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SPECIAL FEATURE: INTRODUCTION

Epidemic tracking and forecasting: Lessons
learned from a tumultuous year
Roni Rosenfelda and Ryan J. Tibshirania,b,1

Epidemic forecasting has garnered increasing interest
in the last decade, nurtured and scaffolded by various
forecasting challenges organized by groups within
the US federal government, including the Centers for
Disease Control and Prevention (CDC) (1–3), Office
of Science and Technology Policy (OSTP) (4), and De-
fense Advanced Research Projects Agency (DARPA)
(5), and elsewhere (6, 7). In 2017, after several years
of experimentation with flu forecasting in academic
groups, the CDC decided to incorporate influenza
forecasting into its normal operations, including
weekly public communications (8) and briefing to
higher-ups. To provide more reliable infrastructure
and support for its forecasting needs, the CDC in
2019 designated two national Centers of Excellence
for Influenza Forecasting, one at the University
of Massachusetts at Amherst (https://reichlab.io/
people) and one at Carnegie Mellon University
(https://delphi.cmu.edu/about/center-of-excellence/).

Not unrelatedly, the last decade has also seen a
rise in the importance of digital surveillance streams
in public health, with improving epidemic tracking
and forecasting models being a key application of
these data. Digital streams, such as search and social
media trends, have constituted a large part of the
focus (9–14); however, even more broadly, data from
auxiliary streams that operate outside of traditional
public health reporting, such as online surveys, med-
ical devices, or electronic medical records (EMRs),
have received considerable attention as well (15–25).

The Carnegie Mellon Delphi group, which the two
of us colead, has worked in both of these emerging
disciplines—epidemic forecasting and building rele-
vant auxiliary signals to aid such forecasting models—
since 2012. In 2020, as the pandemic broke out,
we struggled like many other groups to find ways
to contribute to the national efforts to respond to
the pandemic. We ended up shifting our focus to
nearly entirely on the data end of the spectrum,
pursuing several different directions in order to build
and make available to the public a variety of new in-
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dicators that reflect real-time COVID-19 activity in the
United States. Three papers in this collection describe
this work from three different perspectives (26–28). A
fourth describes international work by some of our
collaborators that parallels our group’s work on online
surveys in the United States (29).

1. Papers in This Collection
Here is a very brief summary of the papers in this
collection.

1) Reinhart et al. (26) describe our group’s (ongoing)
effort in building and maintaining COVIDcast:
an open repository of real-time, geographically
detailed COVID-19 indicators in the United States.
These indicators (a term we use interchangeably
with signals) are derived from a diverse set of
data sources: medical testing devices, medical
insurance claims, internet search trends, app-
based mobility data, and online surveys among
others. Many indicators are demonstrated to
have meaningful statistical relationships with
what have become the pandemic’s “topline”
numbers (reported cases, hospitalizations, deaths),
whereas others uniquely reflect certain activity
(not available in other publicly available data
sources) that may drive or affect the spread
of COVID-19. The paper demonstrates through
a number of examples that the indicators in
the COVIDcast repository can improve on the
timeliness, robustness, and scope of traditional
public health reporting streams.

2) McDonald et al. (27) provide a detailed analysis
of whether a core set of the indicators in the
COVIDcast repository can be used to improve the
accuracy of COVID-19 short-term forecasting and
hot spot detection models. This speaks to the
quantitative utility of the indicators in a way that
is directly tied to the benefits observed in relevant
downstream modeling tasks. The paper finds that
time series models [that are already competitive
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with top forecasters from the COVID-19 Forecast Hub (30)]
improve in predictive accuracy when they are supplemented
with any of the five indicators under consideration, based on
COVID-related medical insurance claims, self-reported symp-
toms from surveys (in fact, from COVID-19 Trends and Impact
Survey [CTIS], described next), and COVID-related Google
searches.

3) Salomon et al. (28) focus on the US CTIS, an (ongo-
ing) online survey operated by our group in partner-
ship with Facebook. This is a very rich source of data
about the pandemic and its effect on people, only par-
tially reflected by the indicators (derived from the sur-
vey) in the COVIDcast repository; the full dataset of in-
dividual, anonymized survey responses is available to
researchers under a data use agreement. The paper presents
descriptive analyses that reflect the unique value of CTIS as an
important supplement to public health reporting, in particular
as an instrument to measure key information about behaviors,
attitudes, economic impacts, and other topics not covered in
traditional public health streams.

4) Astley et al. (29) focuses on the international version of CTIS,
which is an (ongoing) online survey operated by the University
of Maryland, again in partnership with Facebook. This inter-
national survey covers over 100 countries and territories, and
is run in coordination with the US one, so that the two bear
similar structures and undergo similar updates; the full data
set of individual, anonymized international survey responses
is again available to individual researchers under a data use
agreement. The paper presents analyses that reflect some
basic and important characteristics of the international survey,
reflecting its value abroad, where public health reporting
efforts may be more limited than those in the US.

2. Lessons Learned
We now take the opportunity to reflect on some “lessons
learned” from our work over the past year and a half. Some
of the observations below are described in more depth in the
papers in the collection, and others extend beyond the papers
in the collection (but we give references to relevant articles with
more details in the discussion below).

Deceptively Simple Data Labels Often Belie the Data’s True
Meaning and Complexity. Labels such as “COVID-19 cases”
or “COVID-19 hospitalizations” hide an enormous amount of
complexity and potential ambiguity, especially when applied to
data at fine geographic and temporal resolutions. We elaborate
on this and several other examples in what follows.

• Cases may be laboratory confirmed only or also suspected
(with the definition of “suspected” varying across jurisdic-
tions and time); they may be listed by date reported on the
jurisdiction’s website, by date reported to the public health
authority, by date tested, by specimen collection date, or
occasionally, by symptom onset date (most informative but
often unavailable or inapplicable). A casual review of many
websites of local and state health departments suggests there
is great heterogeneity in what is being reported (31).

• The term “hospitalizations” is used ambiguously, sometimes
referring to incidence (hospital admissions) and sometimes
to prevalence (hospital bed occupancy). These two quantities
cannot easily be mapped to one another because COVID-19
hospital discharges are rarely if ever reported. Furthermore,

people admitted without a COVID-19 diagnosis may acquire
the infection and/or the diagnosis at any time during their
hospital stay.

• Hospitalizations may be reported by the location (typically
county) of the patient’s residence but are more often reported
by the county of the reporting hospital. This is an impor-
tant distinction, as many rural COVID-19 patients in need
of advanced care travel to the nearest secondary or tertiary
hospital, often at a nearby urban county. For example, the
hospitals in Pittsburgh, located in Allegheny County, Pennsyl-
vania (population 1.2 million), treat patients from throughout a
13-county region in southwestern Pennsylvania (population
over 4 million). For tracking and forecasting hospitalization
burden, then the geographic unit of hospital referral regions
(32) may be most appropriate. Alas, these units do not con-
form to county boundaries, which complicates the projection
of cases to hospitalizations.

• Deaths are usually reported by county where they occurred,
which for hospitalized patients, may differ from their county of
residence (33).

• Hospitalization or deaths with COVID-19 are significantly dif-
ferent from hospitalization or deaths due to COVID-19 (as cap-
tured by, e.g., a COVID-19–related chief complaint or primary
ICD-10 code). The proportion of the two varies significantly by
age groups and across time (34).

• Test positivity rates are most often reported by lumping to-
gether all tests performed regardless of the reason for per-
forming them. Tests taken following positive diagnosis, due
to symptoms, or due to being a contact of a confirmed case
are all likely to have a much higher positivity rate than those
of the general population. Screening tests are most likely to
reflect the true prevalence in the screened population. Sadly,
very few jurisdictions report or even retain the breakdown of
the test results by reason for testing, thereby losing forever
valuable information.

• Medical insurance claims offer rich, detailed information about
COVID-19 and other health conditions but are not without
their weaknesses. Claims are often not filed until weeks and
months after the medical encounter. As such, signals derived
from claims are usually subject to regular and considerable
revisions up to 60 days after a given date of service because
signals must be updated each time new claims for that day
of service are received (specific statistics on how this affects
signal values are given below). This tends to make projections
challenging, especially at finer geographic units such as coun-
ties, since there tends to be a high degree of heterogeneity
across locations.

• Medical claims contain information about laboratory tests
taken but not their results. More generally, for understandable
reasons that have to do with the Health Insurance Portability
and Accountability Act (HIPAA), medical claims contain only
information necessary for adjudicating and auditing claims.

Data definitions must be disambiguated, clarified, and made
consistent to the greatest extent possible, and remaining incon-
sistencies must be documented and saliently communicated.

Understanding the Data Generation Process Is Critical for
Downstream Applications. Both traditional public health
surveillance data streams and newer digital surveillance streams
are the result of often complex processes, some having to do
with the underlying health status or activities being monitored
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and others with the reporting process itself. Understanding the
entire “data generation process” for each data source can be
challenging, but it is absolutely essential for proper modeling
and effective use of the data. Some examples are as follows.

• In medical claims, relevant diagnoses and comorbidities may
not be reflected if they are not directly relevant to the charges
incurred. On the other hand, because medical claim coding
determines reimbursement levels, some codes may be over-
represented relative to their medical significance.

• Some populations and some health care settings are not
reflected in the commercial claims stream. These include the
health care systems of the Department of Defense, Indian
Health Services, Veterans Affairs, prison systems, and other
systems that do not reimburse by procedure or service, as
well as Medicare fee for service and Medicaid. This can cause
significant bias in the signals relative to the prevalence in the
general population.

• Public health reporting data are often subject to backlogs and
reporting delays, and estimates for any particular date can
be revised over time as errors are found or additional data
become available. During the pandemic, audits, corrections,
and the clearing of backlogs have frequently resulted in huge
artificial spikes and drops (35). Data aggregators like Johns
Hopkins Center for Systems Science and Engineering (36)
have worked tirelessly to correct such anomalies after first
publication (they attempt to back distribute a spike or dip by
working with a local authority to figure out how this should
best be done).

• Data revisioning (also known as “backfill”) is pervasive not
only in traditional public health reporting but also in many (al-
though not all) digital surveillance sources. As already alluded
to above, signals based on medical claims typically undergo
regular revisions because many claims (on which these sig-
nals are based) get submitted and processed late; for many
COVID-19–related claims-based signals, the median relative
error between initial reports and final values is over 10%, and
only after 30 days or so do estimates typically match finalized
values within 5% (26). However, the systematic nature of these
revisions suggests that, with suitable historical data, statistical
models could be fit to estimate the final values from prelimi-
nary reports. By comparison, revisions to public health reports
during the pandemic (the spikes and dips just described) have
been much less systematic and much less predictable.

• Traditionally, public health agencies do not publish provisional
data until they meet a level of stability. For example, data
from the National Center for Health Statistics (NCHS) on
the percentage of deaths due to pneumonia, influenza, and
COVID-19 are not released until at least 20% of the expected
deaths in a jurisdiction have been reported (37), a process
that may take several weeks. However, for modeling and
forecasting purposes, even highly provisional data can be
very informative, as long as sufficient historical provisional
data are collected so that the statistical relationships between
provisional values and finalized values can be modeled.

• Calendar effects permeate not only the reporting process
but also health-seeking behavior and the epidemic process
itself, with the effects on these three processes not easy to
disentangle. Major holidays and other national or regional
events are associated with significant travel, social mixing,
and other distinct behaviors affecting disease transmission.
However, holidays and weekends also affect health-seeking

behavior via reduced nonemergency health care capacity
(doctors’ offices and laboratories being partially or fully
closed). Perhaps the strongest calendar effects are on
reporting, including claim filing and hospital reporting. Using
one- or two-week trailing averages eliminates weekend effects
but at a cost of reduced temporal resolution, and it leaves
unsolved the effects of holidays. A better approach might be
to explicitly model and correct for calendar effects.

Mandated Reporting in a Time of Emergency Can Be
Burdensome and Inflexible. COVID-19 reporting by hospitals,
as mandated by the Department of Health and Human Services
(HHS) during the pandemic, consisted of many dozens of data
elements and imposed a significant burden on the nation’s
6,000 or so hospitals at a time when they were already
stretched to their limits. It also took a huge effort to formulate,
communicate, disambiguate, and monitor for quality assurance
and uniformity of interpretation. In light of this, it is not surprising
that it took a long time and pressure for most hospitals to
comply (near-universal compliance was not achieved until
December 2020). When changes needed to be made to the
collected statistics, an arduous and time-consuming process of
approvals, reformulation, recommunication, reimplementation,
and reassessment had to be followed.

While some aspects of mandated reporting are likely to remain
irreplaceable, effective alternative surveillance sources can be of
great use; they can improve on the timeliness, scope, robust-
ness, and utility of mandated reporting data while being less
burdensome to collect. This is a common theme that runs through
all four papers in the collection, but it is perhaps most directly
addressed in Reinhart et al. (26) (which focuses on the ecosystem
of signals broadly). That said, we have far from saturated the utility
of auxiliary surveillance. Much more needs to be developed in
this area in order to usher epidemic tracking into its next phase
of reliability, accuracy, and transparency. To us, EMRs hold a great
promise for surveillance streams, and we elaborate on this in the
next section.

Human Behavior and Its Impact on the Progression of
Epidemics Is Hard to Measure and Hard to Model. In the
nearly 10 years of government-organized epidemic forecasting
exercises in the United States, efforts were focused on modeling
the natural history and likely evolution of the pathogen, with
adaptation of human behavior playing a secondary role (if any
role at all). The pandemic demonstrated that our forecasting
models must pay closer attention to reactive human behavior,
even more so if we are to consider interventions. Unfortunately,
many highly relevant aspects of human behavior, like compliance
with policies and recommendations, are not measured by publicly
available data streams [with perhaps surveys and mobility reports
providing our best glimpse into these hard-to-observe aspects
of behavior (38)]. Furthermore, even if we had these data in
hand, incorporating their effects will require significant and new
cognitive and behavioral modeling, with uncertain success. The
tragic breakdown and fragmentation of trust in governments,
public health officials, and health care professionals are perhaps
the hardest factors to measure and model, yet they played an
undeniable role in the progression of the current pandemic in
the United States and other countries.

3. The Road Ahead
The focus of the Delphi group during the initial critical period of

the pandemic (February 2020 to March 2021) was on short-term
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goals: trying to provide signals, analysis, and decision support
to federal, state, and local public health officials, as well as to
fellow researchers, data journalists, and the general public. In
spring of 2021, equipped with the hard lessons learned during
this tumultuous year, we turned our attention back to the original
vision of the Delphi group. We asked ourselves the following
question: Given where we are and what we know now, what is
needed to be able to take a major step forward in epidemic
tracking and forecasting?

In this section, we list some ideas, which we hope will elicit
further public discussion and most importantly, experimentation.
In this regard, the creation of the Center for Forecasting and
Analytics at the CDC (39) is a welcome and much anticipated
development. Because our expertise lies in modeling and fore-
casting, not in public health surveillance, our perspective and
recommendations in what follows are necessarily limited to those
aspects of surveillance that are needed to realize our vision.

EMR as a Key Missing Component for Epidemic Tracking and
Forecasting. The success of nowcasting, analytics, and fore-
casting depends crucially on the availability of rich, real-time
data sources. In light of the limitations of mandated reporting
discussed above, we must consider the complementary value of
other data sources. Chief among these are EMRs as are being
created and used daily by inpatient and outpatient health care
providers, medical laboratories, and pharmacies. The advantages
of these data resources are that they are rich, real time, and
already being generated (found “in the wild”). The challenges
are that they are highly fragmented in the United States, with
its ∼6,000 hospitals and ∼100,000 outpatient care facilities. One
promising avenue for countering this fragmentation is Health In-
formation Exchanges (HIEs), which were set up in the early 2000s
with the support of the federal government to coordinate the
sharing of health care information among health care providers in
a given region and eventually, nationally. The primary goal of the
HIEs has been patient continuity of care, but public health surveil-
lance is recognized as an additional worthy goal. In the context of
health surveillance, HIEs hold the promise of reducing fragmen-
tation from a hundred thousand partners to only a few hundred.

Other formidable challenges to using EMRs are legal, ethical,
commercial, and operational. Who owns the data, who has access
to the data, and who has use rights are all complex and often
open questions. An overriding concern is, of course, patient
privacy. We must find a way to use these highly promising data
for the common good without compromising the privacy of
individuals. Fortunately, a technological solution appears feasible
in the form of federated surveillance. An outline is as follows.

• A common API is developed for querying all participating EMR
custodians.

• EMR databases are queried daily with an agreed upon set of
queries and return aggregated counts.

• These counts are further aggregated across multiple providers
and localities and then, fused with all other available data
sources to provide alerts, nowcasts, and forecasts.

• These model outputs are then shared back to the contributing
EMR custodians, as well as to the CDC and other federal and
state agencies.

• Done in this way, no personal health information ever leaves the
custodians’ premises, while aggregated statistics can be com-
bined to increase statistical power, thereby shortening alert
latency and improving detection and prediction capabilities.

A successful example of federated querying (albeit designed
for research rather than real-time tracking and forecasting) has
been recently demonstrated in the United Kingdom (40).

One advantage of this approach to health surveillance is that
when a new emerging health crisis is identified or when specific
syndromic signatures are discovered (e.g., ageusia and anosmia
for COVID-19), a new query can be developed, approved, and
deployed literally overnight, allowing us to “shine a light” on it on
very short notice. This can be contrasted with traditional, legally
mandated public health reporting, which could take weeks and
months to develop, approve, negotiate, disseminate, implement,
monitor, and assure quality of, as has happened during the
current pandemic. In the slightly longer term, demonstrating
the effectiveness and superiority of federated surveillance could
obviate the need for crisis time mandated reporting, alleviating
the reporting burden on hospitals and other health care providers
during these difficult times.

In an interpandemic period, an important use case for feder-
ated surveillance is detection of trends and anomalies. A set of
queries can be designed to continuously test for unusual recent
spikes or trends in any number of diagnoses, symptoms, labora-
tory tests, or prescriptions. The aggregation of evidence across
many systems, localities, and data streams will make detection
both more sensitive and more robust. Such a system would likely
have detected the opioid epidemic years before it was actually
noticed.

One open technical challenge with the federated surveillance
approach is semantic heterogeneity; the use of emerging Health
Information Technology standards like HL7’s FHIR (41) can en-
able a unified view of EMR data elements, but different health
care systems often have different operational definitions for sup-
posedly universal concepts like “high blood pressure” or “low
blood oxygenation.” Combining counts of such events across
different health care systems may be a bit like adding apples to
oranges. It will take some work to harmonize semantics across so
many diverse data custodians, but this is both doable and well
worth doing. Note that this problem is less severe for the many
surveillance and anomaly detection tasks where the focus is on
changes in a signal (in a given location) over time, rather than on
its absolute meaning.

Different Phases of Epidemic Surveillance Call for Different
Analytic Tools. It is important to discuss analytic needs sepa-
rately for each of three different phases of epidemic surveillance
and tracking since each poses different technical challenges and
requires different analytical tools.

In the interpandemic phase, the main activity is threat scanning,
namely monitoring data streams and events throughout the world
for disconcerting developments. Relevant statistical tools include
anomaly detection and scan statistics to help decide when an
epidemiological investigation is warranted. While it may be pos-
sible to rank the risks of different outbreak triggering events (like
species jumping or point mutations) in different locations, which
could in turn be used to inform surveillance resource allocation,
conventional forecasting has a limited role to play in this phase,
as such events have large inherent uncertainty.

In the containment phase, a discovered threat must be in-
tensely monitored, continuously assessed, and ultimately con-
tained. The analytical, data-driven tools required in this phase in-
clude real-time estimation of critical epidemiological parameters
such as R0, infection fatality rates, the incubation period, the serial
interval, and so on. These real-time estimates are necessarily
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based on provisional data, highlighting the value of modeling
the data generation process discussed above. In this phase,
forecasting still has a limited role since the outbreak is still local,
its fundamental dynamics are unclear, and point events can have
large consequences down the road.

If containment fails, during the mitigation phase the goals
of analytics expand significantly to include informing mitigation
policies and planning. Real-time tracking (nowcasting) and short-
term forecasting (a few weeks ahead) can play critical roles in
these activities and indeed, have been the focus of our group’s
work since its inception. While there is still important work to
be done and advances to be made in this area, we believe
that these advances are likely to be incremental until we see
major progress in either 1) supporting data streams (e.g., better
standardization and cleaning of public health reporting data,
identification of leading indicators from, say, EMR) or 2) our
collective scientific understanding of the real-world geotemporal
dynamics of epidemics (discussed next).

Useful, Reliable Longer-Term Forecasting Remains an
Aspiration. Influenza forecasting exercises in the last several
years demonstrated that it is often possible to usefully quantify
uncertainty over the remainder of an ongoing flu season (3).
However, this success was based mostly on observing the

behavior of seasonable epidemics over several decades. To
reliably forecast the progression of pandemics, where relevant
historical data are almost nonexistent, we must have a detailed
quantitative understanding of how different, diverse factors affect
disease transmissibility. Such an understanding is currently grossly
lacking, as evidenced by our collective failure to predict (42)
[or even understand post hoc (43)] the high-level temporal and
geographic contours of the main pandemic waves in the United
States. Yet, this very pandemic, the most instrumented in human
history, is also a rare opportunity to attempt this vital scientific
and technological goal.
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