MSCs can chemoattract
to the vicinity of damaged tissues and secrete a variety of growth
factors and anti-inflammatory factors to promote the repair of
damaged tissues (11). However, MSCs and mesenchymal tumor
cells have numerous identical stem gene phenotypes, which
strongly suggests that some early tumor cells are derived from
MSCs (12). In addition, previous studies have found that MSCs
promote tumor formation through vascularization, immune
regulation, and the promotion of tumor interstitial remodeling
(13, 14). These factors have greatly restricted the clinical
applications of MSCs. Previous studies have found that
exosomes isolated from MSC culture medium possess a repair
function similar to MSCs and no risk of tumor formation
(15, 16).
BIOLOGICAL FUNCTIONS OF
MESENCHYMAL STEM CELL EXOSOMES

MSC exosomes (MSC-Exos) are extracellular vesicles between
30–150 nm in diameter that have the same lipid bilayer structure
as the cell membrane (17). Additionally, MSC-Exos possess more
advantages than MSCs, such as lower immunogenicity, high
stability, and easy storage (18). MSC-Exos contain multiple
biologically active substances, such as lipids, proteins, and
RNAs that can regulate the biological activities of target cells
via membrane fusion or endocytosis (19, 20). Guo et al. (21)
injected MSC-Exos into rats with spinal cord injury by intranasal
administration and found that MSC-Exos greatly enhanced axon
growth and angiogenesis, reduced the proliferation of microglia
and astrocytes, and significantly promoted the repair of spinal
cord injury. Moreover, MSC-Exos are rich in the C-C motif
chemokine receptor-2 that promotes ischemia-reperfusion
kidney injury healing by inhibiting macrophage function (22).
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MSC-Exos have shown excellent repair effects in various tissue
injuries, such as liver, cardiovascular, and skin wounds that
involve mechanisms of angiogenesis, regulation of cell
proliferation, and immune regulation (17, 23, 24). The use of
MSC-Exos, as an alternative to MSCs, has become a new strategy
for tissue regeneration (Figure 1).
ROLE OF MSC-Exos IN DM

Both type 1 diabetes and type 2 diabetes are accompanied by a
certain degree of pancreatic islet damage. The progression of DM
can be delayed by promoting islet regeneration and improving
the sensitivity of insulin target tissues, which is a potential new
treatment for diabetic patients (25) (Table 1).

Insulin deficiency in patients with type 1 diabetes occurs due
to the autoimmune destruction of islet tissue, and MSC-Exos
have the unique ability of immune regulation and can repair
pancreatic islet tissue to alleviate DM. MSC-Exos can
chemoattract pancreatic tissue and promote the regeneration
of pancreatic b-cells and insulin secretion through the pancreatic
and duodenal homeobox 1 pathway (26). Accumulating evidence
has reported that MSC-Exos have a great therapeutic and
regenerative effect on islet injury in type 1 diabetes by
upregulating the levels of regulatory T cells, interleukin (IL)-4,
IL-10, and transforming growth factor b (TGF-b), while
downregulating IL-17 and interferon g, ultimately improving
the autoimmune response of diabetic mice and the regeneration
of islets (27, 28).

Glucose transporter 4 transfer from intracellular vesicles to
the plasma membrane is the final step of insulin signaling, in
which the phosphorylation of insulin receptor substrate 1 and
protein kinase B is an essential step, while the phosphorylation in
type 2 diabetes patients is often blocked, leading to insulin
resistance (33). Meanwhile, adenosine 5’-monophosphate
(AMP)-activated protein kinase (AMPK) plays an important
role in the regulation of glucose and lipid metabolism in skeletal
muscle and liver, and is regarded as an important target to
reverse type 2 diabetes-related metabolic abnormalities (34, 35).
MSC-Exos can activate autophagy through the AMPK pathway
or restore the phosphorylation of insulin receptor substrate 1 and
protein kinase B, which contribute to muscle glucose transporter
4 expression to reverse peripheral insulin resistance; it also
relieves the apoptosis of islet b-cells and restores the insulin
secretion function of type 2 diabetes (30). Patients with type 2
diabetes are commonly associated with obesity (36, 37), which
induces the M2 phenotype of macrophages through the
transactivation of arginase-1 that promotes hepatic glucose and
lipid metabolic balance to reduce obesity (29, 31, 32).
ROLE OF MSC-Exos IN DM
COMPLICATION

DM is the ninth most common cause of death globally, and most
diabetic patients have at least one complication (38). A large
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observational study showed that 50% of patients with type 2
diabetes had microvascular complications, and 27% were
associated with macrovascular complications (39). The
development of common DM complications, including diabetic
kidney injury, diabetic encephalopathy, and diabetic chronic
ulcers, determines the quality of life of patients. In recent
years, MSC-Exos have played a substantial role in the
treatment of diabetic complications, providing a new approach
for its treatment (Table 2).

Diabetes Ulcer
Wound healing consists of four overlapping and dynamic
processes of hemostasis, inflammation, proliferation, and
remodeling, and the obstruction of one of these steps leads to
delayed healing (78). The healing of diabetic ulcers (DUs) is
often blocked by factors, such as infection, peripheral
neurovascular disease, hypoxia, and neuropeptide conduction,
which increase the patient’s medical expenditure and prolong the
hospitalization period. DUs, one of the most serious
complications of DM, often occur on the feet of patients;
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therefore, they are also called diabetic foot. The incidence of
DUs in patients with type 1 diabetes is approximately 20%, which
is similar to that in patients with type 2 diabetes (79). In addition,
DUs are an important cause of disability, and more than 15% of
patients will undergo amputation (80). Despite the progress
made in wound care, the United States Centers for Disease
Control and Prevention reported that DUs are still the main
cause of non-traumatic amputation (81). Therefore, it is
necessary to improve the care and treatment of DUs. Similar
to MSCs, MSC-Exos promote the healing of DUs by regulating
the inflammatory microenvironment of the wound, promoting
vascularization and anti-oxidant apoptosis (40).

Regulate Inflammation
Previous studies have shown that M1 macrophages can produce
pro-inflammatory cytokines, such as IL-1b and tumor necrosis
factor-alpha (TNF-a), while M2 macrophages can produce anti-
inflammatory cytokines, such as TGF-b and VEGF (82, 83).
Therefore, macrophage polarization plays a vital role in the
regulation of the inflammatory response (84). Patients with
TABLE 1 | Mesenchymal stem cells (MSC) used in the treatment of diabetes mellitus (DM).

DM type MSC types Effect Ref.

Type 1 diabetes Menstrual blood MSC Controlling blood glucose, increasing insulin level and promoting islet regeneration (26)
Adipose derived MSC (27)
Bone marrow MSC (28)

Type 2 diabetes Adipose derived MSC Improve insulin resistance, improve liver sugar storage capacity, and promote islet regeneration (29)
Umbilical cord MSC (30)
Bone marrow MSC (31)
Umbilical cord MSC (32)
April 2021 | Volume 12 | Article 64
FIGURE 1 | Diabetes/diabetes complications and mesenchymal stem cell exosomes repair.
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diabetes are in a state of chronic inflammation, and the number
of pro-inflammatory M1 macrophages in the damaged wound is
significantly higher than that in anti-inflammatory M2
macrophages (85). Excessive polarization of M1 macrophages
will inevitably increase the secretion of IL-1b, TNF-a, and other
pro-inflammatory cytokines that prolong the inflammatory
period of wound repair, which further leads to wound collagen
regeneration and scar hyperplasia (86–88).

MSC-Exos increase the M2/M1 polarization ratio, which
reduces the inflammation of DUs wounds and promotes healing
(50). MSC-Exos inhibit the activation of the phosphatidylinositol
3-kinase/protein kinase B (PI3K/AKT) pathway and weaken the
phosphorylation of AKT by promoting the expression of
pentaerythritol tetranitrate (PETN) to regulate the M1/M2
polarization ratio. This inhibits the inflammatory response of
wounds in diabetic rats and accelerates the rapid transition from
the inflammation phase to the tissue regeneration phase (44, 54). It
can be seen that the PETN/PI3K/AKT axis is closely related to
macrophage polarization, which regulates the local inflammatory
response and enhances the proliferation and migration ability of
Frontiers in Endocrinology | www.frontiersin.org 4
fibroblasts at the injury site that promotes the healing of
DU wounds.

Vascularization
The degree of wound vascularization determines the healing rate
and remodeling of the wound. Neovascularization occurs
through the wound repair process. New capillaries are formed
in granulation tissue after three days of injury; they grow rapidly
and are interwoven into a network to provide oxygen and
nutrients to the cells in the damaged area (89). In the process
of angiogenesis, pro-angiogenic factors play a role in maintaining
vascular growth. However, DM significantly reduces the level of
pro-angiogenic factors, leading to blocked angiogenesis and
delayed wound healing (90).

MSC-Exos are rich in multiple growth factors and therapeutic
noncoding RNAs that can effectively promote the vascularization
of skin wounds and are safer and more stable compared to cell
therapy (91, 92). Studies have demonstrated that MSC-Exos are
rich in circular RNAs, long noncoding RNAs, and microRNAs
(miRNAs) that can regulate the expression of related repair genes
TABLE 2 | MSC used in the treatment of DM complication.

DM complication MSC types Effect/involved noncoding RNA Ref.

Diabetes wound Bone marrow MSC Vascularization (40)
Adipose derived MSC Vascularization (41)
Adipose derived MSC Vascularization/miR-21-5p (42)
Bone marrow MSC Vascularization (43)
Bone marrow MSC Regulate inflammation/lncRNA H19 (44)
Adipose derived MSC Vascularization (45)
Synovium MSC Vascularization/miR-126-3p (46)
Urine MSC Vascularization (47)
Adipose derived MSC Vascularization and regulate inflammation (48)
Induced pluripotent stem cell Vascularization (49)
menstrual blood-derived MSC Vascularization and regulate inflammation (50)
Adipose derived MSC Vascularization (51)
Adipose derived MSC Vascularization (52)
Adipose derived MSC Vascularization/mmu_circ_0000250 (53)
Bone marrow MSC Vascularization and regulate inflammation (54)
Bone marrow MSC Vascularization/miR-221-3p (55)
Umbilical cord MSC Vascularization (56)

Diabetic nephropathy Adipose derived MSC Podocyte repair/miRNA-215-5p (57)
Urine MSC Podocyte repair (58)
Bone marrow MSC Anti-fibrosis and promote renal function recovery (59)
Bone marrow MSC Anti-fibrosis and promote renal function recovery (60)
Adipose derived MSC Podocyte repair/miR-486 (61)
Urine MSC Podocyte repair/miR-16-5 (62)
Umbilical cord MSC Reduce kidney inflammation and improve kidney function (63)
Umbilical cord MSC Reduce kidney inflammation and improve kidney function (64)

Diabetic retinopathy Adipose derived MSC Retinal repair/miR-222 (65)
Umbilical cord MSC Retinal repair and regulation of inflammation/miR-126 (66)

Erectile dysfunction Adipose derived MSC Vascularization and anti-apoptosis (67)
Adipose derived MSC Promote angiogenesis and anti-fibrosis/miR‐126, miR‐130a, miR‐132, miR‐let7b, miR‐let7c (68)
Adipose derived MSC Vascularization and anti-inflammatory (69)
Bone marrow MSC Vascularization and anti-inflammatory/miR-21-5p (70)

Cognitive dysfunction Bone marrow MSC Nerve repair (71)
Bone marrow MSC Nerve repair and anti-inflammatory/miR-146a (72)
Bone marrow MSC Nerve repair (73)

Diabetic stroke Bone marrow MSC Nerve repair/miR-9 (74)
Bone marrow MSC Nerve repair/miR-145 (75)

Submandibular gland dysfunction Bone marrow MSC Salivary gland function repair (76)
Diabetic cardiomyopathy MSC Reduce myocardial injury and fibrosis (77)
April 2021 | Volume 12 | Article 64
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to promote the vascularization and healing of DU wounds.
Exosomes derived from mmu_circ_0000250-modified adipose-
derived mesenchymal stem cells were found to promote the
activation of autophagy to inhibit cell apoptosis in a high-glucose
environment, promote the expression of SIRT1 through miR-
128-3p adsorption, promote wound vascularization, and
ultimately accelerate the healing of DM wounds (53). Yu et al.
(55) found that MSC-Exos can promote the angiogenesis ability
of endothelial cells; the expression of VEGF upregulates the
expression of miR-221-3p and activates the AKT/endothelial
nitric oxide synthase (eNOS) pathway to promote the
vascularization of DM wounds. Moreover, MSC-Exos can be
used as a good carrier of therapeutic noncoding RNA for the
healing of DU wounds. Studies have applied miR-126-3p or miR-
21-5p engineered MSC-Exos to diabetic wounds and found that
they can activate the PI3K/AKT, mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK),
and Wnt/b-catenin pathways, which are closely related to
blood vessel formation, to promote the vascularization and re-
epithelialization of DM wounds and enhance the efficiency of
healing (42, 46). In addition, compared with MSC-Exos alone,
combining MSC-Exos with hydrogel materials to improve the
survival rate of MSC-Exos applied to DU wounds has shown
better vascularization and wound closure rates (41, 45, 51). Thus,
MSC-Exos are expected to become a new biological agent for the
treatment of DUs.

Diabetic Nephropathy
Diabetic nephropathy (DN) is a severe type of microvascular
kidney damage caused by DM that eventually develops into end-
stage renal disease (ESRD), which is mostly characterized by a
persistent protein or persistent glomerular filtration rate
reduction. Once the course of DM exceeds 20 years, the
incidence of DN can be as high as 35%, and approximately 8%
of patients will progress to ESRD. Epidemiological statistics have
shown that DM causes more than 40% of ESRD cases in the
United States, and diabetes-related chronic kidney disease has
also become the main cause of ESRD in hospitalized patients in
China (38). Early DN manifests as glomerular hyperfiltration
and microalbuminuria. As the disease progresses, a series of
pathological changes appear in the kidneys, such as glomerular
basement membrane thickening, mesangial expansion, glomerular
sclerosis, podocyte loss, and renal interstitial fibrosis (93). The
glomerular filtration rate gradually decreases and eventually
develops into uremia (94). The various growth factors and
therapeutic noncoding RNAs contained in MSC-Exos also have
significant effects on improving renal function, delaying renal
fibrosis, and repairing podocyte function, and are expected to
become a new tool for the treatment of DN.

Podocyte Repair
Podocytes are an important part of the glomerular filtration barrier
and are known to maintain barrier function together with vascular
endothelial cells (95, 96). Studies have shown that hyperglycemia
can induce podocyte apoptosis, which reduces the number of
podocytes, resulting in proteinuria (97). Hence, preventing
podocyte damage plays a vital role in the treatment of DN.
Frontiers in Endocrinology | www.frontiersin.org 5
Studies have revealed that MSC-Exos have a significant
protective effect against acute and chronic kidney injury (98,
99). MSC-Exos can effectively reduce podocyte damage induced
by high glucose levels by delivering therapeutic miRNAs. MSC-
Exos deliver therapeutic miRNAs, such as miR-215-5p, miR-486,
miR-150, miR-134, and miR-16-5p to podocytes. This directly
targets small mothers against decapentaplegic (Smad)-1 to
weaken mammalian target of rapamycin (mTOR)-mediated
autophagy or cooperates with vascular endothelial growth
factor A (VEGFA) to protect podocytes from the effects of
hyperglycemia, and improve the proliferation and migration of
podocytes to protect renal function (57, 61, 62). In addition,
exosomes from urine-derived stem cells were injected into a
diabetic rat model through the tail vein, and it was observed that
the overexpression of caspase-3 was inhibited, podocyte
apoptosis was reduced, the proliferation of renal tubular
endothelial cells was promoted, and the urine output and
urinary microprotein excretion in DN rats were effectively
reduced (58). These results indicate that MSC-Exos can
alleviate podocyte injury and improve renal function recovery.

Improvement of Renal Fibrosis
Renal fibrosis is the central link in DN and ultimately leads to
irreversible kidney damage. Renal fibrosis is closely related to
inflammatory cell infiltration, epithelial-endothelial mesenchymal
transition, and myofibroblast transdifferentiation. Inflammatory
cells secrete multiple inflammatory cytokines, such as IL-1b, IL-6,
TNF-a, and TGF-b1 (100, 101). In the early stage of DN, TGF-b1,
an important inflammatory cytokine for renal fibrosis, interferes
with the cell cycle and causes renal hypertrophy (102).
Subsequently, TGF-b1 can activate the downstream Smad2/3,
MAPKs, PI3K/AKT, RhoA, and Wnt/b-catenin signaling
pathways to trigger the synthesis of the extracellular matrix and
myofibroblast transdifferentiation, thereby accelerating the
process of renal fibrosis (63).

Studies have reported that repeated administration of MSC-
Exos to diabetic animal models can ameliorate glomerular
hypertrophy, basement membrane thickening, and fibrosis, to
reduce the progression of DN (59, 63, 64). MSC-Exos inhibit the
secretion of TGF-b1 to reduce epithelial-endothelial mesenchymal
transition and block the proliferation of mesangial cells induced
by the MAPKs and PI3K/AKT/mTOR pathways, thus alleviating
renal fibrosis (60). MSC-Exos contain growth cytokines, such as
epidermal growth factor, fibroblast growth factor, hepatocyte growth
factor, and VEGF, which have anti-inflammatory and anti-fibrotic
effects. It can downregulate the expression offibroblast markers, such
as alpha-smooth muscle actin (a-SMA) and collagen IV in renal
tubules, and improve renal fibrosis in DN rats.

Diabetic Retinopathy
Diabetic retinopathy (DR) is an important cause of vision loss in
the elderly. Hyperglycemia can cause multiple pathological
changes in the retinal neurovascular unit, including optic nerve
inflammation, glial hyperplasia, abnormal vascular permeability,
and blood-retinal barrier decomposition, eventually leading to
retinal fibrosis, vision loss, and blindness in severe cases (103–
105). Epidemiology demonstrates that the prevalence of DR is as
April 2021 | Volume 12 | Article 646233
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high as 28% in the United States and 25% in Asian countries (38).
Thus, it is important to develop effective treatments for DR.

Previous studies have observed the activation of the NOD-like
receptor family pyrin domain containing 3 (NLRP3) inflammasome,
which leads to the maturation of proinflammatory cytokines, such as
IL-1b, IL-18, and caspase-1 in the retinas of DM rats to mediate the
apoptosis of retinal cells (106, 107). Previous studies (66) have found
that MSC-Exos significantly downregulated the expression of high-
mobility group box 1 (HMGB1), NLRP3, and NF-kappaB/P65
protein in DR rats, inhibiting the production of various
inflammatory cytokines and reducing retinal vascular endothelial
injury. The use of MSC-Exos rich in therapeutic noncoding RNAs
may become a new method for the treatment and prevention of DR.
MSC-Exos with overexpressed miR-126 was used to more effectively
inhibit the activation of the HMGB1 signaling pathway and improve
the inflammatory response in DR rats. In addition, Safwat et al. (65)
found that MSC-Exos can deliver miR-222 to retinal cells and
regulate signal transducer and activator of transcription 5A
(STAT5) protein expression to inhibit neovascularization in
advanced DR, which promotes retinal regeneration.

Diabetic Erectile Dysfunction
Erectile dysfunction (ED) is a common chronic complication of
DM and is defined as the inability to achieve or maintain an
adequate erection during sexual intercourse (108). Epidemiology
demonstrates that the prevalence of ED in men with diabetes is
as high as 70% and is three times that of nondiabetic men (109).
Previous studies reported that hyperglycemia caused VEGF
signaling transduction, the synthesis of neuronal nitric oxide
synthase and endothelial nitric oxide synthase to be blocked, and
the level of oxygen free radicals to increase, which resulted in
increased apoptosis of sponge endothelial cells and smooth
muscle cells in ED patients (110, 111). However, the efficacy of
oral phosphodiesterase type 5 inhibitors was unsatisfactory, and
more effective methods need to be developed (112).

MSC-Exos injection therapy can significantly increase the
ratio of intracavernosal pressure to mean arterial pressure and
upregulate the expression of atrial natriuretic peptide, brain
natriuretic peptide, and neuronal nitric oxide synthase to
promote the recovery of erectile function in DM rats (69). MSC-
Exos contain pro-angiogenic miRNAs (miR-126, miR-130a, and
miR-132) and anti-fibrotic miRNAs (miR-let7b and miR-let7c),
which may increase the proliferation of vascular endothelial cells
and smooth muscle cells in the cavernous body by increasing the
proliferation of vascular endothelial cells and the expression of
smooth muscle markers (a-SMA) and anti-apoptotic proteins
(Bcl-2) to alleviate ED (67, 68). In addition, MSC-Exos reduced
apoptosis and promoted the proliferation of cavernous smooth
muscle cells by delivering miR-21-5p to target programmed cell
death 4, and significantly improved erectile function and smooth
muscle density in DM rats (70).

Diabetic Cardiomyopathy
Diabetic cardiomyopathy (DC) is the systolic and diastolic
dysfunction caused by DM, which eventually leads to heart
failure. Coronary artery disease and ischemic cardiomyopathy
Frontiers in Endocrinology | www.frontiersin.org 6
are the main contributors to cardiac death in diabetic patients
(113). Early DC manifests as impaired diastolic function, but no
significant changes in systolic function (normal ejection fraction).
As the disease progresses, cardiac systolic function is affected by
reduced ejection fraction, and the pathological manifestations
include left ventricular hypertrophy and interstitial fibrosis (114).
The heart is a terminally differentiated organ, and it is difficult to
regenerate cardiomyocytes after damage (115). Exosomes derived
from MSC therapy may be a new approach for DC repair.

MSC-Exos have shown good therapeutic effects against
cardiac ischemic diseases. Exosomes derived from bone marrow
MSCs were directly injected into rats with myocardial infarction,
which increased the expression of the miR-19a/AKT/ERK axis by
inhibiting PTEN; thus, myocardial cell apoptosis was reduced
with the significant recovery of myocardial contractile function
and the reduction of infarct size (116). Notably, MSC-Exos may
have a protective effect against myocardial injury. Lai et al. (117)
used human embryonic stem cell-derived MSC-Exos perfusion
buffer in a mouse model of myocardial ischemia-reperfusion and
observed that the activation of the AKT/ERK pathway and the
inhibition of the c-Jun NH2-terminal kinase pro-apoptotic
pathway in the myocardial tissue was accompanied by a
significant improvement in cardiac function at 1 h, 48 h, and
28 days after intervention. MSC-Exos were injected into the tail
vein of a rat model of diabetic myocardial injury and it was
observed that MSC-Exos inhibited the TGF-b1/Smad2 signaling
pathway to improve myocardial injury and fibrosis induced by
DM (77). At present, there are few studies on MSC-Exos used in
DC, but MSC-Exos has a powerful regulating and repairing effect
on myocardial injury; therefore, the repair of DCs has great
application prospects.

Other Rare Complications
Other rare complications of DM include cognitive impairment,
stroke, and submandibular gland dysfunction. Abnormal blood
glucose metabolism results in central nervous system neuron
damage, decreased hippocampal synaptic plasticity, astrocyte
foot swelling, which leads to cognitive dysfunction, various
vascular diseases and increased vascular permeability, which
leads to ischemic stroke, and salivary gland function damage,
which leads to salivary quality reduction and gland function
disorder (71, 76). There are few reports on the application of
MSC-Exos to the above-mentioned complications, but some
curative effects have been achieved.

Studies have reported that MSC-Exos can act on damaged
neurons and astrocytes to promote their repair and reverse
cognitive dysfunction (72, 73). MSC-Exos can significantly
reduce the expression of ATP-binding cassette A1 and type 1
insulin-like growth factor receptor by increasing the expression of
miR-145 or reducing the expression of miR-9, and increasing the
neurorepair and cognitive function improvement of stroke DM
rats (74, 75). AbuBakr et al. (76) found that MSC-Exos inhibited
the TGFb signaling pathway through Smad2 and Smad3 to
inhibit the damage of salivary glands caused by DM, which was
manifested by the reduction of serum amylase and salivary IgA,
which led to the restoration of salivary gland function.
April 2021 | Volume 12 | Article 646233
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CONCLUSION

DM is a metabolic disorder prevalent worldwide, and its incidence
is increasing annually. Long-term hyperglycemia causes many
chronic complications with regards to microvascular disease, and
there is a lack of effective treatment methods. MSC-Exos have a
repair function similar to MSCs, but do not have the shortcomings
ofMSCs in terms of promoting tumor formation and the difficulties
associated with storage. MSC-Exos are rich in a variety of growth
cytokines, repair proteins, and therapeutic noncoding RNAs, which
can promote the repair of organs damaged by DM and its
complications by regulating inflammation, vascularization, and
anti-apoptotic mechanisms. The use of MSC-Exos may be an
effective treatment strategy for DM and its complications.
Frontiers in Endocrinology | www.frontiersin.org 7
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