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Abstract: Indole alkaloids are heterocyclic natural products with extensive pharmacological activities.
As an important source of lead compounds, many clinical drugs have been derived from natural
indole compounds. Marine indole alkaloids, from unique marine environments with high pressure,
high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts
the attention of drug researchers. This article is a continuation of the previous two comprehensive
reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with
472 new or structure-revised compounds categorized by sources into marine microorganisms, in-
vertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will
benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way
to clinical drugs.
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1. Introduction

Marine natural products have incomparable skeleton diversity and novelty relative to
terrestrial source ones. They often exhibit superexcellent physiological activities and occupy
an important position in today’s pharmaceutical industry as a continuously rich source
of potential drugs [1–5]. The diversity of their structure enables them to have a broader
range of pharmacological activities and action mechanisms, such as neuroprotection,
analgesia, smoking cessation, antibacterial, antiviral, antitumor, antihypotension, and
antihyperlipidemia [6].

The indole nucleus is one of the most crucial ring systems in nature. It has been
termed a “privileged structure” in respect of pharmaceutical development. Viibryd (vila-
zodone, neurological disorders), decapeptyl (triptorelin, hormonal disorders), symdeko
(tezacaftor and lvacaftor, genetic disorders), cialis (tadalafil, sexual health), cubicin (dap-
tomycin, anti-bacterial), zepatier (elbasvir and grazoprevir, infectious diseases), tagrisso
(osimertinib, oncology), sutent (sunitinib, oncology), zoladex (goserelin, oncology), ale-
censa (alectinib, oncology) and lupron (leuprolide, oncology) are all indole-containing
top 200 small molecule pharmaceuticals by retail sales in 2018, which were summarized
by Njarðarson Group (The University of Arizona, https://njardarson.lab.arizona.edu,
30 October 2021). Due to the high market occupancy and diverse physiological activities,
indole alkaloids are now a research hotspot for pharmacologists. In recent years, pharma-
cological activities of indole alkaloids have been reviewed, including indole alkaloids with
anti-diabetic activity [7], anti-malarial potential [8], anti-depression and anti-anxiety activ-
ity [9], antitumor and anti-drug-resistant cancer activity [10,11], and immune-regulatory
activity [12]. This review focuses on marine indole alkaloids discovered since 2015, when
the last comprehensive review, covering the time from 2003 to 2015, was reported by
Netz and Opatz [13]. In this review, the newly isolated and structure-revised indole al-
kaloids from 2005 to 2021, 472 in total, are reported by the classification of sources. All
the chemical structures are drawn in this review, and the bioactivities are discussed. The
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general information of the cell lines mentioned in this review are listed in Table S1. The
sources and bioactivities of all the reviewed marine indole alkaloids are summarized in
Tables S2 and S3. The structures of these marine indole alkaloids were elucidated by var-
ious spectroscopic techniques. High-resolution mass spectrometer (HRMS) and 1D/2D
nuclear magnetic resonance (1D/2D NMR) are the primary techniques for structure de-
termination. Ultraviolet (UV) and infrared (IR) data are also used as auxiliary proofs. For
compounds with chiral centers, the absolute configurations could be determined by specific
rotation, electronic circular dichroism (ECD), X-ray single-crystal diffraction and Marfey’s
method, etc. During the discovery of natural products, structures were mistaken especially
for absolute configurations, which happened occasionally. Chemical total synthesis of the
natural product and comparing the NMR spectroscopy between the synthetic product and
the natural product is another precise but complex and expensive method for structure
determination and revision.

2. Marine Microorganisms
2.1. Marine-Sourced Bacteria

Marine-sourced bacteria are one of the richest producers of bioactive natural products.
There are 64 new indole metabolites isolated from marine-sourced bacteria, including
38 from sediment-sourced bacteria and 12 from sponge-sourced bacteria. If classified by
the source of bacterial species, most of the indole alkaloids are found from actinomycetes.

2.1.1. Sediment-Sourced Bacteria

Isonaseseazine B (1), an antimicrobial diketopiperazine dimer, was isolated from
Streptomyces sp. SMA-1 by bioassay-guided separation (Figure 1). Streptomyces sp. SMA-1
was one of the 613 actinobacterial strains isolated from the sediments collected from the
Yellow Sea, China [14]. Indolepyrazines A (2) and B (3) were isolated from Acinetobac-
ter sp. ZZ1275, and they showed antimicrobial activities against methicillin-resistant
Staphylococcus aureus (MRSA), Escherichia coli (E. coli), and Candida albicans with minimum
inhibitory concentration (MIC) values of 12 µg/mL, 8–10 µg/mL, and 12–14 µg/mL, re-
spectively. Indolepyrazine A (2) is the first indole-pyrazine-oxindole alkaloid, and both 2
and 3 are the first reported natural products isolated from marine-derived Acinetobacter
species [15]. Streptoprenylindoles A–C (4–6) were acquired from Streptomyces sp. ZZ820.
Streptoprenylindoles A and B were enantiomers that were separated by the preparation
of Mosher’s method. No inhibiting activities of the streptoprenylindoles were reported
for the tested MRSA and E. coli [16]. 3-hydroxy-N-methyl-2-oxindole (7–8) were obtained
from marine Salinispora arenicola strain from sediments of Brazil, and they showed no
antibacterial activity against Gram-positive (Enterococcus faecalis and Staphylococcus aureus)
and Gram-negative (E. coli) bacteria strains [17]. Two new chlorinated bisindole alkaloids,
dionemycin (9) and 6-OMe-7′,7”-dichorochromopyrrolic acid (10) were isolated from the
deep-sea derived Streptomyces sp. SCSIO 11791. In vitro antibacterial and cytotoxic as-
says revealed that compound 9 shows anti-staphylococcal activity with a MIC range of
1–2 µg/mL against six clinic strains of MRSA isolated from human and pig. The cyto-
toxicity of the trichloro-bisindole 9 was evaluated on human cancer cell lines NCI-H460,
MDA-MB-231, HCT-116, HepG-2, and noncancerous MCF10A with IC50 values ranging
from 3.1 to 11.2 µM. Structure–activity relationship analysis of compounds 9, 10, and seven
known analogs showed C-6” chlorine as an essential pharmacophore in their cytotoxic
activities [18].

A total of 18 new indolocarbazole alkaloids (11–28) isolated from Streptomyces sp.
DT-A61, A65, A68, A22, OUCMDZ-3118 and bingchenggensis ULS14 were reported in a roll
during 2018 and 2019 (Figure 2). Compounds 11–25 were evaluated for cytotoxic activity
against PC3 cell line. Compound 20 showed the strongest cytotoxic activity against PC3
with an IC50 value of 0.15 µM, and the other indolocarbazoles exhibited moderate activities
against the PC3 (IC50 = 0.8–41.3 µM). Compounds 11–25 were also tested for various
enzyme inhibition activities of protein kinase C and bruton tyrosine kinase. Compound 12
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displayed significant and selective inhibition against ROCK2 and the other indolocarbazole
also showed moderate inhibition activities to different kinases. Compound 26 showed
moderate activity with IC50 values of 0.91–1.84 µM for the tested protein kinases enzyme
inhibition activities. Compound 27 was moderately effective against the A549 and MCF-7
cell lines with IC50 values of 1.2–1.6 µM. The IC50 of 28 against the HeLa cell line was
0.075 µg/mL [19–24].
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Figure 2. Chemical structures of 11–28.

Two new brominated bis-indole metabolites, 5-bromometagenediindole B (29), and
5-bromometagenediindole C (30) were separated under the guidance of LC-MS from
the 25D7 clone derived E. coli fermentation broth, in which 5-bromoindole was added.
5-Bromometagenediindole B (29) demonstrated moderately cytotoxic activity against MCF-7,
B16, CNE-2, BEL-7402, and HT-1080 tumor cell lines in vitro (Figure 3) [25]. 3,3′-bis-indole
(31) were isolated from sediment-derived actinomycete Nocardiopsis sp. G057 as a natural
product for the first time. Compound 31 exhibited antimicrobial activity against several
strains of bacteria, and the yeast Candida albicans with values of MIC ranging from 64 to
256 µg/mL. Cytotoxic evaluation of compound 31 against four cancer cell lines (KB, LU-1,
HepG-2, and MCF-7) indicated that 31 produced a weak inhibition against KB and LU cell
lines (IC50 = 12.5 and 25.6 µg/mL) [26]. 1-methyl-4-methylthio-β-carboline (32) was tracked
by the GNPS MS2 fragmentation pattern analysis tool and separated by a scale-up liquid
culture of Achromobacter spanius. No bioactivity was reported [27]. Spiroindimicins E (33)
and F (34) were identified by combined genomics-metabolomics profiling of marine Strep-
tomyces sp. MP131-18, and demonstrated the potential of actinomycetes in combinatorial
biosynthesis of secondary metabolites [28].
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Figure 3. Chemical structures of 29–34.

Taromycin B (35) was produced by heterologous expression of the activated taromycin
biosynthetic gene clusters from marine actinomycete Saccharomonospora sp. CNQ-490. It
showed potent activity against methicillin-resistant Staphylococcus aureus and vancomycin-
resistant Enterococcus faecium (Figure 4) [29]. New xiamycin analogs (36–38) were isolated
via genome mining of Streptomyces xinghaiensis NRRL B-24674T, and the bioactivity was
not evaluated [30].
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2.1.2. Sponge-Sourced Bacteria

Enhypyrazinones A and B (39 and 40), from a marine-derived myxobacterium Enhy-
gromyxa sp., showed weak activity (MIC values > 128 µg/mL) against E. coli, methicillin-
resistant Staphylococcus aureus (MRSA), and methicillin-sensitive Staphylococcus aureus
(MSSA) (Figure 5) [31]. Investigation of the bioactive secondary metabolites of the sponge-
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derived actinomycete Rubrobacter radiotolerans led to the isolation and characterization of
another new naturally rare dimeric indole derivative (41). Compound 41 showed moderate
antichlamydial activity with IC50 values of 46.5–96.4 µM against different Chlamydia [32].
Rhodozepinone (42), a new azepino-diindole alkaloid, was isolated and identified from the
broth culture of Rhodococcus sp. UA13, which had been previously recovered from the Red
Sea sponge Callyspongia aff. Implexa. Rhodozepinone (42) exhibited significant antibacterial
and antitrypanosomal activities against Staphylococcus aureus NCTC 8325 (IC50 = 8.9 µg/mL)
and Trypanosoma brucei brucei TC221 [IC50 = 16.3 (48 h) and 11.8 (72 h) µg/mL], respec-
tively [33]. Anthranoside C (43), discovered from actinomycete Streptomyces sp. CMN-62,
which was originated from a marine sponge, could inhibit influenza H1N1 virus with
an IC50 value of 171 µM (ribavirin as positive control, IC50 = 133 µM) [34]. Lysinibacillus
fusiformis was one of the 48 sponge-associated microbes identified from Halichondria okadai
by testing 720 kinds of culture conditions. Lysiformine (44) was isolated from Lysinibacillus
fusiformis, and displayed cytotoxicity toward mouse leukemia P388 cells with an estimated
IC50 value of 10 µM [35]. Saccharomonosporine A (45), a novel brominated oxo-indole
alkaloid and convolutamydine F (46) were isolated from Saccharomonospora sp. UR22 and
Dietzia sp. UR66 co-culture. Compound 45 was a potential Pim-1 kinase inhibitor that me-
diate the tumor cell growth inhibitory effect with an IC50 value of 0.3 ± 0.02 µM on Pim-1
kinase and significant antiproliferative activity against HT-29, (IC50 = 3.6 µM) and HL-60,
(IC50 = 2.8 µM) [36]. Photopiperazines A–D (47–50) were isolated from sponge-derived
actinomycete AJS-327. The cytotoxicity of photopiperazines A–D mixture was evaluated
on four cancer cell lines. It showed 12,000-fold selective toxicity toward U87 and SKOV3
than MDA-MB-231 and HCT-116 cell lines with the IC50 values of 0.41 nM and 0.75 nM,
respectively [37].
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2.1.3. Miscellaneous

A new phenylamine-incorporated angucyclinone (51) was discovered from marine
Streptomyces sp. PKU-MA00218 (Figure 6). Compound 51 was produced from a nonenzy-
matic conversion of the type II PKS-produced precursor. In addition, 18 new phenylamine-
incorporated angucyclinone derivatives were prepared by the efficient nonenzymatic con-
version under mild conditions. All 19 compounds showed different degrees of activity on
nuclear factor erythroid 2-related factor 2 (Nrf2) transcription in HepG2 cells at 10 µM [38].
Sulfadixiamycins A–C (52–54) are a new class of antibiotics featuring sulfanilamide and
dapsone substructures firstly reported from natural sources. They were discovered from
recombinant Streptomyces species harboring the entire xiamycin biosynthesis gene cluster
and exhibited moderate antimycobacterial activities and potent antibiotic activities even
against multidrug-resistant bacteria [39].
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Two psychrotolerant bacterial strains Vibrio splendidus T262 and Arthrobacter psychro-
chitiniphilus T406 were isolated from the gastrointestinal tract of a fish and the excre-
ment of penguins near the South Orkney Islands in Antarctica. Seven new indole alka-
loids, trisindolal (55), turbomycin C–F (56–59), 4-(1H-indol-3-yl-sulfanyl) phenol (60), and
2-(indol-3-ylmethyl)-indol-3-ylethanol (61) were obtained from T262 and T406 (Figure 7).
Trisindolal (55) was active against the peronosporomycetes Botrytis cinerea and Phytophthora
infestans, and showed pronounced potency and selectivity in a panel of 11 human tumor
cell lines derived from 10 different tumor histotypes [40]. 6-Bromo-N-propionyltryptamine
(62) were isolated and identified from a marine bacterium Pseudoalteromonas rubra QD1-2
and exhibited weak 5-HT2A receptor antagonist activity (~10% inhibition, 10 µM) [41].
Another simple indole alkaloid (63) was isolated from the deep-sea-derived bacterium
Bacillus subterrneus 11593 and displayed no anti-allergic bioactivity [42]. Compound 64 was
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isolated from Pseudovibrio denitrificans strain isolated from seawater. It showed cytotoxic
effect against L929 cells (EC50 = 7 µM) and A549 cells (EC50 = 8 µM) [43].
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2.2. Marine-Sourced Fungi

Marine fungi are important components of marine microorganisms, and they are the
main source of marine natural products. Among them, Cephalosporin C is the brightest
star molecule as the first marine antibiotic [44,45]. In this part, 257 new indole alkaloids
were summarized, including 93 from sediment-derived fungi, 62 from coral-derived fungi,
19 from bivalve-mollusk-derived fungi, 20 from Mangrove-sourced fungi, 16 from marine
alga endophytic fungi, and 20 from sponge-sourced fungi.

2.2.1. Sediment-Sourced Fungi

Cyclopiamides B–J (65–73), nine new oxindole alkaloids were isolated from the
sediment-derived fungus Penicllium commune DFFSCS026 (−3563 m in the South China
Sea) (Figure 8). Compounds 65–73 and positive control (ochratoxin A) displayed lethal
activity on brine shrimp with LC50 values of 25.2, 38.5, 14.1, 24.8, 25.6, 34.7, 16.4, 33.5,
26.7 and 6.2 mg/mL, respectively. Compounds 65–73 showed no cytotoxicity towards
human carcinoma HepG-2 and HeLa cell lines at a concentration of 100 mg/mL, and no
anti-influenza virus H1N1 activity under their largest concentration of non-toxic towards
the tested MDCK cell [46].
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Haenamindole (74) and citreoindole (75) were isolated from a South China Sea deep-
sea fungus, Penicillium citrinum MF006 (Figure 9) [47]. The structures of the rare alkaloids
74 and 75 were revised based on detailed spectroscopic and C3 Marfey’s analysis [48,49].
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Figure 9. Chemical structures of 74–75.

Penicimutamides A–E (76–80) and a structure-revised aspeverin (81), six new preny-
lated indole alkaloids, were isolated from a diethyl sulfate mutagenesis mutant of the
marine-derived fungus Penicillium purpurogenum G59. Compound 76 and compounds
78–80 displayed less than 28.5% inhibition rates on human K562, HL-60, HeLa and BGC-
823 cell lines at the concentration of 100 µg/mL, while compound 77 showed remarkable
inhibition rates (77.3–92.7% at 100 µg/mL) and the further determined IC50 values ranged
from 20 to 52 µg mL−1 (Figure 10) [50,51].
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Figure 10. Chemical structures of 76–81.

Asperversiamides A–H (82–89) and structure-revised iso-notoamide B (90) were iso-
lated from the marine-derived fungus Aspergillus versicolor (Figure 11). Asperversiamide
G (88) exhibited a potent anti-inflammatory activity with an IC50 value of 5.39 µM against
iNOS (Figure 10) [52]. Eight new diketopiperazines (91–98) were isolated from a marine-
derived fungus Aspergillus versicolor MF180151, and they showed no activity against the
tested pathogens (Candida albicans, Bacillus subtilis, Staphylococcus aureus, Methicillin-resistant
S. aureus, Pseudomonas aeruginosa, and Bacillus Calmette-Guérin) [53]. Roquefortine J (99)
was founded in Penicillium granulatum MCCC 3A00475 and with an IC50 value of 19.5 µM
against HepG2 tumor cells [54].

Acremonpeptide D (100), together with Al(III)-acremonpeptide D (101) were obtained
from the marine fungus Acremonium persicinum SCSIO 115 (Figure 12). In vitro bioassays
revealed Al(III)-acremonpeptide D (101) as moderate antiviral agents for herpes simplex
virus 1 with an EC50 value of 14 µM (Figure 11) [55]. Cytoglobosins H (102) and I (103) were
isolated from the deep-sea-derived fungus Chaetomium globosum, which was obtained from
a deep-sea sediment sample (−2500 m depth) of the Indian Ocean. They showed weak to
no cytotoxicity against MDA-MB-231, LNCaP and B16-F10 cell lines (IC50 > 9 µM) [56].
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Two alkaloids, fumigatosides E (104) and F (105) were isolated from deep-sea derived
fungal Aspergillus fumigatus SCSIO 41012 (Figure 13). Compound 104 showed significant
antifungal activity against Fusarium oxysporum f. sp. momordicae with MIC at 1.56 µg/mL,
and compound 105 exhibited significant activity against A. baumanii with a MIC value
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of 6.25 µg/mL [57]. Penijanthines C and D (106 and 107) were isolated from the marine-
derived fungus Penicillium janthinellum. They displayed significant anti-Vibrio activity
(MIC values ranging from 3.1 to 50.0 µM) against three pathogenic Vibrio spp. [58]. Two new
compounds 19S,20-epoxy-18-oxotryprostatin A (108) and 20-hydroxy-18-oxotryprostatin
A (109) were discovered from the marine-derived fungus Aspergillus fumigatus MF071
from the Bohai Sea sediment. For the limited amounts of 108 and 109, no activities
have been evaluated yet [59]. Four indole diketopiperazine alkaloids aspechinulins A–D
(111–113 and 110) were isolated from the sediment-derived fungus Aspergillus sp. FS445.
Compounds 111–113 represented the first examples of indole diketopiperazine derivatives
constructing a C-5 unit at 11-NH through an imide linkage. Compound 113 exhibited
the most potent inhibitory activities against NO production with the IC50 value of 20 µM,
which was as effective as the positive control aminoguanidine (IC50 = 23.7 µM) [60].
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Three new prenylated indole 2,5-diketopiperazine alkaloids (114–116), one new in-
dole alkaloid (117), and six pairs of new spirocyclic alkaloid enantiomers eurotinoids
A–C (118–123) and variecolortins A–C (124–129) were characterized from the sediment-
derived fungus Eurotium sp. SCSIO F452 (Figure 14). Compound 116 and all the spirocyclic
alkaloids 118–123 showed significant radical scavenging activities against DPPH with IC50
values ranging from 3.7 to 24.9 µM. None of the alkaloids (114–129) exhibited obvious
cytotoxicity against SF-268 and HepG2 cell lines. Interestingly, (+)-enantiomers (118, 120
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and 122) exhibited more potent activities than the corresponding (−)-enantiomers (119, 121
and 123). (+)-enantiomer 124 exhibited stronger antioxidative activity than (−)-enantiomer
125, while (+)-enantiomers (126 and 128) showed more potent cytotoxicities against SF-268
and HepG2 cell lines than (−)-enantiomers (127 and 129), which indicated that different
enantiomers might result in different biological activities [61–63].
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Graphiumins I (130) and J (131) were isolated from the culture broth of the marine-
derived fungus Graphium sp. OPMF00224 (Figure 15). Compounds 130 and 131 inhibited
yellow pigment production by MRSA with IC50 values of 63.5 and 76.5 µg/mL, respectively,
without inhibiting its growth, even at 250 µg/mL [64]. Dichotocejpins A and C (132 and 133)
were isolated from the culture of the deep-sea sediment-derived fungus Dichotomomyces
cejpii FS110. Compound 132 exhibited excellent inhibitory activity against α-glucosidase
with an IC50 of 138 µM [65]. Cristazine (134) was isolated from the mudflat-sediment-
derived fungus Chaetomium cristatum. It displayed potent radical-scavenging activity
against 2,2-diphenyl-1-picrylhydrazyl (DPPH), with IC50 values of 19 µM, and cytotoxic
activity against HeLa cells, with an IC50 value of 0.5 µM [66]. Chetracins E and F (135 and
136) were isolated from the fungus Acrostalagmus luteoalbus HDN13-530 and showed potent
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cytotoxic effects on A549, HCT-116, K562, H1975 and HL-60 with IC50 values ranging from
0.2 to 3.6 µM [67]. In the study of fungal and bacterial co-cultivation, a new indole alkaloid
brevianamide X (137) was isolated from the Aspergillus fumigatus MR2012 fermentation [68].
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Figure 15. Chemical structures of 130–137.

Five new prenylated indole alkaloids, 17-hydroxynotoamide D (138), 17-O-ethylnotoamide
M (139), 10-O-acetylsclerotiamide (140), 10-O-ethylsclerotiamide (141) and 10-O-ethylnotoamide
R (142) were isolated from the co-culture of marine-sediment-derived fungi Aspergillus
sulphureus KMM 4640 and Isaria felina KMM 4639 (Figure 16). Compound 139 inhibited
the colony formation of human prostate cancer cells 22Rv1 at non-cytotoxic concentration
of 10 µM [69]. Two brevianamides (143 and 144) were isolated from the deep-sea-derived
fungus Penicillium brevicompactum DFFSCS025. Both of them exhibited no cytotoxicity
against HCT116 and no antibacterial or antifungal activities against Streptococcus mutans,
S. sobrinus and Fusarium oxysporum f. sp. cubense Race 1 and Race 4. Compound 143
showed no antilarval activity in the larval settlement bioassay [70].
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Figure 16. Chemical structures of 138–144.

Six new prenylated indole diketopiperazine alkaloids, asperthrins A–F (145–150), were
isolated from the marine-derived fungus Aspergillus sp. YJ191021 (Figure 17). Compound
145 exhibited moderate antifungal and antibacterial activities against Vibrio anguillarum,
Xanthomonas oryzae pv. Oryzicola, and Rhizoctonia solani with MIC values of 8, 12.5, and
25 µg/mL, respectively. Furthermore, 145 displayed notable anti-inflammatory activity
with an IC50 value of 1.46 ± 0.21 µM in Propionibacterium acnes induced human monocyte
cell line (THP-1) [71].
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Seven new indole marine natural products (151–157) were isolated from four man-
grove swamp-derived fungi (Figure 18). Trypilepyrazinol (151) was isolated from the
fungus Penicillium sp. IMB17-046. Trypilepyrazinol exhibited inhibitory activities against
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HIV-1 and HCV with IC50 values of 4.6 and 7.7 µM, respectively. It also showed antibacte-
rial activities against Helicobacter pylori. (including the drug-sensitive strain G27 and the
drug-resistant strain 159), but inactive against Gram-positive Staphylococcus aureus and
Bacillus subtilis and Gram-negative Pseudomonas aeruginosa and Klebsiella pneumonia [72]. Four
new prenylated indole alkaloids (152–155) were isolated from Penicillium sp. SCSIO041218
and inactive to the tested anti-allergic bioactivity on IgE-mediated rat mast RBL-2H3
cells [73]. A new prenylated indole alkaloid, named paraherquamide J (156), was isolated
from another mangrove rhizosphere soil-derived fungus Penicillium janthinellum HK1-6. No
activity was found for the tested antibacterial, topoisomerase I (topo I) inhibitory activities
and lethality towards brine shrimp Artemia salina [74]. Raistrickindole A (157), a new indole
diketopiperazine alkaloid, was isolated from the fungus Penicillium raistrickii IMB17-034.
Compounds 157 showed anti-HCV activity with an EC50 value of 5.7 µM in the in vitro
inhibitory assay against the hepatitis C virus life cycle [75].
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2.2.2. Coral-Sourced Fungi

Wen-Jian Lan and co-workers have conducted a great deal of research focused on the
chemical diversity of fungi associated with soft coral. In recent years, nineteen marine
indole alkaloids (158–176) have been identified by an amino acid-directed strategy, which
is a method of feeding various amino acids to marine fungi (Figure 19). Utilizing this
strategy, dichotomocej D (158) and dichocerazine A (159) were isolated from L-tryptophan
and L-phenylalanine fed Dichotomomyces cejpii F31-1, scedapins A–E (161–164, 160) and
scequinadolines A–G (165–171), scetryptoquivaline A (172), scequinadoline I (173), and sce-
quinadoline J (174) were isolated from Scedosporium apiospermum F41-1 by the same amino
acid-directed strategy. Another two new bisindole alkaloids, pseudoindoles A–B (175–176),
were isolated from L-tryptophan, L-phenylalanine, L-methionine, and L-threonine fed Pseu-
dallescheria boydii F44-1. Among these compounds, scedapin C (163) and scequinadoline D (168)
displayed significant antiviral activity against hepatitis C and scequinadoline J (174), and
they promote triglyceride accumulation in 3T3-L1 cells [76–79].
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Between the years 2015 and 2016, Wen-Jian Lan and co-workers also isolated five in-
dole alkaloids (177–181) directly from coral-derived fungi, including Pseudellones A–D (177–180)
from Pseudallescheria ellipsoidea F42-3 and 181 from Pseudallescheria boydii. No significant
tested bioactivity was reported (Figure 20) [80–82].

A new cytochalasin, 6-O-methyl-chaetoglobosin Q (182), was isolated from the coral-
associated fungus Chaetomium globosum C2F17, and no bioactivity was reported (Figure 21) [83].
Three new indole diketopiperazine alkaloids, 11-methylneoechinulin E (183), variecolorin
M (184) and (+)-variecolorin G (185) were isolated from a soft coral-associated epiphytic
fungus Aspergillus sp. EGF 15-0-3. They all have no in vitro toxicity against NCI-H1975/GR
cell line at the concentration of 50 µM [84]. Seven new deoxyisoaustamide derivatives
(186–192) were isolated from the coral-derived fungus Penicillium dimorphosporum KMM
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4689. Compounds 189–191 revealed a statistical increase in PQ (paraquat)-treated Neuro-2a
cell viability by 30–39% at a concentration of 1 µM [85].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 20 of 56 
 

 

 
Figure 20. Chemical structures of 177–181. 

A new cytochalasin, 6-O-methyl-chaetoglobosin Q (182), was isolated from the coral-
associated fungus Chaetomium globosum C2F17, and no bioactivity was reported (Figure 
21) [83]. Three new indole diketopiperazine alkaloids, 11-methylneoechinulin E (183), var-
iecolorin M (184) and (+)-variecolorin G (185) were isolated from a soft coral-associated 
epiphytic fungus Aspergillus sp. EGF 15-0-3. They all have no in vitro toxicity against NCI-
H1975/GR cell line at the concentration of 50 μM [84]. Seven new deoxyisoaustamide de-
rivatives (186–192) were isolated from the coral-derived fungus Penicillium dimorphos-
porum KMM 4689. Compounds 189–191 revealed a statistical increase in PQ (paraquat)-
treated Neuro-2a cell viability by 30–39% at a concentration of 1 μM [85].  

 
Figure 21. Chemical structures of 182–192. 

Figure 20. Chemical structures of 177–181.

Mar. Drugs 2021, 19, x FOR PEER REVIEW 20 of 56 
 

 

 
Figure 20. Chemical structures of 177–181. 

A new cytochalasin, 6-O-methyl-chaetoglobosin Q (182), was isolated from the coral-
associated fungus Chaetomium globosum C2F17, and no bioactivity was reported (Figure 
21) [83]. Three new indole diketopiperazine alkaloids, 11-methylneoechinulin E (183), var-
iecolorin M (184) and (+)-variecolorin G (185) were isolated from a soft coral-associated 
epiphytic fungus Aspergillus sp. EGF 15-0-3. They all have no in vitro toxicity against NCI-
H1975/GR cell line at the concentration of 50 μM [84]. Seven new deoxyisoaustamide de-
rivatives (186–192) were isolated from the coral-derived fungus Penicillium dimorphos-
porum KMM 4689. Compounds 189–191 revealed a statistical increase in PQ (paraquat)-
treated Neuro-2a cell viability by 30–39% at a concentration of 1 μM [85].  

 
Figure 21. Chemical structures of 182–192. Figure 21. Chemical structures of 182–192.

Seventeen fumiquinazoline-type alkaloids, versiquinazolines A–Q (193–209), were iso-
lated from the gorgonian-derived fungus Aspergillus versicolor LZD-14-1 and the structures
of cottoquinazolines B, D and C (210–212) were revised to enantiomers (Figure 22). Com-
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pounds 193, 194, 199, 203, 208 and 209 exhibited inhibitory activities against thioredoxin
reductase (IC50 values ranging from 12 to 20 µM) [86,87].
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Aspergillipeptide E (213) was isolated from Aspergillus sp. SCSIO 41501 and 213
showed evident antiviral activity against herpes simplex virus type 1 (HSV-1) with an
IC50 value of 19.8 µM under the non-cytotoxic concentrations against a Vero cell line
(Figure 23) [88]. Luteoride E (214) was isolated and identified from a coral-associated
fungus Aspergillus terreus. Luteoride E inhibited no α-Glucosidase inhibitory activity and
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with moderate inhibitory activity against LPS-induced NO production [89]. Aspergillspins
A-B (215–216) were isolated from the marine gorgonian-derived fungus Aspergillus sp.
SCSIO 41501. They exhibited no cytotoxicity activities against the tested HL-60, HepG2
and MCF-7 cell lines and no antibacterial activities against Bacillus subtilis and E. coli [90].
Three new cycloheptapeptides, asperversiamides A–C (217–219), were isolated from coral-
derived fungus Aspergillus versicolor CHNSCLM-0063 under the guidance of molecular
networking and 1H NMR. Asperversiamides A–C (217–219) exhibited potent inhibitory
activity against M. marinum [91].
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2.2.3. Mollusk-Sourced Fungi

From the Penicillium sp. KFD28, an endophytic fungus in a bivalve mollusk Meretrix
lusoria collected from Haikou Bay, eleven new indole-diterpenoids named penerpenes B–H
and J (220–226 and 227) and epipaxilline (228) were isolated in Du-Qiang Luo and You-
Xing Zhao groups (Figure 24). All the compounds showed potent to moderate inhibitory
activity toward protein tyrosine phosphatase PTP1B with IC50 ranging from 1.7 to 31.8
µM. Compounds 220, 226 and 227 showed inhibitory activity toward protein tyrosine
phosphatase TCPTP with IC50 values of 5.0, 4.5, 35 and 14.7 µM, respectively [92–94].

Seven new quinazoline-containing indole alkaloids named aspertoryadins A–G (229,
230, 232, 233, 231, 234 and 235) were isolated from the marine-derived fungus Aspergillus
sp. HNMF114, which was separated from the bivalve mollusk Sanguinolaria chinensis
(Figure 25). Compound 229 bears an aminosulfonyl group in the structure, which is rarely
encountered in natural products. Compounds 234 and 235 exhibited quorum sensing
inhibitory activity against Chromobacterium violaceum CV026 with MIC values of 32, 32
and 16 µg/well, respectively [95]. A continuous work by feeding tryptophan to the
marine-derived fungus Aspergillus sp. HNMF114 was carried out, another three new
quinazoline-containing indole alkaloids aspertoryadins H–J (236–238) were obtained. The
biological activity of these compounds against the insect ryanodine receptor (RyR) was
tested using HEK cells stably expressing RyR from Spodoptera frugiperda (sfRyR) or RyR1
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from rabbit (rRyR1) and R-CEPIA1er. Alkaloids 236–238 only showed a weak activation
effect on sfRyR, which reduced the [Ca2+]ER by less than 7% [96].
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2.2.4. Mangrove-Sourced Fungi

One of Bin-Gui Wang group’s studies focusing on the exploration of structurally
unique and biologically active natural products from the mangrove-derived fungi isolated
ten new indole alkaloids (Figure 26). Penioxamide A (239), a new prenylated indole alkaloid
possessing a piperidine moiety, was isolated and identified from Penicillium oxalicum EN-
201, an endophytic fungus obtained from the inner tissue of the fresh leaves of marine man-
grove plant Rhizophora stylosa. Compound 239 bore the rare anti-relative configuration in
the bicyclo[2.2.2]diazaoctane ring and showed potent brine shrimp lethality with LD50 val-
ues of 5.6 µM [97]. Three new diketopiperazines, including spirobrocazines A–B (240–241),
were characterized from the mangrove-derived Penicillium brocae MA-231. Both 240 and
241 possess a 6/5/6/5/6 cyclic system. Compound 240 showed moderate and nonselective
antimicrobial activity against E. coli, S. aureus and Vibrio harveyi, with MIC values of 32.0,
16.0 and 64.0 µg/mL, respectively, whereas no bioactivity was reported for the dearom-
atized 241 [98]. Six new indole-diterpenes rhizovarins A–C, E and F (242–244, 245 and
246) were identified from M. irregularis QEN-189, an endophytic fungus isolated from the
fresh inner tissue of the marine mangrove plant Rhizophora stylosa. Compounds 242 and
243 showed activities against human A549 and HL-60 cancer cell lines with IC50 values
ranging from 5.0 to 11.5 µM, and compound 245 exhibited activity against the A-549 cancer
cell line with an IC50 value of 9.2 µM [99].
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Three novel chaetoglobosins, named penochalasins I–K (247–249), were isolated from
the culture of Penicillium chrysogenum V11 (Figure 27). Compound 248 greatly inhibited
C. gloeosporioides (MIC = 25.08 µM), showing an antifungal activity higher than carben-
dazim. Compound 247 exhibited marked cytotoxicity against MDA-MB-435 and SGC-7901
cells (IC50 < 10 µM) [100]. Compound 249 displayed significant inhibitory activities against
C. gloeosporioides and R. solani (MICs = 6.13, 12.26 µM, respectively), and it also exhibited
potent cytotoxicity against MDA-MB-435, SGC-7901 and A549 cells (IC50 < 10 µM) [101].
Neosartoryadins A (250) and B (251), with a unique 6/6/6/5 quinazoline ring system
connected directly to a 6/5/5 imidazoindolone ring, together with compounds 252 and
253 were isolated from the endophytic fungus Neosartorya udagawae HDN13-313. Com-
pounds 250 and 251 exhibited inhibitory effects against influenza A virus (H1N1) with
IC50 values of 66 µM and 58 µM by the cytopathic effect (CPE) inhibition assay, which
were smaller than the positive control ribavirin with the IC50 of 94 µM [102]. Three new
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indole diterpenes, penicilindoles A–C (254–256), were isolated from the mangrove-derived
fungus Eupenicillium sp. HJ002. After evaluating cytotoxic and antibacterial activities
in vitro, penicilindole A (254) showed cytotoxic activity against human A549 and HepG-2
cell lines with IC50 values of 5.5 and 1.5 µM, respectively [103]. Two prenylated indole
3-carbaldehydes (257 and 258) were purified from mangrove-derived endophytic fungus
Eurotium chevalieri KUFA 0006, and they significantly inhibited the biofilm production in
S. aureus [104].
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2.2.5. Alga-Sourced Fungi

Bin-Gui Wang’s group investigated the bioactive secondary metabolites of marine alga
endophytic fungus. Thirteen new indole alkaloids were isolated, including four indoledike-
topiperazine alkaloids (259–262) from Eurotium cristatum EN-220, varioloid C (263) from
Paecilomyces variotii EN-291, 4-epi-seco-shornephine A methyl ester (264) and 4-epi-seco-
shornephine A carboxylic acid (265) from Aspergillus alabamensis EN-547 and three pairs of
new N-methoxy-containing indolediketopiperazine enantiomers, acrozines A–C (266–271)
from Acrostalagmus luteoalbus TK-43 (Figure 28). Compound 260 exhibited potent lethal
activity against brine shrimp (LD50 = 19.4 µg/mL) and weak nematicidal effect against
Panagrellus redivivus (LD50 = 110.3 µg/mL). Compound 263 exhibited cytotoxicity against
A549, HCT116 and HepG-2 cell lines (2.5–6.4 µg/mL). Compounds 264–265 showed inhibi-
tions against human pathogens E. coli and M. luteus and aquatic bacteria Ed. ictaluri and
V. alginolyticus with MIC values ranging from 16 to 64 µg/mL [105–109]. 272 and 273 were
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isolated from chemical-epigenetic cultures of Aspergillus versicolor OUCMDZ-2738 with
10 µM vorinostat (SAHA), and no antibacterial activity against the eight tested pathogenic
microorganisms [108]. A new melatonin analog 6-hydroxy-N-acetyl-β-oxotryptamine (274)
was isolated from the marine-derived fungus Penicillium sp. KMM 4672. It was not cyto-
toxic against neuroblastoma Neuro2a cells up to 100 µM and scavenged DPPH radicals by
48% at 100 µM. Compound 274 demonstrated increased cell viability in both 6-OHDA and
PQ-induced neuronal cell damage models [110].
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2.2.6. Sponge-Sourced Fungi

Speradines B–D (275–277) were isolated from the sponge-derived fungus Aspergillus
flavus MXH-X104 (Figure 29). Oxindoles 275–277 showed no activities on all the bioassay
(cytotoxicities on P388, BEL-7402, A-549, Hela and HL-60 cells; inhibitory effects on H1N1
and HIV viruses, and antimicrobial activities on Mycobacterium phlei, Staphylococcus aureus,
Colibacillus sp. and Blastomyces albicans) [111]. Methylthio-gliotoxin derivative 278 was
firstly characteried from a sponge-derived fungus Ascomycota Dichotomomyces cejpii and
the fungus was isolated from sponge Callyspongia cf. C. flammea. This study validates the
anti-proliferative mechanisms of the newly isolated natural epipolythiodiketopiperazines
via the inhibition of TNFα-induced NF-κB activity [112]. Sartoryglabramide B (279) and
fellutanine A (280) were isolated from sponge-associated fungus Neosartorya glabra KUFA
0702, and they exhibited no antibacterial and antifungal activities [113]. A new diketopiper-
azine dimer designated as SF5280-415 (281) was isolated from an ethyl acetate extract of the
marine-derived fungus Aspergillus sp. SF-5280. Compound 281 showed inhibitory effects
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against protein tyrosine phosphatase 1b (PTP1B) with an IC50 value of 14.2 ± 0.7 µM [114].
Isopropylchaetominine (282) was isolated from fungus Aspergillus carneus using the OS-
MAC (one strain many compounds) approach, and it showed potent cytotoxicity against
the mouse lymphoma cell line L5178Y with IC50 values of 0.4 µM [115]. Candidusin D (283)
was isolated from the cultures of the marine sponge-associated fungus Aspergillus candidus
KUFA 0062, and it was tested on various activities (antibacterial activity, biofilm formation
inhibition activity and cytotoxic activity). Candidusin D showed cytotoxicity to all cell
lines tested (HepG2, HT-29, HCT-116, A549, A375, MCF-7, U251 and T98G) except for
T98G and HepG2 at the concentration of 100 µM [116]. Diketopiperazine dimer (284) was
isolated from fungus Aspergillus violaceofuscus and it showed anti-inflammatory activity
against IL-10 expression of the LPS-induced THP-1 cells with an inhibitory rate of 78.1% at
a concentration of 10 µM [117]. 3-Hydroxysperadine A (285) was isolated from HMP-F28
induced extracellular alkalinization and H2O2 production in tobacco cell suspensions by a
bioassay-guided fractionation and purification, and no activity was reported [118].

Aspergillamides C and D (286 and 287) were obtained from the marine sponge-
derived fungus Aspergillus terreus SCSIO 41008 (Figure 30) [119]. Asterriquinones I–K
(288–290), three new bis-indolylquinones, and asterriquinols G–I (291–293), three new bis-
indolylbenzenoids, were isolated from the sponge-derived fungus Aspergillus sp. SCSIO
41,018. Asterriquinones I–K (288–290) displayed cytotoxic activities against K562, BEL-7042,
SGC-7901, A549 and Hela cell lines [120]. A diketopiperazine–indole alkaloid fintiamin
(294) was isolated from fungus Eurotium sp. It showed an affinity for the cannabinoid CB1
receptor at low micromolar concentrations [121].
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2.2.7. Miscellaneous

Three new indolediterpenoids, 22-hydroxylshearinine F (295), 6-hydroxylpaspalinine
(296) and 7-O-acetylemindole SB (297), were isolated from the sea-anemone-derived fungus
Penicillium sp. AS-79. Only 296 exhibited activity against the aquatic pathogen Vibrio
parahaemolyticus with a MIC value of 64.0 µg/mL, which was much bigger than the positive
control chloromycetin with a MIC value of 0.5 µg/mL (Figure 31) [122]. Four new indole-
diterpene alkaloids, asperindoles A–D (298–301), were isolated from the marine-derived
fungus Aspergillus sp., associated with an unidentified colonial ascidian. Asperindole
A (298) exhibited cytotoxic activity against PC-3, LNCaP and 22Rv1 with IC50 values of
69.4 µM, 47.8 µM and 4.86 µM, and induced apoptosis in 22Rv1 at the concentration of
0.3125 µM. Furthermore, 22Rv1 cells treated with asperindole A (298) for 48 h revealed
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an S-phase arrest [123]. Penicindopene A (302), a new indole diterpene, was isolated
from the deep-sea fungus Penicillium sp. YPCMAC1. Compound 302 represented the first
example of indole diterpene possessing a 3-hydroxyl-2-indolone moiety, and it exhibited
moderate cytotoxicities against A549 and HeLa cell lines with IC50 values of 15.2 and
20.5 µM, respectively [124]. Misszrtine A (303) was isolated from marine sponge-derived
fungus Aspergillus sp. SCSIO XWS03F03. Compound 303 represents the first example of N-
isopentenyl tryptophan methyl ester with a phenylpropanoic amide arm, which exhibited
a potent antagonistic activity on HL60 (IC50 = 3.1 µM) and LNCaP (IC50 = 4.9 µM) cell
lines [125].
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Chaetoindolones A–D (304–307), 19-O-desmethylchaetogline A (308) and 20-O-des-
methylchaetogline F (309) were produced by the marine fish-derived fungus Chaetomium
globosum 1C51 through biotransformation (Figure 32). Alkaloids 304, 306, 308, and 309
showed antibacterial activities with MIC ranging from 8 to 128 µg/mL against Xanthomonas
oryzae pv. oryzae, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzicola and Pseudomonas
syringae pv. lachrymans. Chaetoindolone A (304) was shown to inhibit the growth of the
rice-pathogenic bacteria Xanthomonas oryzae pv. oryzae both in vitro and in vivo [126]. Three
indole-diketopiperazines, spirotryprostatin G (310, an oxindole derivative), cyclotrypro-
statin F (311) and cyclotryprostatin G (312), were obtained by large-scale cultivation of the
marine-derived fungus Penicillium brasilianum HBU-136 with the aid of genomic analysis.
Compound 310 displayed selective cytotoxicities against the HL-60 cell line with an IC50
value of 6.0 µM, whereas compounds 311 and 312 exhibited activities against the MCF-7 cell
line with the IC50 values of 7.6 and 10.8 µM, respectively. However, all of the metabolites
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appeared to be inactive in antibacterial and antifungal assays (MIC > 25 µM) [127]. Chem-
ical investigation of secondary metabolites from the marine-derived fungus Aspergillus
austroafricanus Y32-2 resulted in isolating two new prenylated indole alkaloid homodimers,
di-6-hydroxydeoxybrevianamide E (313) and dinotoamide J (314). Each compound was
evaluated for proangiogenic, anti-inflammatory effects in zebrafish model and cytotoxicity
for HepG-2 human liver carcinoma cells. As a result, compound 314 exhibited proangio-
genic activity in a PTK787-induced vascular injury zebrafish model in a dose-dependent
manner [128].
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Asperginine (315), an alkaloid possessing a rare skeleton, was isolated from the
cultural broth of the marine fungus Aspergillus sp., and it has no cytotoxicity against prostate
cancer PC3 and human HCT-116 (Figure 33) [129]. Compounds 316–318 were isolated
from the culture broth of a marine gut fungus Aspergillus sp. DX4H, and only showed
weak inhibitory activity at 20 µg/mL against PC3 cell line [130]. Two new dioxopiperazine
alkaloids (319 and 320) were isolated from Antarctic marine-derived Aspergillus sp. SF-5976.
Compound 320 decreased PGE2 production in RAW 264.7 and BV2 cells, and 319 only
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showed inhibitory effects in BV2 cells and the same situation on LPS-stimulated NO
production in RAW 264.7 and BV2 cells [131]. Quellenin (321) was isolated from deep-sea
fungus Aspergillus sp. YK-76. It showed weak inhibition against the growth of S. parasitica
with inhibition zones of 19.9 mm at the dosage of 200 µg/disc [132].
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3. Marine Invertebrates
3.1. Sponges

Sponges are the simplest multicellular animals in the world, and they settle across
the bottom of the sea with more than 10,000 species. There are 133 new indole related
compounds isolated from invertebrates recently, and 109 are from 33 species of sponges.

The marine sponge of the genus Hyrtios has been recognized as a rich source of
unique bioactive products. In recent years, six references containing seven indole alka-
loids have been reported, including hyrtinadines C (322) and D (323), ishigadine A (324), 5,
6-dibromoindole-3-carboxaldehyde (325), hyrtiodoline A (326), 3,4-dihydrohyrtiosulawesine
(327) and bromoindole alkaloid (328) (Figure 34). Various activities were evaluated for these
alkaloids. Compound 322 showed antifungal activity against A. niger (IC50 = 32 µg/mL),
while 323 displayed antibacterial activity against E. coli (MIC = 16 µg/mL) and B. subtilis
(MIC = 16 µg/mL). Compound 324 exhibited cytotoxicity against L1210 murine leukemia
cells (IC50 = 3.3 µg/mL) in vitro. Compound 326 has the most potent antitrypanosomal ac-
tivity, with an IC50 value of 7.48 µM after 72 h. Compound 327 displayed potent inhibitory
activities against isocitrate lyase (IC50 = 92.9 µM) from Candida albicans. Compound 328
exhibited weak cytotoxicity against HCT-116, MCF-7 and HepG-2 (IC50 > 100 µM), and it
also inhibits the growth of S. aureus and E. coli at the concentration of 3 mg/mL with the
inhibition zones of 14 and 21 mm, respectively [133–138].
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Seventeen indole alkaloids (329–345) were isolated from the sponge Fascaplysinopsis
reticulata collected in Mayotte and Xisha Islands (Figure 35). Fourteen of them were new
oxygenated aplysinopsin-type enantiomers, (+)- and (−)-oxoaplysinopsins A–G (329–342),
and the others were 6,6′-bis-(debromo)-gelliusine F (343), 6-bromo-8,1′-dihydro-isoplysin
A (344) and 5,6-dibromo-8,1′-dihydro-isoplysin A (345). Compounds 331 and 332 showed
tyrosine phosphatase 1B inhibition activity stronger than the positive control of acarbose.
Compounds 333 and 334 exhibited cytotoxicity against the Hela cell line. Compounds 344
and 345 displayed antimicrobial activities towards Vibrio natrigens with MIC values of 0.01
and 1 µg/mL, respectively [139,140].
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Sabrin R.M. Ibrahim group isolated ingenines C–F (346–349) from the Indonesian
sponge Acanthostrongylophora ingens (Figure 36). Ingenine C (346) and D (347) were eval-
uated for their cytotoxic activity towards MCF-7, A549 and HCT-116 cell lines. It is
noteworthy that compounds 346 and 347 exhibited cytotoxic activities against MCF-7
and HCT-116 with IC50 values of 4.33 and 6.05 and 2.90 and 3.35 µM, respectively. In-
genine E (348) exhibited cytotoxic activity against MCF-7, HCT-116 and A549 cell lines
with IC50 values of 3.5, 0.67 and 2.15 µg/mL. Ingenine F (349) exhibited cytotoxic activity
toward MCF-7, HCT-116 and A549 cell lines with IC50 values of 2.82, 1.00 and 2.37 µM,
respectively [141–143]. Five new manzamine alkaloids (350–354) were isolated from an
Indonesian Acanthostrongylophora sp. sponge. They exhibited weak cytotoxicity against
A549 and K562 (LD50 = 4.6–12 µM), and moderate antibacterial activity to six bacteria
(MIC > 1.6 ng/mL). Compounds 352–354 showed mild inhibition against the enzyme
isocitrate lyase [144].

A novel pyridinium, tricepyridinium (355), and a novel benzoxazine–indole hybrid
(356, racemic mixture) were obtained from the culture of an E. coli clone incorporating
metagenomic libraries from the marine sponge Discodermia calyx. Compound 356 was
speculated to be formed through a nonenzymatic process during the isolation procedure.
The synthesized tricepyridinium bromide showed antimicrobial activity against Bacillus
cereus, MSSA and Candida albicans with MIC values of 0.78, 1.56 and 12.5 µg/mL, but not
against E. coli. In addition, tricepyridinium bromide had cytotoxicity to P388 cells with an
IC50 value of 0.53 ± 0.07 µg/mL. Compound 356 exhibited no antibacterial activity against
the tested Bacillus cereus [145,146].
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Two new indole alkaloids (357 and 358) were obtained from Spongia sp. collected
by SCUBA in the South Sea of Korea (Figure 37). They did not display any significant
inhibitory activity on farnesoid X-activated receptor (FXR) up to 100 µM, and they were
not cytotoxic to CV-1 cells up to 200 µM on MTT assay, either [147]. 1-(1H-indol-3-yloxy)
propan-2-ol (359) was isolated from the Red Sea sponges Haliclona sp. and showed weak
cytotoxic activities against the tested HepG-2, Daoy and HeLa by MTT assay [148]. Two
bisindole alkaloids tethered by a guanidino ethylthiopyrazine moiety, dragmacidins G
(360) and H (361), were isolated from Lipastrotethya sp. marine sponge. Dragmacidin G
(360), and dragmacidin H (361), showed cytotoxicity against HeLa cells with IC50 values of
4.2 and 4.6 µM, respectively [149]. Chemical investigation of a specimen of Jaspis splendens
collected from the Great Barrier Reef resulted in the isolation of a new bisindole alkaloid,
splendamide (362), and 6-bromo-1H-indole-3-carboximidamide (363) are reported for
the first time as naturally occurring metabolites. They were subjected to an unbiased
phenotypic assay on hONS cells as a model of Parkinson’s disease followed by cluster
analysis of cytological effects and showed similar biological activity in cluster B. under a
Pearson’s correlation of 0.91 [150]. A new acrylic jasplakinolide congener (364) and another
structure-revised acyclic derivative (365) were isolated from the Indonesian marine sponge
Jaspis splendens, and the jasplakinolides inhibited the growth of mouse lymphoma (L5178Y)
cells in vitro with IC50 values in the low micromolar to the nanomolar range [151]. A new
cyclic peptide, jamaicensamide A (366), composed of six amino acids, including thiazole-
homologated amino acid, was isolated from the Bahamian sponge Plakina jamaicensis
collected from Plana Cay, and no bioactivity have been evaluated due to the insufficient
quantities [152]. A novel brominated marine indole (367) was isolated from the boreal
sponge Geodia barretti collected off the Norwegian coast. Compound 367 was inactive
(IC50 > 690 µM) on electric eel AChE even with a structural resemblance with other known
natural AChE inhibitors and showed somewhat higher inhibitory potential towards BChE
(IC50 = 222 µM) [153]. Geobarrettin A–C (368–370) were isolated from the sub-Arctic sponge
Geodia barrette by UPLC-qTOF-MS-based dereplication study. Both 369 and 370 reduced
DC secretion of IL-12p40, but 370 concomitantly increased IL-10 production. Maturing
DCs treated with 369 or 370 before co-culturing with allogeneic CD4+ T cells decreased
T cell secretion of IFN-γ, indicating a reduction in Th1 differentiation [154].

Antibacterial-guided fractionation of an extract from a deep-water Topsentia sp. marine
sponge led to the isolation of two new indole alkaloids, tulongicin A (371) and dihydrospon-
gotine C (372) (Figure 38). Antibacterial, anti-HIV activity and cytotoxicity were evaluated
for compounds 371 and 372. They showed strong antibacterial effects toward S. aureus
with 1.2 and 3.7 µg/mL MICs. However, only weak to no inhibition toward E. coli at the
maximum concentration tested (100 µg/mL) was reported. Both compounds inhibited
HIV infection in HIV infectivity assays against the CCR5-tropic primary isolate YU2 and
the CXCR4-tropic strain HxB2 with the IC50 values ranging from 2.7 to 4.5 µM. They were
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inactive (IC50 > 10 µM) in cytotoxicity assays against a monkey kidney cell line (BSC-1)
and a human colorectal tumor cell line (HCT-116) [155]. A new brominated indole 6-Br-8-
keto-conicamin A (373) was identified from Haplosclerida sponge, and it showed moderate
cytotoxic activity against the PANC-1 tumor cell line with the IC50 value of 1.5 µM [156].
Two new brominated bisindole alkaloids, dragmacidins I (374) and J (375), were isolated
from the Tanzanian sponge Dragmacidon sp. They showed low micromolar cytostatic activ-
ity against A549, HT-29 and MDA-MB-231. The mechanism of the action was investigated
through different molecular biology experiments, which indicated that these two drag-
macidins act via the inhibition of Ser-Thr PPs [157]. Six new cyclopenta[g]indole natural
products, trans-herbindole A (376) and trikentramides E–I (377–381), were isolated from
the sponge Trikentrion flabelliforme, and there is no bioactivity reported [158].
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The first chemical investigation of the subtidal sponge Spongosorites calcicola led to the
discovery of two new bisindole alkaloids of the topsentin family (382 and 383), and they
showed very weak or no cytotoxic activity against the Hela cell line (Figure 39) [159]. Six
new bisindoles, (Z)-coscinamide D (384), (E)-coscinamide D (385) and lamellomorphamides
A–D (386–389) were isolated from a rare New Zealand deep-sea sponge, Lamellomorpha
strongylata. Compounds 385, 386, 389 showed weak activity against MRSA at the concen-
tration of 20 µM (14.9–18.2% inhibition) [160].
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Guitarrins A–E (390–394), the first natural 5-azaindoles, and aluminumguitarrin A
(395), the first aluminum-containing compound from marine invertebrates, were isolated
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from the sponge Guitarra fimbriata (Figure 40). Guitarrin C (392) inhibited alkaline phos-
phatase from the marine bacterium Cobetia marina with an IC50 value of 2.0 µM, being a
natural inhibitor of alkaline phosphatase [161]. Two brominated oxindole alkaloids (396
and 397) were isolated from sponge Callyspongia siphonella with LC-HRESIMS-assisted
dereplication and bioactivity-guided isolation. The sponge was collected from Hurghada
along the Red Sea Coast. Oxindoles 396 and 397 exhibited diverse pharmacological activi-
ties, including antibacterial activity, biofilm inhibitory activity, antitrypanosomal activity
and antitumor activity. They inhibited the growth of Staphylococcus aureus (MIC = 8 and
4 µg/mL), Bacillus subtilis (MIC = 16 and 4 µg/mL), Pseudomonas aeruginosa (49.32% and
41.76% inhibition at the concentration of 128 µg/mL), and T. brucei (13.47 and 10.27 µM for
72 h). In addition, they showed good cytotoxic effect toward HT-29, OVCAR-3 and MM.1S
with IC50 values ranging from 7 to 12 µM through non-programmed cell necrosis [162].
A naturally new alkaloid (398) was isolated from Gelliodes sp. collected in Vietnam, and
showed no cytotoxicity against Hela, MCF-7 and A549 cell lines [163]. Myrindole A (399),
a bis-indole alkaloid, was isolated from the deep-sea sponge Myrmekioderma sp. Myrindole
A inhibits the growth of E. coli and Bacillus subtilis with MIC values of 37.5 and 18.5 µM,
respectively [164]. The structures of a series of incorrectly reported sponge-derived di-
brominated indole alkaloids, echinosulfone A (400) and the echinosulfonic acids A–D
(401–404) were corrected [165–167]. Another two papers have also disclosed identical
structure revisions for these dibrominated indole alkaloids (400–404) [168,169].
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A bis-indole (405) and an alkynyl indole alkaloid (406) were isolated from the sponge
Plakortis sp. collected from Zampa in Okinawa (Figure 41). The bis-indole was inactive
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against both P388 and B16 cells even at 100 µg/mL, while 406 showed cytotoxicity against
P388 at 1 µg/mL (IC50 = 0.6 µg/mL) and B16 cells at 100 µg/mL [170]. Zamamidine D
(407) was isolated from an Okinawan Amphimedon sp. marine sponge, and it exhibited
obvious antibacterial activity against the eight tested strains (Escherichia coli, Stapylococcus
aureus, Micrococcus luteus, Aspergillus niger, Trichophyton mentagrophytes, Candida albicans and
Cryptococcus neoformans) with IC50 values ranging from 2 to 32 µg/mL [171]. An extract
of the marine sponge Damiria sp., which represents an understudied genus, provided
two novel alkaloids named damirines A (408) and B (409). Compound 408 showed selec-
tive cytotoxic properties toward six different cell lines in the NCI-60 cancer screen [172].
Makaluvamine W (410) was isolated from the Tongan sponge Strongylodesma tongaensis.
Compound 410 was inactive to the tested HL-60 cell line and confirmed the requirement of
an intact iminoquinone functionality required by these metabolites to be bioactive [173]. In
the study of developing a metric-based prioritization approach by exact LC-HRMS, 411
and 412 were isolated in a case study from a sponge collected from a reef on the island of
Tavarua, Fiji Islands. No activity was evaluated for 411 and 412 [174].
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Five dibromoindole alkaloids (413–417) were isolated from sponge Narrabeena nigra
collected around the Futuna Islands (Figure 42). They reduced the TBHP-induced cell death,
which demonstrated their potential in neuroprotection, and showed almost no cytotoxic
effect up to 10 µM on human neuroblastoma SH-SY5Y and microglia BV2 cells [175].

New indolo-imidazole alkaloids trachycladindoles H–M (418–423) were isolated from
a deep-water Great Australian Bight sponge, Geodia sp. CMB-01063 (Figure 43). The
trachycladindoles H–M did not exhibit growth inhibitory activity against the E. coli, Bacil-
lus subtilis, Candida albicans human colorectal (SW620) or lung (NCI-H460) carcinoma
cells [176].

A highly modified hexapeptide friomaramide (424) was isolated from the Antarctic
sponge Inflatella coelosphaeroides, and it blocks more than 90% of Plasmodium falciparum liver-
stage parasite development at 6.1 µM (Figure 44) [177]. Halicylindramides F–H (425–427)
were isolated from a Petrosia sp. marine sponge collected off the shore of Youngdeok-Gun,
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East Sea, Republic of Korea. Halicylindramides F (425) showed human farnesoid X receptor
(hFXR) antagonistic activity, but it did not bind directly to hFXR [178].
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Microsclerodermins B and J (428 and 429) were reported by Faulkner and co-workers
and Li and co-workers from marine sponge Microscleroderma (Figure 45) [179,180]. The
configuration of the C44 stereocenter of microsclerodermin B was confirmed by total
synthesis of dehydromicosclerodermin B, which was revised from 44S to 44R. The same
method was applied with microsclerodermins J, and the configuration was revised to be
44R [181]. The structure of topsentin C (430) was revised by an efficient total synthesis [182].
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3.2. Cnidarians

Two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-
4-one (431) and 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-
4-one (432) were isolated from the sea anemone Heteractis aurora, and no activity was
reported (Figure 46) [183]. Two new natural products, bis-6-bromogramine (433) and
6-bromogramine (434), were isolated from the marine hydroid Abietinaria abietina. They
activate NF-κB-dependent transcriptional activity in JB6 Cl 41 NF-κB cells at 1.6 µM [184].
A series of new indole-oxazole-pyrrole natural products breitfussins C–H (438, 435–437,
439, 440), along with breitfussin A and B, were isolated from marine hydrozoan Thuiaria
breitfussi. The hydrozoan was collected from Bjørnøya, Svalbard (79.0293 N, 20.8574 E, at
48 m depth). Cytotoxic activity and kinase inhibition profiles of breitfussins C–F were eval-
uated against seven malignant cell lines, one non-malignant cell line and 13 kinases. Then,
the pharmacological potential of breitfussin C was extended to the activities evaluation of
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88 cancer cell lines and 468 kinases. The results showed excellent inhibition and selectivity
against MDA-MB-468 with the IC50 value of 340 nM and against the PIM1 and DRAK1
kinases with IC50 and Kd values of 200 and 390 nM, respectively. Further studies on poten-
tial off-target effects, toxicological effects, as well as relevant in vitro ADME, displayed the
potential of breitfussins for selective kinase inhibitor development [185].
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3.3. Bryozoans, Tunicates and Molluscs

Three new halogenated, hexacyclic indoleline-imidazole alkaloids, securamines H–J
(441–443), were isolated from Arctic bryozoan Securiflustra securifrons (Figure 47). Com-
pounds 441 and 442 showed cytotoxicity against the human cancer cell lines A2058 (skin),
HT-29 (colon), and MCF-7 (breast), as well as against nonmalignant human MRC-5 lung
fibroblasts with IC50 values ranging from 1.4 ± 0.1 to 5.3 ± 1.1 µM. The cytotoxicity of
441 was further evaluated and found to be time-dependent [186]. A new compound,
2,6-dibromo-N-methylgramine (446), was discovered in bryozoan Amathia verticillata, and
no activity was reported [187]. 2,5-dibromo-1-methyl-1H-indole-3-carbaldehyde (447) was
isolated from the bryozoan A. lamourouxi, which was collected from rock pools of Wool-
goolga, Australia. Compound 447 was inactive for the tested antiplasmodial activity and
HEK293 cytotoxicity at 40 µM [188]. Terminoflustrindoles (TFIns) B and C (444 and 445)
were isolated from the bryozoan Terminoflustra membranaceatruncata, and they exhibit no
antimicrobial activity against various microorganisms tested [189]. A new indole alkaloid
448 was isolated from a colonial marine tunicate, Didemnum sp., collected by SCUBA near
Haegeumgang, Korea. Compound 448 showed no pharmacological potential as an an-
tibacterial agent and FXR antagonist [190]. Stolonines A and C (449 and 450) were isolated
from a marine tunicate Cnemidocarpa stolonifera. An immunofluorescence assay on PC3
cells indicated that compounds 449 and 450 increased cell size, induced mitochondrial
texture elongation, and caused apoptosis in PC3 cells [191]. Compounds 451 and 452 were
reported in a case study of the metrics-based prioritization approach development. They
were isolated from the pink mottled tunicate collected from Tavarua, Fiji Islands [174].
Orbicularisine (453), a novel spiro-indolofuranone fused to a thiazine skeleton, was isolated
from gills of the mollusk Codakia orbicularis. Compound 453 was inactive against Enterococ-
cus faecalis, Streptococcus pneumonia, Klebsiella pneumonia, E. coli, and Pseudomonas aeruginosa.
Inhibition assays against a panel of kinases including Hs_CDK2/CyclinA, Hs_CDK5/p25,
Hs_CDK9/CyclinT, Hs_RIPK3, Hs_Haspin, Hs_AuroraB, Ld_TLK, Hs-Pim1, Ssc_GSK3
a/b, Lm_CK1, and Rn_Dyrk1A showed residual activities of more than 60% for 16 µM/mL.
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Finally, the treatment of HCT-116 colon cancer cells and U87-MG glioblastoma cancer cells
with concentrations up to 100 µM showed no activity [192]. Cespilamide E (454) was iso-
lated from the Taiwanese soft coral Cespitularia taeniata, and it exhibited cytotoxicity against
MCF-7, Daoy and Hela cancer cells with IC50 of 17.5, 22.3, and 24.7 µM, respectively [193].
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4. Marine Plants
4.1. Cyanobacteria

Two proline-rich cyclic peptides (455 and 456) were isolated from marine cyanobac-
terium Symploca sp., collected from Minna Island, Japan and Bintan Island, Indonesia
(Figure 48). Compound 456 possessed cytotoxicity against the MOLT4 and AML2 cancer
cell lines with IC50 values of 4.8 and 8.2 µM, respectively [194,195].
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4.2. Red Algae

Eleven new tetrahalogenated indoles (457–467) were isolated from the red alga
Rhodophyllis membranacea, collected from Moa Point, New Zealand (Figure 49). Com-
pounds 457 and 459–461 showed no antifungal activity against wild-type Saccharomyces
cerevisiae (baker’s yeast) and cytotoxicity against HL-60 promyelocytic leukemia cell line
with IC50 values higher than 10 µM [196]. Compounds 468–470 were isolated and identified
from the red algae Laurencia similis, and 468 showed potent antibacterial activity against
seven bacterial strains with MIC values ranging from 2 to 8 µg/mL [197].
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4.3. Mangrove

Chemical investigation of the leaves and stems of the Chinese mangrove Acanthus
ilicifolius Linn. led to the isolation and structure elucidation of one new pyrido[1,2-a]indole
alkaloid named acanthiline A (471), and no bioactivity was reported (Figure 50) [198].
Marine alkaloid 472 was reported as 2-methylimidazo [1,5-b]isoquinoline-1,3,5(2H)-trione,
and it was revised to be 473 by a total synthesis [199,200].
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5. Conclusions

In this article, we reviewed 472 indole alkaloids discovered from marine organisms
with a vast of bioactivities during the year from 2015 to 2021. The alkaloids were grouped
according to the sources, divided into marine microbes, invertebrates, and plants. Marine
microbes are the main source of natural marine products, which is the case for indole
alkaloids. A total of 321 new indole metabolites were isolated from marine microorganisms,
including 64 from marine-sourced bacteria and 257 from marine-sourced fungi. Sponges
have been abundant and stable sources of marine natural products over the years. Among
the indole alkaloids discovered from marine invertebrates, sponge-derived make up the
vast majority, with 109 out of 133 in total. Marine plants only contributed 18 indole
compounds isolated from cyanobacteria, red algae and mangrove.

Due to the insufficient amount of compounds isolated, the bioactivity determination
of natural products has always been a significant challenge. Although a number of top
chemists are devoted to moving natural products synthesis from the laboratory to the
factory, the total synthesis of some complex marine natural products remains a challenge,
and not to mention industrialization. However, marine microbial fermentation has the
characteristics of non-destruction of ecological resources, relatively low cost, and good re-
producibility. Mass fermentation assisted by genetic engineering transformation can better
realize industrial production. In addition, there are many kinds of marine microorganisms,
which are inexhaustible sources for marine drugs development. At present, most marine
indole alkaloids were evaluated for their antitumor and antimicrobial activities. This is
not only because this class of compounds is more likely to exhibit such activity, but also
because antitumor and antimicrobial activity measurements are generally easier to perform.
It can be summarized from this review that marine indole alkaloids have rich skeleton
structures and various pharmacological activities. How to transfer the chemical diversity
to pharmacological activity diversity is another challenge. Therefore, it is expected that
a more general and practical pharmacological activity assay should be developed and
applied to the early drug development process.

Compounds with indole moiety typically have significant pharmacological activity.
We hope that this review will promote the development of marine indole alkaloids in
medicinal chemistry and pharmacology in terms of the extent of drug discovery.
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