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Abstract—Radio detection and ranging-based (radar)
sensing offers unique opportunities for biomedical moni-
toring and can help overcome the limitations of currently
established solutions. Due to its contactless and unobtru-
sive measurement principle, it can facilitate the longitudinal
recording of human physiology and can help to bridge the
gap from laboratory to real-world assessments. However,
radar sensors typically yield complex and multidimensional
data that are hard to interpret without domain expertise.
Machine learning (ML) algorithms can be trained to ex-
tract meaningful information from radar data for medical
experts, enhancing not only diagnostic capabilities but also
contributing to advancements in disease prevention and
treatment. However, until now, the two aspects of radar-
based data acquisition and ML-based data processing have
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mostly been addressed individually and not as part of a
holistic and end-to-end data analysis pipeline. For this rea-
son, we present a tutorial on radar-based ML applications
for biomedical monitoring that equally emphasizes both
dimensions. We highlight the fundamentals of radar and ML
theory, data acquisition and representation and outline cat-
egories of clinical relevance. Since the contactless and un-
obtrusive nature of radar-based sensing also raises novel
ethical concerns regarding biomedical monitoring, we ad-
ditionally present a discussion that carefully addresses the
ethical aspects of this novel technology, particularly re-
garding data privacy, ownership, and potential biases in ML
algorithms.

Index Terms—Radar, machine learning, medicine, ethics,
biomedical monitoring.

Impact Statement—Take-Home Message Radar-based
sensing offers contactless and unobtrusive measurement
possibilities, bridging the gap between lab and real-world
assessments. ML plays a crucial role in extracting mean-
ingful information and interpreting data. Thereby, ethical
considerations are essential due to data privacy issues and
biases.

I. INTRODUCTION

EARLY disease detection is crucial for successful treat-
ment [1], [2], [3]. Therefore, simple and cost-effective

biomedical monitoring tools are necessary, enabling a contin-
uous assessment of a patient’s state of health. Over the past
decades, biomedical monitoring has transitioned from com-
monly invasive procedures, such as obtaining blood samples
and subjective assessments based on human observation, to
more objective, minimally – or even non-invasive – monitoring
modalities, such as electrophysiology [4], motion capturing [5],
[6], and wearable sensors [7], [8]. While these less disruptive
methods allow the precise measurement of physiological param-
eters that enable reliable diagnosis and treatment monitoring,
they have several limitations.

Even though current measurement setups are often non-
invasive, they commonly still require the attachment of sensors,
wires, or markers on the human body, which may interfere
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with human behavior during the measurement [9]. In addi-
tion, complex medical measurement devices, such as motion
capture systems or polysomnographs (PSG), are cost inten-
sive, and comprehensive examinations can often only be per-
formed at locations with access to this technology. Further-
more, operating and maintaining these biomedical monitoring
devices requires specially trained staff, which gives rise to
considerable additional costs. Therefore, these measurements
can only be conducted in major hospitals or outpatient spe-
cialized centers, thus solely allowing measurements at discrete
points in time and only when the health condition is present
in the patient. This hinders the seamless translation of labora-
tory measurements to more realistic, real-world environments.
However, many chronic diseases would benefit from a con-
tinuous monitoring in real-world environments to better track
disease progression and, consequently, adjust medication more
efficiently [10].

In recent times, the trend in healthcare is advancing towards
a widespread, technology-assisted, and personalized approach.
This includes the introduction of continuous medical monitoring
that fits seamlessly into everyday life and monitors peoples’
behavior and their activities around the clock. This setup should
reduce the patient’s hospital stay and, at the same time, achieve
better monitoring, thus enabling a better assessment of the health
state [7], [11]. It has been demonstrated that measurements in a
clinical setting do not necessarily reflect the values of measured
parameters in a real-world setting [9]. One example of mea-
surements influenced by the measurement setup is the so-called
“white-coat hypertension”, in which a person’s blood pressure
readings are consistently higher when measured in a medical
setting, compared to when it is measured in a more relaxed,
non-medical environment [12]. Therefore, unobtrusive, or even
unperceived, measurements have the potential to considerably
enhance data quality.

In the dynamic field of biomedical monitoring, radio detection
and ranging (radar) sensors play an important role in facilitating
unobtrusive and contactless measurements. Their wave-based
nature not only presents a significant alternative to traditional
sensors but also mitigates obtrusiveness, thereby broadening
the scope for gathering more comprehensive sets of real-world
data [13]. Depending on the used frequencies, radar technol-
ogy may be used for measurement applications in which the
subject is occluded by clothing or other materials [14]. This
distinct advantage over optical methods, in conjunction with
the high sensitivity of radar-based methods, facilitates many
applications that could only be addressed by wearable sensor
solutions in the past. In contrast to wearables, radar systems
enable long-term patient monitoring, thus allowing healthcare
professionals to gain more insights into disease progression.
In particular, technologically, highly advanced radar sensors
are affordable for widespread use in home environments for
everyday data collection. However, raw radar data are difficult
to interpret, even for experts. Machine learning (ML) algorithms
enable the recognition of patterns in radar data streams to extract
various biosignals or analyze other inner states of humans. This
not only allows the improvement of diagnostics but can also
support medical staff in the prevention of diseases and improve
biomedical monitoring.

Given the unique opportunities that radar-based sensing can
offer for biomedical monitoring, we aim to bring this technology
closer to the biomedical engineering community. For this reason,
we present a tutorial on radar-based applications for biomedical
monitoring, with special focus on applications that make use
of ML to extract meaningful parameters. After introducing the
fundamentals of radars (Section II) and ML (Section III), specific
representations of radar data and its applications within medicine
are introduced in Section IV. Section V gives an overview of
the study planning to generate sufficient training data, which
are essential for the ML process, and discusses the “dos and
don’ts” within that scope. As with the introduction of every novel
technology, the integration of radar technology into biomedical
monitoring procedures raises ethical concerns. This aspect is
discussed in Section VI, which highlights the ethical parameters
and aspects of this technology. Then, Section VII addresses the
categories of clinical relevance. Finally, Sections VIII and IX
discuss the findings and conclude the tutorial paper, respectively.

II. RADAR FUNDAMENTALS

Radar is a radiolocation technique that uses electromagnetic
waves to determine distance, velocity, and the angle of objects
relative to the radar site. The basic principle of a radar system
can be easily explained. A microwave transmitter emits a radio
signal – e.g., a short pulse-shaped wave via an antenna in the
direction of an object. This signal is reflected by the object,
and the reflected echo is received by the radar system [15]. By
measuring the roundtrip time of flight (RTOF) τ of the signal
from the radar to the object and back – i.e., the time elapsed
between transmitting the impulse and receiving the respective
echo – the distance d can be calculated using the following
relationship:

d =
1

2
c τ , (1)

where c is the propagation speed of the electromagnetic wave,
which is approximately 3.0 × 108 m/s in air. Therefore, the
radar signal only needs 1 ns to travel 30 cm. The radar signal
carrier frequency fc commonly used today is in the range of
2GHz to 300GHz, with the vast majority of radar systems being
used for biomedical sensing operating in the regulated industrial,
scientific, and medical (IMS) frequency bands at 5.8GHz [16],
24GHz [17], [18], [19], [20], [21], and 61GHz [22], [23] or
more recently also 122GHz [24], [25] and 244GHz [26], [27].
The wavelength λ of the radar signal is defined as follows:

λ =
c

fc
. (2)

For a 60GHz radar, for instance, the wavelength is 5mm. The
wavelength will be important in the further course of the expla-
nations because, as we will see, it determines the radar accuracy,
radar resolution, and applicability of radar systems. While this
rather simple introduction may clarify the basic principle of
radar operation, it reveals neither the most exciting measurement
capabilities and characteristics of radar systems nor the actual
hardware structure of the latter. To really understand biomedical
radar systems, we take a closer look at the so-called continuous
wave (CW) radar.



682 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

Fig. 1. Radar coordinate system: The red area determines the field of
view of the radar system.

Fig. 2. Block diagram of the basic CW radar setup.

A. Continuous Wave (CW) Radar

The basic setup of a CW radar, also referred to as Doppler
radar, is illustrated in Fig. 2. The oscillator generates a sine
wave signal. With the angular frequency of the carrier signal
ωc = 2πfc, amplitude Atx, and zero phase ϕ0tx , the transmit
signal stx(t) can be written as follows:

stx(t) = Atx · cos (ωct+ ϕ0tx). (3)

The receive signal srx(t) has the same form as the transmit
signal stx(t); however, it is delayed by the RTOF τ and has a
notably lower amplitude. It is given as follows:

srx(t) = Arx · cos (ωc (t− τ) + ϕ0tx + ϕrx) . (4)

The receive signal amplitude Arx depends on the target dis-
tance and the reflectivity of the object. In addition, we need to
introduce a constant phase offset ϕrx, first because the reflection
from the object can cause a material-dependent phase change and
second because of possible phase offsets in the radar hardware.

From a system theoretic perspective, the following mixing
process that facilitates radar interpretation can be described
as a simple complex-valued multiplication. Here, the receive
signal is once multiplied with the transmit signal and once
separately multiplied with its quadrature component shifted by
90◦. Since the receive signal is a cosine term, a shift by 90◦

transforms the quadrature component into a sine term. Based
on trigonometric product-to-sum identities, this multiplication

yields the so-called baseband signal sb(t), which is as follows:

sb(t) = Re{sb(t)}+ j Im{sb(t)}

=
1

2
AtxArx · exp (j (ωcτ − ϕrx))

= Ab · exp (j (ωcτ − ϕrx)). (5)

The low-pass filter after the mixer (Fig. 2) is used to suppress
unwanted signal components at twice the carrier frequency.

The resulting baseband signal sb(t) is a constant, complex
direct current value (i.e., a complex pointer) as long as the
target distance d is constant. However, if the target distance and,
thus, the RTOF τ change with time, the phase argument of the
baseband signal, which is given as follows, also changes:

ϕb(t) = arg{sb(t)}
= arctan (Im{sb(t)}/Re{sb(t)})
= ωcτ − ϕrx. (6)

Considering the definitions of the wavelength (2) and the
relation between travel time and distance, we see that a change
of distance by only half a wavelength causes a phase rotation of
360◦.

Measuring the phase with a statistical uncertainty of below 1◦

is usually not a problem in a well-designed radar [28], [29]. To
better understand the relationship between the wavelength and
phase, we present the following example using a radar system
operating at a frequency of 60GHz, resulting in a wavelength
of 5mm: This means that a 1◦ phase rotation corresponds to
a distance change of about 7μm. This fine range sensitivity
makes it possible, for instance, to detect microscopic movements
on the body surface caused by pulsating blood flow [30]. In
addition to capturing microscopic movements, it is also possible
to measure larger motions, such as those involving limbs or
other parts of the body. However, one drawback of the CW radar
is the extremely low unambiguous range for tracking distance
changes. This refers to the maximum target range measurable
by the radar system while an unambiguous association with a
specific distance can be ensured. For CW radar technology, this
maximum unambiguous range is λ/2 and, therefore, 2.5mm
with respect to the prior example. Thus, tracking certain mo-
tions can span multiple phase cycles. Therefore, phase changes
need to be tracked with a sufficient sampling rate fitted to the
motion speed in order to reconstruct the total path length of the
displacement. For instance, to measure the total displacement of
the chest due to respiration (multiple centimeters) with a 60GHz
radar system, the Doppler phase needs to be sampled at least at
every 2.5mm point of motion.

B. Doppler Principle

The phase argument of the baseband signal ϕb(t) is called the
Doppler phase [31], [32]. The derivative of the Doppler phase,
given as

fDoppler(t) =
1

2π

dϕb(t)

dt
, (7)
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Fig. 3. Radar data content overview: Here, a person is moving away from a radar system with almost constant velocity of approximately 0.6m/s.
The sectional images are generated by summing up the remaining dimension. Stationary objects were removed using static clutter removal
algorithms. (a) illustrates an exemplary Doppler spectrogram. The distinctive micro-Doppler signatures resulting from various body reflections with
different velocity components during the walking activity are easily discernible. In (b), an exemplary radargram depicts the target’s distance from the
radar system over time. Reflections occurring beyond the dominant scatterers are attributed to multi-path effects. Further, undesirable horizontal
smears stem from the hardware characteristics of the radar system. (c) illustrates an exemplary range – Doppler diagram. The superimposition of
multiple reflections from distinct body parts, each exhibiting varied velocity components (e.g., torso or swinging arms), gives rise to micro-Doppler
effects. Reflections extending clearly behind dominant body parts are attributable to multi-path effects. In (d), an angle image corresponding to the
range – Doppler image in (c) is presented. The examination of the data from multiple antennas allows an accurate angle estimation.

is called instantaneous Doppler frequency. If the target moves
with constant radial velocity (i.e., only the vector component
in the direction of the radar) toward or away from the radar, the
Doppler phase changes linearly with time, and thus, its derivative
is constant. If this is the case, fDoppler(t) is constant and one
can derive a scalar Doppler frequency value – e.g., by a Fourier
transform (FT) of the baseband signal. In this case, we have the
following:

fDoppler(t) =
1

2π

dϕb(t)

dt
= const. ⇒ fDoppler(t) =

2v

λ
. (8)

Thus, measuring the Doppler frequency is perfectly suited for
measuring the target speed. Note that with a single antenna, only
the radial velocity can be measured. The maximum unambigu-
ous velocity, which describes the maximum speed that can be
accurately measured without encountering velocity ambiguity,
is limited by the sampling rate of the Doppler phase. Hence, to
unambiguously measure the velocity of a foot kicking a ball
at a maximum speed of 15m/s following the example of a
60GHz signal frequency, the sampling rate of the Doppler phase
needs to be at least at 12 kHz, which depicts twice the maximum
occurring Doppler frequency.

It is important to precisely distinguish between the instanta-
neous Doppler frequency and the Doppler frequency. A Doppler
frequency is the average value of the instantaneous frequency

over a certain observation period. Very often, the Doppler fre-
quency is determined by an FT, where the averaging is inherently
done by the Fourier integral. However, an FT only provides a
meaningful frequency estimate if the frequency values of the
signal components are almost constant during the integration
time. In an FT, the integration (or averaging) time equals the
length of the signal that is Fourier transformed.

In biomedical applications, the target velocity – e.g., the
cardiopulmonary body movements or the movement of the
limbs, among others – is usually not constant or at least not
constant over a meaningful observation time. Therefore, the
determination of Doppler frequencies over longer sections of the
CW radar baseband signal with the FT is rarely useful in biomed-
ical settings. Instead, the baseband signal is divided into short
sections, where the time duration TSTFT of the sections chosen
is so short that constant velocities of all targets can be assumed
in this observation period. In the so-called short-time Fourier
transform (STFT), each signal section is Fourier transformed
separately. If the temporal change of these individual spectra is
plotted over time, it leads to a Doppler spectrogram [33].

The temporal change in the spectral composition of the radar
baseband signal is called the micro-Doppler signature of a
moving or rotating target [34], [35]. In Fig. 3(a), a typical
Doppler spectrogram of a person moving with near-constant
velocity away from the radar is illustrated. The characteristic
micro-Doppler signature is clearly visible. While the person’s
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torso exhibits an almost constant velocity, the limbs yield an
undulating pattern. Whereas the most accurate representation
of the target micro-Doppler signature is the direct use of the
Doppler phase ϕb(t) or of the instantaneous Doppler frequency
fDoppler(t), the STFT is a suitable tool to estimate fDoppler(t).
It is especially useful when there is more than one moving target
within the radar’s detection range. This aspect will be discussed
in Section II-C of this article.

C. Radar Resolution and Radar Data Content

If there is more than one moving target or scattering structure
within the radar’s detection range, the micro-Doppler signatures
of all scattering structures will overlap. Thus, it is necessary to
separate or resolve the different scattering structures. The ability
to separate closely spaced structures is defined as the resolution
of a radar. The available separation dimensions are instantaneous
Doppler frequency, the radar viewing angle to the target, and
the distance to the target. If a target can be resolved in one
dimension, all attributes of the other dimensions corresponding
to that specific target can be assigned.

If the above STFT is used, two targets can be separated if they
have a velocity that differs more than the Doppler resolution
δDoppler. The Doppler resolution when using STFT is inversely
proportional to the time duration TSTFT of the signal sections and
can be estimated as follows [36]:

δDoppler ≈ 1

TSTFT
. (9)

The precise value of δDoppler(t) depends on the used window
function of the applied Fourier processing. If the Doppler fre-
quencies of two targets differ by at least this value, they lie in
the spectrum at different frequency bins and can, therefore, be
distinguished.

The radar viewing angle facilitates the separation of the
Doppler signatures of several body parts and prevents over-
lapping. Therefore, the radar signal is focused in an angular
direction on a specific point of the body. The ability to focus a
wave is determined by the size D of the radar antenna aperture
related to the wavelength. The aperture is an equivalent area from
which the waves emanate or on which the wave is received. Two
targets can be separated in an angular dimension if their angle to
the radar differs by more than the angular resolution δangle. The
latter is given as follows [36]:

δangle ≈ λ

D
rad. (10)

To obtain a good angular resolution, a radar system should
have apertures with D >> λ. As a rule of thumb, an angular
resolution of 1◦ would require an aperture size of D > 60λ.

An aperture can be created by one physical antenna or by an
antenna array. In medical applications, it is not always practical
to mechanically direct a large physical antenna or antenna array
to a specific point on the body. While this manual alignment may
still be possible in stationary applications, where the person is
sitting quietly on a chair or lying in bed, it is not applicable
to scenarios where a person is moving. One solution to this
problem is digital aperture synthesis. With the suitable selection
of all transmit signal phases in an array or with a computational

Fig. 4. Setup of a coherent impulse Doppler radar.

superposition of all receive signals of an array in a reconstruction
algorithm, the radar signal can be focused on certain spatial
areas. The most powerful variants are multiple-input multiple-
output (MIMO) array apertures and synthetic aperture recon-
struction algorithms [37], [38], by which a variety of different
RTOFs is evaluated by many different antenna positions. This
reconstruction process can be seen as an imaging process. By
separating all scattering structures in the lateral dimension, an
image of the target in lateral dimension is created. Commonly
utilized MIMO radars employ the time-division multiplexing
(referred to hereon as TDM-MIMO) principle, where each trans-
mit antenna sequentially transmits its signal resulting in lower
update (frame) rates and a decreased maximum unambiguous
velocity. The unambiguous angle of a radar system is defined by
the angle range where an unambiguous association of the target
to a specific angle can be made. It is determined by the spatial
spacing between antenna elements. To obtain a resolution in
range, an impulse-shaped or modulated broadband radar signal
is necessary.

A comprehensible way to understand how radar ranging
and the target separation in the range is done is to look at a
radar system concept referred to as coherent impulse Doppler
radar [15], which is depicted in Fig. 4. Compared to the simple
Doppler setup in Fig. 2, a pulse generator that modulates the
sinusoidal carrier signal with a pulse-shaped envelope sp(t) has
been added. The impulse transmitted by the radar is given as
follows:

stx(t) = sp(t) · cos (ωct+ ϕ0tx). (11)

Using the same mathematics as before, the final baseband
signal can be calculated as follows:

sb(t) = Re{sb(t)}+ j Im{sb(t)}
= Ab · sp (t− τ) · exp (j (ωcτ − ϕrx)). (12)

If there are N targets within the radar’s detection range, the
so-called radar echo profile is a superposition of the echoes of
all N reflecting structures, which all have different RTOFs:

sb(t) =

N∑

n=1

Abn · sp (t− τn) · exp (j (ωcτn − ϕrxn)). (13)
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Fig. 5. Envelope and phase of an exemplary radar echo profile.

The echoes can be separated in range if their maxima are
still recognizable from the superimposition of the envelopes,
resulting in a distinct maximum for each target. It can be shown
that the width of the envelope sp(t) is inversely proportional to
the signal bandwidth B of the baseband signal sb(t) in (12).
Thus, the radial range resolution δrange of a radar system is given
as follows [15],

δrange ≈ c

2B
. (14)

The exact value of the range resolution depends on the actual
envelope shape and other signal properties. Furthermore, it
becomes clear that CW radar systems do not offer any range
resolution as they lack system bandwidth. Based on the above
formula and also by looking at Fig. 5, it is obvious that the dis-
tance to the targets can be determined by evaluating the envelope
positions alone. When the targets move, their echo envelopes
move as well. When a successively measured sequence of echo
profiles and the variation of the echo positions are plotted over
time, this two-dimensional representation is called a radargram.
A typical radargram from a person moving away with almost
constant velocity from the radar is visualized in Fig. 3(b).

The unambiguous range that can be measured is determined
by the pulse repetition interval, which is defined by the time
delay between successive pulse emissions. A longer pulse repe-
tition interval allows for an unambiguous association of the pulse
with a specific distance. Therefore, in contrast to CW radars, an
impulse Doppler radar offers an unambiguous range information
that is proportional to the pulse repetition interval.

As we can derive from (13), each radar echo does not only
have an envelope sp(t) but also a phase (ωcτn − ϕrxn). The
phase is exactly the one discussed in the CW radar section.
Thus, if sequential radar measurements are done, all of the
above Doppler evaluations can also be performed. It is required
that the measurements are performed in such a rapid succession
that the sampling theorem for the highest occurring Doppler
frequency is not violated. Otherwise, ambiguities in the velocity
measurement may1 occur. When the range profile is plotted in
one dimension and the STFT over the Doppler signature in the
other dimension, this is called a range–Doppler diagram. A
typical range–Doppler diagram is depicted in Fig. 3(c).

It is very important to note that the mentioned radar resolution
values have to be strictly separated from the technical terms
“measurement accuracy” and “precision”. As soon as a target
can be resolved, the measurement precision and especially the
accuracy of the measured distance, angle, and velocity values are
orders of magnitude better than the resolution limits in a well-
designed and well-calibrated radar. The possible accuracy can be
estimated via the Cramer Rao lower bound, which is influenced
by the radar resolution; however, ultimately, it is limited only by
the signal-to-noise ratio of the baseband signal [39], [40].

It should also be noted at this point that the coherent impulse
Doppler radar principle is by far not the most frequently used
concept in the field of medical technology. In this article, we
chose this principle because it is the easiest to understand
and allows us to derive common radar signal representations.
The most commonly used commercial radar principle today is
the frequency modulated continuous wave (FMCW) or stepped
frequency continuous wave (SFCW) radar [15], [41]. If impulse
radar systems are used in the medical area, very often, ultraw-
ideband (UWB) systems are used, and the so-called sequential
sampling impulse radar concept is applied [33], [42].

In simple terms, FMCW or SFCW radars use the same im-
pulse response measurements as impulse radars; however, this
does not happen in the time domain but in the frequency domain.
Thus, a wide signal bandwidth is achieved by modulating the
transmitted frequency as opposed to relying on short pulses,
which also exhibit a high signal bandwidth when transformed
into the frequency domain. From the system theory, it is known
that one can switch back and forth between the two domains
(i.e., system impulse response vs. system transfer function)
at any time via a Fourier transformation. Thus, after Fourier
transforming the baseband signal of an FMCW radar, one gets
nearly the same echo profile as represented in (13). Since the
evaluation of the distance to the target in FMCW radar takes
place in the frequency domain, a frequency shift induced by
the Doppler effect is superimposed on the signal. Therefore,
Doppler effects must be considered already within a single
measurement. This is the only small difference; however, it is
relatively easy to take into account. If many successive FMCW
measurements are carried out one after the other and evaluated
together, it is called the FMCW chirp sequence radar or fast
chirp radar method [43], [44]. In this case, the range–Doppler
diagram can be computed efficiently from the two-dimensional
Fourier transform of the raw radar data. In terms of resolution and
sensitivity, which describes the radar’s ability to detect small dis-
tance changes, this is one of the best-performing radar variants
today. However, CW radars may outperform this type of radar in
terms of sensitivity due to the lower noise contribution of their
components.

If range resolution is combined with lateral resolution, it
is even possible to obtain a 3D image of the target scene. In
addition, as explained above, each voxel can be assigned a
Doppler frequency or a micro-Doppler signature. This results
in a multidimensional raw radar data representation in the form
of a hypercube, which is referred to as radar cube. To offer
a visual representation of the content of a radar cube, Fig. 3
provides a comprehensive overview. Each frame is equipped
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TABLE I
COMPARISON OF COMMON RADAR CONCEPTS USED FOR HUMAN MOTION DETECTION: CONTINUOUS WAVE (CW), IMPULSE DOPPLER, FREQUENCY

MODULATED CONTINUOUS WAVE (FMCW), STEPPED FREQUENCY CONTINUOUS WAVE (SFCW) AND TIME-DIVISION MULTIPLEXING
MULTIPLE-INPUT MULTIPLE-OUTPUT (TDM-MIMO) FMCW. METRICS: +++: EXCELLENT; ++: HIGH; +: MODERATE; −: LOW;

NTX: NUMBER OF TRANSMIT ANTENNAS

TABLE II
OVERVIEW OF TECHNICAL RADAR TERMS AND DEFINITIONS

with information on the range, Doppler, and amplitude through
a single antenna. By assessing the phase changes across multiple
antennas, the system can also perform an angle estimation, as
shown in Fig. 3(d). A comprehensive comparison of the common
radar principles relevant to human motion detection is presented
in Table I. For a general overview, the most important terms
related to radar are summarized in Table II.

It is obvious that this radar cube contains an enormous infor-
mation content. Most of the information relevant to biomedical
measurements is contained in the micro-Doppler signatures.
Unfortunately, this part is mostly inaccessible for human vi-
sual perception because our brain is primarily trained for two-
dimensional optical imaging. Neural networks, however, give us
the ideal tool to comprehensively evaluate the multidimensional
data treasure that radar technology offers. To better understand
how ML can be used to extract meaningful information, we will
introduce the fundamentals of ML and deep learning (DL) in the
following section.

III. MACHINE LEARNING AND DEEP LEARNING MODELS

Due to the multidimensional nature of the underlying radar
data, one of the most promising ways to process and evaluate
them is the use of ML algorithms. Generally, ML is one sub-field
of artificial intelligence (AI) that enables computers to learn
and improve without being explicitly programmed [82]. This
involves the development of algorithms that enable machines
to make predictions or identify patterns based on data. The
general approach, which is visualized in Fig. 6, includes data
pre-processing, feature extraction, and classification [82]. As
DL models can inherently learn features and pre-processing
steps, this is represented by dashed lines. Conversely, classical
ML approaches commonly require explicit pre-processing and
expert feature engineering. These single steps will be explained
in the following sections.

A. Pre-Processing and Feature Extraction

The first crucial step in creating robust models is pre-
processing the raw radar data. This should include filtering, noise
suppression, and the handling of outliers, as well as dealing with
missing data points and the synchronization of data streams.
As raw sensor data is often complex and contains redundant
information, the extraction of features containing relevant infor-
mation for the specific task is essential. Expert knowledge plays
a key role in this process as handcrafting proper features can
enhance the models’ ability to discover relevant patterns and to
make accurate predictions [82].

Some ML algorithms rely on distance metrics to calculate
the distance between different data points in an n-dimensional
feature space. Those algorithms commonly lack prediction per-
formance when incorporating high-dimensional features. One
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Fig. 6. The typical ML pipeline consists of data collection and pre-processing, followed by feature extraction to enhance input features. As DL
models can inherently learn features and pre-processing steps from raw sensor data, this is represent by dashed lines. Following this, the model is
trained using the training data and evaluated on a separate test set.

reason for this is that data points become increasingly sparse
in high-dimensional spaces, which makes meaningful distance
calculations more difficult. Thus, dimensionality reduction tech-
niques are required [61], which, among others, can involve
applying algorithms such as the principle component analysis
or feature selection methods that rank features according to
their information content and the redundancy (e.g., correlation
between features, chi-square test, or mutual information) [82].
Furthermore, ensuring that the features are on a consistent scale
is a critical aspect of feature engineering in distance-based
algorithms. Scaling methods, such as min-max scaling or z-score
normalization, mitigate the impact of features with different
magnitudes [82].

B. Supervised Vs. Unsupervised Learning

To create ML models, training is required, which can be
performed in a supervised and an unsupervised approach. For
supervised learning, the correct output for the training data is
known, and the model is trained to determine these outputs
as accurately as possible. Therefore, to train supervised ML
algorithms, each data point needs to have an associated label.
During the training phase, the algorithm optimizes its parameters
to minimize the disparities between its predictions and the actual
target labels [83]. In unsupervised learning, this information
is not available. Thereby, the primary use case is to discover
patterns, relationships, and inherent trends within a dataset [83].
For most applications in radar-based biomedical monitoring,
ML models are trained with radar data that is recorded in
combination with ground truth data. Therefore, we focus on
supervised ML in the rest of this section.

C. Classification or Regression Problems

In supervised learning, most ML algorithms can be used for
classification or regression tasks. In classification, the outcome
is represented as a discrete label, while regression tasks provide
continuous output [83]. This continuous output can then be
rounded to discrete values such as disease severity scales.

In the context of biomedical monitoring, classification tasks
are commonly used for diagnostic purposes, whereas regression
tasks can help to monitor the disease progression by estimating
the disease severity over time.

D. Choice of ML Algorithms

In simple terms, ML algorithms can be grouped into classical
ML and DL techniques. The classical ML models typically have
a simpler architecture with fewer parameters to optimize, while
DL models can have a deep and hierarchical architecture with
multiple layers. Because DL models are fundamentally inspired
by the human brain, composed of interconnected neurons, these
models are also referred to as neural networks. Each connection
between the different neurons has an associated weight, which
determines the impact of the connection [84]. Tables III and
IV give an overview on frequently used classical ML and DL
algorithms, while Fig. 7 displays a selection of greater relevance
of those ML (k-nearest neighbor algorithm (kNN), random
forest algorithm) and DL (autoencoder, long-short-term memory
(LSTM), convolutional neural network (CNN)) algorithms.

The choice of the most suitable ML algorithm depends on the
specific problem, available data, and computational resources.

Classical ML algorithms commonly rely on handcrafted
features extracted from the data, requiring expert domain
knowledge to identify relevant features [82]. As explained in
Section III-A, distance-based algorithms require dimensionality
reduction in the pre-processing step to reach good prediction
results. The training process of tree-based ML algorithms,
characterized by decision-making through a hierarchical tree-
like structure, typically incorporates inherent feature selection,
making the model training less vulnerable to high-dimensional
feature spaces [51], [82]. In contrast, the input data for DL
algorithms are typically raw or only slightly processed, as the
models can handle complex high-dimensional data such as im-
ages, audio, and text. Due to the multi-layered network archi-
tecture, DL algorithms are able to automatically learn relatively
complex hierarchical features, making manual feature selection
obsolete [85].

Another advantage of neural networks is their superiority in
handling time-series data. While time dependency in classical
ML models is typically induced by engineering time-dependent
features that are incorporated into the models, there are DL ar-
chitectures that were particularly designed to handle time-series
data, such as recurrent neural networks (RNNs), including
models such as LSTMs or gated recurrent units (GRUs)
[66], [85].
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TABLE III
FREQUENTLY USED CLASSICAL ML ALGORITHMS IN RADAR-BASED APPLICATIONS FOR BIOMEDICAL MONITORING WITH RELEVANT PAPERS IN THE

RIGHTMOST COLUMN

TABLE IV
FREQUENTLY USED DL ALGORITHMS IN RADAR-BASED APPLICATIONS FOR BIOMEDICAL MONITORING WITH RELEVANT PAPERS IN THE RIGHTMOST COLUMN
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Fig. 7. Frequently used ML algorithms: (a) K-nearest neighbor: The algorithm assigns new data points to the class with the majority of nearest
neighbors; (b) Random forest Algorithm: Predictions are determined by the combination of multiple decision trees. Frequently used DL algorithms:
(c) Autoencoder: By inducing a low-dimensional representation between the encoder and decoder structure feature extraction or data generation
can be performed; (d) Recurrent neural network: By storing information from previous inputs memory information is induced to learn long-term
dependencies; (e) Convolutional neural network (CNN): Typically a CNN consists of convolutional, pooling and fully connected layers.

However, the aforementioned advantage of DL models to
learn the complex relationship from (raw) data also bears a
downside: The decision process of DL models is often less in-
terpretable compared to classical ML algorithms, where feature
engineering is typically performed using expert knowledge [86].
Thus, DL models are often referred to as “black-box models”
that can be troublesome for biomedical monitoring, where a
transparent way of decision-making is particularly important
and can even prevent clinical application.

As the feature engineering in classical ML algorithms is
performed with expert knowledge, patterns are created, making
the algorithms effective for small- to medium-sized datasets.
Therefore, classical ML algorithms are suitable for tasks with
limited computational resources such as on-device or real-time
applications. In contrast, DL algorithms often require substantial
amounts of data for training, which makes them computationally
expensive and requires special hardware, such as graphics pro-
cessing units (GPUs) [84].

E. Training Process

ML models require a training process in which the internal
model parameters are adjusted through optimization techniques.
For most classical ML algorithms, this means optimizing their
internal parameters to minimize an error between predictions
and actual target labels.

Neural networks are trained using a process called back-
propagation. This involves feeding input data into the network,
calculating the output, comparing it with the actual output,
and adjusting the weights to minimize the error. This process
is repeated iteratively using optimization algorithms such as
gradient descent [84].

To achieve generalizability, this training process should be
performed on a designated subset of the dataset, which is referred
to as the training set. The performance should then be evaluated
on a separate test set that was never used in the training process
to ensure generalizability and make the model suitable for real-
world applications [82].
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Due to complex data acquisition and labelling, biomedical
radar datasets are often only small-scale datasets. Therefore,
the amount of data might be insufficient for establishing a
train-test split in which the model optimization does not heavily
depend the data to which the model is optimized. As this split is
commonly performed randomly, the classification performance
might heavily depend on the random split.

To mitigate this issue, cross validation can be used, in which
multiple train-test splits are conducted on the same dataset and
the resulting prediction performance in averaged. This can help
to diminish the impact of a single arbitrary split and to get a
more robust result [82].

If the dataset contains several recordings of the same par-
ticipant, the train-test split should be conducted on a participant
level to ensure that data from one participant are only in the train-
ing or test set, respectively. This helps to prevent information
leakage from the test set into the training process. Furthermore,
it is important to ensure that both train and test sets do not contain
confounders [87]. For instance, if the control group primarily
consists of young, healthy adults while the intervention group is
predominantly composed of elderly individuals with Parkinson’s
disease, the model may learn to classify based on age rather than
the intended target, which is Parkinson’s disease.

IV. RADAR DATA REPRESENTATIONS AND THEIR

APPLICATIONS IN BIOMEDICAL MONITORING USING

MACHINE LEARNING

Raw radar data are complex time series, which are often
multidimensional. As mentioned in Section II, even compar-
atively simple monostatic radar setups in which the sender and
transmitter are co-located, such as FMCW or pulse-Doppler,
already yield a three-dimensional radar data cube that consists
of the dimensions: frames, range, and Doppler (see Fig. 3). For
pure CW radars, a range determination is not possible due to
the lack of signal bandwidth. However, the Doppler dimension
– i.e., the occurring velocity components – can still be measured
excellently. In the case of a MIMO setup, which leads to ad-
ditional spatial information, the dimensions of the radar cube
rise to 4D, multiplied by the number of antennas. By choosing
the antenna position in two orthogonal spatial directions, the
antenna dimension can be further expanded by two dimensions
to facilitate the processing procedure. The radar data cube then
results in a 5D hypercube.

A. Choice of Radar Data Representation as ML Input

While raw radar data can be directly used as an input for ML
models, further signal processing steps can also be applied to
extract relevant information from the raw data. Feeding raw radar
data directly into an ML network may be quite challenging, as it
can lead to a very large and complex network. One reason for this
is the high dimensionality of the radar data, which leads to many
input parameters and, therefore, more weights. If the raw data
also contains complicated patterns that the network has to learn,
it may need more parameters to represent these relationships. On
the one hand, those large and complex network architectures may

be more powerful, as they contain all the present information. On
the other hand, they are more susceptible to training errors, may
not converge properly, and may lead to unacceptable training
times. For that reason, often, only a moderate fraction of the
radar cube is fed directly into ML networks as, for instance, 1D
or 2D data. While the reduction of the data dimension is a valid
method, this can also lead to the loss of relevant information.
If, for instance, only the velocity components are analyzed
over time and the spatial dimensions are combined into one
dimension, a local separation of the occurring signals can no
longer be achieved. Thus, it is not possible anymore to detect in
which area of the considered scenery the velocity components
are present and only the ensemble of all components is available.
If the location or position of the signal to be measured is already
known before the measurement or if the radar’s field of view
is restricted accordingly in advance, it is largely sufficient to
use the strongest occurring measurement signal. However, it
becomes much more difficult if velocity components have to
be additionally resolved spatially. However, depending on the
use case, it can be advantageous to feed raw radar data directly
into an ML framework. In the following section, we summarize
different approaches that use raw radar data based on previous
work.

B. Applications Using Raw Radar Data

Several examples in the literature have extracted small body
movements from raw radar data to predict vital signs, such as
respiration and heart sounds, which are mostly recorded with the
radar phase profile over time. For instance, Khan et al. [88] used
raw radar data for the contactless monitoring of photoplethys-
mography (PPG) by measuring chest and heart movements.
To achieve this, they used a self-attention DL network with
an encoder–decoder structure to generate a prediction for the
PPG waveform. Shi et al. [67] predicted heart rate variability
(HRV) by feeding raw radar data into a bidirectional LSTM
network. In addition, the phase was evaluated to record small
body vibrations.

The extraction of vital signs was also utilized in other appli-
cations. For instance, several approaches for classifying sleep
phases from raw radar data (also referred to as “sleep staging”)
were presented [48], [53], [68]. In this work, biosignals were
extracted from radar sensors placed next to the bed, and different
ML and DL algorithms were applied to predict individual sleep
phases. In a different application, Ha et al. [52] proposed a
contactless stress monitoring setup using an FMCW radar. HRV,
respiration, and expert movement features were extracted from
the raw radar signal and used to predict the stress level using a
random forest-based approach.

A model to classify sleep postures using different DL models
is presented by Lai et al. They used IR-UWB radar data from
three perspectives, and resized the data to images after several
pre-processing and denoising steps.They found that the vision
transformer in combination with the radars from side and top
reached the best performance [78].
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A fall detection application is presented by Hanifi et al. [50]
where time- and frequency-domain features computed from
raw radar data were fed to different traditional ML models.
Another application using radar technology was proposed by
He et al. [49], in which the blood oxygen levels of participants
were estimated from radar-based respiration measurement using
a bidirectional transformer and U-Net approach. The detection
and assessment of Parkinson’s disease was presented by Yang
et al. [89]. Here, a customized DL network architecture was used
to extract nocturnal breathing signals from radar data.

The aforementioned multidimensional comprehensiveness of
raw radar data makes it difficult to interpret it all at once, even for
radar experts. Therefore, other representations of radar data are
often preferred, such as 2D sectional images or heatmaps. The
representations have the advantage of being better understand-
able and interpretable representations of the multidimensional
radar cube and allow one to gain more information about the
scenery. In the past, certain representations have been shown to
be more suitable than others for extracting the target information.
Therefore, it is necessary to choose the right representation
carefully. In the following sections, the most prevalently used
sectional images are presented. In addition, we introduce exam-
ples from the literature that apply appropriate ML algorithms to
respective sectional images.

C. Applications Using Doppler Spectrograms

Doppler spectrograms (see Table 2) are widely used for mo-
tion recognition, as radars usually provide an excellent velocity
resolution, and even a relatively simple monostatic CW radar is
sufficient to acquire this information. Specific motions result in
unique so-called micro-Doppler signatures, which are also ex-
plained in Table 2. An exemplary Doppler spectrogram is given
in Fig. 3(a). Previous work has used Doppler spectrograms for
analyzing different types of movements, from large movements
or gestures of people [54], [64], [75], [90], [91] to their smaller
movements, such as chest movements induced by respiration
and heart beats [92], [93].

Furthermore, several methods have been proposed that use
Doppler spectrograms as input data for ML algorithms. In fact,
Dey et al. [75] converted the magnitude of time-range plots
and Doppler spectrograms to RGB images and applied a vision
transformer to perform fall classification. Huan et al. extracted
features from the Micro-doppler map via feature pyramid ex-
traction and used a a lightweight hybrid vision transformer for
classification of various daily life tasks and fall detection [76].
Jokanovic et al. [64] converted the Doppler spectrogram to a
gray-scale image and applied stacked autoencoders for feature
extraction. Based on these features, they classified fall events
using softmax regression. In contrast, He et al. [49] manually
extracted different features from time-range and Doppler spec-
trograms and compared different state-of-the-art ML classifiers
to detect fall events. Additionally, Seifert et al. [46] extracted fea-
tures from Doppler spectrograms based on a sum-of-harmonics
analysis and used a nearest neighbor model to classify gait ab-
normalities. In [92], Yamamoto et al. used Doppler spectrograms

as the input for a convolutional LSTM network to detect heart
beats.

D. Applications Using Range – Doppler Images

Range – Doppler images simultaneously provide information
about the distance and the velocity of the radar targets. Similar to
Doppler spectrograms, only a monostatic setup is necessary to
create a range – Doppler image; however, here, the acquisition
of additional range information is required. Range – Doppler
images do not inherently comprise time dependency and angular
information about the target toward the radar. Range – Doppler
images are widely used for scene interpretation – e.g., in auto-
motive radar or object and person detection since the resolution
of range – Doppler images is usually higher compared to angle
resolution, even for low-cost radars. An example of a range –
Doppler image is depicted in Fig. 3(b).

Bhavanasi et al. [55] used range – Doppler images as an input
for a CNN-based network structure together with a softmax
classifier to perform patient activity recognition in a hospital
environment. Time-integrated range – Doppler images were
used in Erol et al.’s [62] study for human motion classification.
From gray-level representations, they extracted 13 different sta-
tistical features and performed the classification using a support
vector machine (SVM). Zhao et al. used range – Doppler images
measured by five UWB radar systems to classify nine different
activities in arbitrary directions. Therefore, they applied a vision
transformer and found initial results below CNN algorithms.
However, they indicated that vision transformers might gener-
alize better on unseen individuals [77].

E. Applications Using Range – Angle Images and
Spatial Heatmaps

If several antennas (e.g., MIMO arrays) are used instead of
just one, the spatial resolution of the scene is also possible. In
general, spatial resolution improves with an increasing aperture
size, especially with the number of antennas used. To generate
spatially resolved images from raw radar data, the dimensions
range and antennas are required because the change of the phase
over the antennas needs to be evaluated. The resulting data is
usually angle dependent and provides information about the
angular position between the radar and the radar echo. There-
fore, 2D sectional images can be created using the dimensions
range and angle (e.g., azimuth and/or elevation; see Fig. 1),
as depicted in Fig. 3(d). The images can be converted into
spatial heatmaps in Cartesian coordinates, providing the target’s
position in x, y, and z coordinates. Range – angle images or
heatmaps do not inherently comprise information about time
dependency and velocity; they are primarily employed to obtain
the position of radar echoes in the room. For instance, Yue
et al. [81] used range – angle images from radar technology to
estimate human poses. A combination of range – Doppler, range
– angle, and Doppler-angle images was used in [94] to automat-
ically detect activities of daily living within a palliative care
environment.
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V. STUDY PLANNING AND DATA ACQUISITION

A planned data acquisition needs to be tailored to the specific
motion and ML task. Different radar types have advantages
and disadvantages (as listed in Table I). For example, in the
analysis of microscopic motion, CW radars are sufficient, as
they make the continuous tracking of small distance changes
possible, and the small system bandwidth allows for a higher
signal-to-noise ratio (SNR) compared to broadband systems. On
the other hand, capturing the range information of macroscopic
motion usually requires different signal shapes (e.g., impulse
Doppler, FMCW, or SFCW). To also retrieve angle information,
multiple antennas need to be used. When multiple body parts
are involved in the motion, range and angle resolution help to
distinguish between the different targets. However, in TDM-
MIMO radars, the maximum frame rate is inversely proportional
to the number of transmit antennas, which restricts unambiguous
Doppler (velocity) measurements and, therefore, the types of
movement that can be captured.

The data acquisition procedure is also influenced by the
choice of the ML model, as the amount of the required training
data strongly depends on the number of trainable parameters
within the model. Therefore, classical ML typically requires less
training data than DL [95]. Furthermore, even with sufficient
data, DL does not necessarily outperform classical ML [96].

Most previous radar – ML studies focused on supervised
learning, necessitating labeled training data. Whenever feasible,
it is advisable to gather synchronized ground truth reference
data. This facilitates the potential for automatic labeling but
can also serve as a basis for manual labeling. For instance,
in a gait analysis, the participants were given the task of per-
forming specific movement patterns [47], [54], [58], [65]. In
contrast, sleep stages were labeled based on gold standard PSG
recordings, either by experts [60], [68] or through software [48].
Further, precise time synchronization between radar sensors and
reference systems needs to be adequately addressed. Long-term
synchronization can be achieved by recording a synchronization
signal in both the gold standard and target signal [67] or by
implementing a synchronization invariant loss function [88].
If the ML task allows it, rough synchronization – e.g., using
time-stamps – can be sufficient [60].

The recording of a high amount of training data is not nec-
essary in the case of unsupervised or self-supervised ML tasks.
By utilizing deep contrastive learning, Chen et al. [97] dealt
with the task of separating radar responses caused by vital signs
from signal components generated by macroscopic motions.
However, it is worth noting that a significant portion of published
work relies on supervised learning, emphasizing the critical role
of generating high-quality training data.

The generation of sufficient training data can be challenging.
Primarily, this stems from the tasks associated with labeling and
the need to ensure a data set that represents the complexities
and diverse scenarios of real-world biomedical conditions as
best as possible. In this regard, radar simulations are a vital
approach, as they allow automatic labeling, while the variability
within the simulation model enhances the diversity of the gen-
erated data [94], [98], [99]. Furthermore, with this approach,

unavailable radar hardware can be simulated, aiding in the
identification of the most suitable radar sensor for the respective
biomedical application.

VI. ETHICAL ANALYSIS OF MACHINE LEARNING-ENABLED

RADAR-BASED BIOMEDICAL MONITORING

While numerous ethical papers are available that have ex-
amined the use of ML for biomedical monitoring, there is
still a scarcity of ethical investigations into radar-based ML
applications for monitoring. The ethics of these technologies
are currently facing numerous methodological and application-
related questions. As clear as the basic line seems to be that
this emerging technology should be used in such a way that
it serves people, it quickly becomes unclear what this can
mean in concrete terms. Central to this is the development
of ethical criteria that are both context sensitive and clearly
evaluable.

So far, the ethics of ML have been very much focused on
data processing and data use [112], [113]. There has not been
an equal focus on the methods and modes of data acquisition.
However, when employing radar-based systems for biomedical
monitoring, the new forms of data acquisition pose important
ethical questions. This is why our ethical analysis focuses in
particular on the new data acquisition procedures. On the one
hand, forms of data collection that involve physical contact
with the body of the respected person can lead to uncomfort-
able experiences. Radar-based applications, on the other hand,
present a form of data collection without physical contact. Some
scholars, such as Fioranelli and Le Kernec [114], highlight
the enormous advantages that such systems may have to not
compromise the bodily integrity of the patients: “The advantage
of radar sensing comes from its contactless and non-intrusive
nature. The subjects do not need to wear or carry or interact
with devices, which can be an advantage for users’ compliance,
especially for those affected by cognitive impairments. Further-
more, radar sensors do not generate plain images or videos of
people and their environments, which can be an advantage for
users’ acceptance in term of privacy.” [114]. At the same time,
however, the question arises whether radar-based applications
are really less impairing if they measure in a contactless and,
in a sense, invisible manner, which makes transparency about
the measurement and the time of measurement an additional
challenge.

We conducted a narrative literature review [115] to exam-
ine the ethical criteria discussed in the literature concerning
radar-based systems. We utilized the ethics principles of AI
discussed in Jobin et al.’s [100] study and assessed which
of these are discussed with respect to radar-based systems.
We developed the following search strategy: intitle:radar AND
intitle:biomedical AND [ethical principle]. We used the term
”biomedical” to filter the results with regard to those radar-based
systems that are used for data collection in biomedicine and
to rule out papers on radar systems that have applications in
non-medical and non-human industrial contexts (e.g., weather
radars). Jobin et al. [100] identified a total of 11 different ethical
principles. As ethical principles are not always referred to by the
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TABLE V
RESULTS OF THE SEARCH FOR THE EMPLOYMENT OF ETHICAL PRINCIPLES ACCORDING TO [100] IN THE CONTEXT OF RADAR-BASED SYSTEMS FOR

BIOMEDICAL MONITORING

same phrase, we also included their synonyms defined by Jobin
et al. [100]. For instance, in the case of the ethical principle of
transparency, the search strategy looks as follows: intitle:radar
AND intitle:biomedical AND (transparency OR explainability
OR explicability OR understandability OR interpretability OR
communication OR disclosure OR showing). If the scope of the
terms was too large because verb forms were also included or
the synonyms of the ethical principle contained more than one
word, inverted commas were used (e.g., for “communication” or
“show”). The database search was conducted on Google Scholar
on September 29–30, 2023.

The results of our narrative literature search are summarized in
Table V. In total, we found n = 54 papers that contained at least
one of the ethical principles mentioned by Jobin et al. [100] and
radar-based biomedical monitoring. Papers that matched more
than one ethical principle are listed in each matching category.

In the brief analysis along the principles of the ethics of AI
identified by Jobin et al. [100], it became apparent that central
ethical questions concerning the method of data collection have,
so far, played an underreported role or none at all. It is surprising,
however, that questions of trust, dignity, and solidarity have so
far hardly been discussed concerning radar-based systems. The
fact that trust, dignity, and solidarity only occur once or not at
all in relation to radar-based systems in the biomedical field is
noteworthy. For the principle of solidarity, a possible explanation
might be that this aspect has, so far, been a rather less discussed
topic of ethics with regard to AI/ML ethics [116]. Concerning
the principle of dignity, which is often associated with human
rights, Jobin et al. also note that it appears very rarely in the
guidelines analyzed and has not yet been defined [100]. In this
respect, the absence of the principle of dignity may also be due to
the fact that it has so far played a subordinate role as a principle
in the overall discourse on AI. It could certainly be argued here
that the emphasis on dignity as an essential principle can be seen
very differently in different cultures and countries.

Although the principles of transparency, freedom and auton-
omy, and sustainability are mentioned more often, they lack
ethical reflection and argumentation. With regard to the term
transparency, there are 26 papers on the term communication
and nine papers on the term showing. In both cases, the terms
are used very unspecifically either as verb forms or to describe
technical facts. Only Paolinis works mention the aim to “enable
tridimensional localization of tagged people [...] in the most
transparent and non-invasive way” [106], [117]. The same ap-
plies for the search for freedom and autonomy. The terms are
used to describe technical specifications, e.g., “m-1 degrees of
freedom” [118]. With regard to the principle of sustainability,
the term energy is mentioned in relation to energy sources and
environment refers to the surroundings of the data collection
(e.g., a sleep laboratory or a realistic environment). The terms
are used to describe technical matters and not to reflect issues of
sustainability from an (environment-related) ethical perspective.

A different picture emerges in the ethical principles justice
and fairness, non-maleficence, privacy, and beneficence, starting
with beneficence: In addition to technical benefits, the results
analyzed also mention medical benefits [108], [109], [119],
economic benefits [102], regulatory benefits [111], and social-
ethical benefits. The latter arise, for instance, from avoiding
privacy issues [102], [119], addressing social needs in health-
care [108], and enabling outdoor or home monitoring [102]. Na-
har describes medical benefits “[...] in terms of convenience and
accuracy in diagnosis, treatment, and detection of emergency sit-
uations in home and clinical environments” [105]. In the context
of non-maleficence, prevention and primary care in clinical and
home environments are mentioned as other important benefits
of radar technologies [104], [105]. This analysis is confirmed in
the analysis of the categories of clinical relevance presented in
the following chapter (e.g., avoiding the “lab gait”, specifying
measurements, and enabling the improvement of emergency
detection in the home environment, among others).
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Radar technology is often promoted as being less privacy-
invasive than common methods of vital sign measurements.
While some authors do not see any breach of privacy in the
use of radar systems at all [102], [119], radar-based monitoring
is often compared to camera- or video-based devices, for which
privacy concerns are raised [105], [108], [110], [119], [120].
Others highlight the possibility of reducing the invasion of
privacy [101] or naming the preservation of privacy as one of its
unique advantages [107]. From an ethical point of view, it has to
be considered that privacy encompasses more dimensions than
the debate about video recording suggests (e.g., the question of
consent and control over and security of health data).

With regard to the principle of justice and fairness, the need
for diverse datasets [102] and the possibility of less detection
bias due to contactless measures [101] appear in the literature.
In addition, the possibility of having access to one’s own data
at any time is described as a technical challenge [102]. The
analysis shows that many important ethical principles have not
yet been explored in relation to radar-based ML applications for
biomedical monitoring, even though the technology promises
benefits in numerous areas of clinical application.

VII. CATEGORIES OF CLINICAL RELEVANCE

The potential of combining contactless radar measurements
with ML applications to extract meaningful information opens
numerous applications that promise to enhance clinical practices
and improve patients’ health condition outcomes. The following
section introduces some application examples.

A. Sleep Analysis

Poor sleep quality is directly associated with various physical
and physiological diseases. For this reason, accurate sleep mon-
itoring is essential for the prevention, diagnosis, and treatment
of such [121]. Currently, the gold standard for accurate sleep
analysis is PSG which is usually conducted in a sleep labora-
tory. During an overnight PSG measurement, various biosignals
such as electroencephalography, electrocardiography (ECG),
and electromyography are recorded, allowing a reliable diag-
nosis of sleep disorders. However, longitudinal measurements
are impractical since PSG measurements are cost and resource
intensive. Furthermore, the unfamiliar and intrusive laboratory
environment can affect the sleep quality of patients, causing un-
realistic sleep patterns [122]. Radar-based sleep analysis offers
an unobtrusive alternative to enable longitudinal sleep analysis.
Several researchers have investigated the estimation of sleep
stages using different types of radar. They all extract body
movements and vital signs from raw radar data. While Kwon
et al. [68] fed data from a 7.3GHz UWB radar into an attention-
based LSTM, a special form of a RNN meant to predict sleep
stages, Rahman et al. [53] and Hong et al. [48] used CW radar
sensors and compared the prediction performance of different
conventional ML algorithms such as naive Bayes, logistic re-
gression, SVM, random forest, bagged trees, and subspace kNN
networks. Another option is to diagnose and analyze the course
of diseases. For instance, Yang et al. predicted the diagnosis
of Parkinson’s disease from longitudinally recorded nocturnal

Fig. 8. Setup for the extraction of biomechanical parameters in gait
analysis using Doppler radar. The motion capture cameras offer the
ground truth data of the movements. This figure is adopted from [123].

breathing patterns extracted from an FMCW radar and predicted
the associated Hoehn and Yahr scale, which determines the
severity of Parkinson’s disease [89].

B. Gait and Motion Analysis

Gait can be considered as the sixth vital sign [124]. In a
clinical setting, gait analysis is often performed using optical
motion capture, in which markers are attached to a participant’s
bony landmarks(i.e., where the bone locations are palpable on
the skin – e.g., the iliac crest). Then, movement is recorded by
infrared cameras, often in combination with force plates. These
experiments are time intensive, as both the marker placement and
labeling are manual processes. Furthermore, minimal clothing
and the presence of markers can alter gait behavior [123].
Radar–ML-based gait analysis has the potential to speed up the
execution of experiments by eliminating tedious preparation and
post-processing and by allowing clothes to be kept on, ultimately
allowing more natural movement to be captured. Fig. 8 outlines
a typical measurement setup to evaluate human gait parameters
extracted from radar data against ground truth data – e.g., those
acquired from a marker-based motion capture system.

In radar-based motion analysis, most studies have focused
on detecting different healthy or affected gait modes. Usually,
single antenna (FM)CW radars were set up in the sagittal
plane. The resulting range – Doppler maps or spectrograms
were then classified as healthy or impaired gait using classical
ML [47], [58] or DL [54], [65] methods. To our knowledge,
spatio-temporal gait analysis with radar technology has only
been performed with heuristic algorithms so far [123], [125].

Moreover, an accurate and reliable full-body 3D pose estima-
tion could be used as a direct replacement of optical motion
capture. Several publications have proposed pose-estimation
algorithms applying DL models on MIMO-generated spatial
heatmaps [126], [127], [128], [129], [130]. However, the pro-
posed works still need to be validated for their applicability in
gait analysis.

C. Continuous Biomedical Monitoring for
Emergency Detection

Continuous patient monitoring is standard in hospital and
homecare environments but requires significant infrastructure.
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While in emergency medical scenarios, the addition of a wired
ECG presents minimal complications due to the presence of
other critical devices, continuous monitoring can be intrusive
for patients admitted to regular wards. Elderly care often in-
volves wearables or emergency buttons, necessitating patient
action during emergencies. Especially for these applications,
radar-based methods can pose significant advantages. Because
of radar-based methods’ inherently low spatial resolution, they
bypass traditional privacy concerns, making them appropriate
for areas with increased privacy requirements. Notably, FMCW
radar combined with ML has already demonstrated efficacy in
fall detection, a crucial component in home care [131], [132].
Beyond fall detection, the radar enables the detection and clas-
sification of movements and activity. Fan et al. demonstrated
daily activity tracking for continuous monitoring at home using
FMCW radar in conjunction with a CNN [133]. Furthermore,
Braeunig et al. combined a CNN with an LSTM with data from
an FMCW MIMO radar system to recognize different activities
in a palliative care context [94]. The possibility of capturing
vital signs enables many more applications. Patients can be
continuously monitored in their beds without attaching devices
to their bodies. Wen et al. showcase the continuous monitoring
of infants for apnea to prevent possible hypoxia using CW
radar [134], demonstrating the effectiveness of this technology.
By employing ML techniques, the automatic detection of crit-
ical medical conditions and faster access to medical help are
achievable.

D. Stress and Mental Health

Work-related chronic stress is considered to be one of the
most challenging–and growing–occupational safety and health
concerns [135]. While the human body is capable of adapting to
an acute stress situation by activating and deactivating biological
stress pathways, repeated acute stress exposure can lead to the
dysregulation of these pathways [136]. If not prevented, this can
ultimately lead to chronic stress and its known negative effects
on mental health, such as post-traumatic stress disorder, burnout,
or depression [137]. Thus, it is crucial to better understand
the transition from acute to chronic stress, which can help to
find suitable interventions to prevent not only our biological
stress pathways from dysregulating but, consequently, also the
progression of stress-related mental health diseases [138].

In addition, acute stress assessment is typically performed
using laboratory protocols (e.g., using the Trier Social Stress
Test [139]) that aim to systematically and repeatedly induce
acute stress, while established markers are collected to quan-
tify the biopsychological stress response. Amongst others, this
involves the collection of inflammatory or neuroendocrine mark-
ers from blood or saliva [140], [141], electrophysiological mark-
ers from measuring ECG or electrodermal activity (EDA) [142],
as well as psychometric markers from self-reports and ques-
tionnaires. However, this “traditional” approach is increasingly
reaching its limits since the procedures are often invasive and
laboratory-based. Thus, the measurement frequencies can only
be scaled to a limited extent and can hardly be transferred outside
the laboratory [143]. For this reason, there is a direct need to

Fig. 9. Setup for a stress level classification using radar by measuring
stress-related biometrics. This figure is adopted from [52].

develop novel digital biomarkers that can be employed outside
the laboratory and can be used as an extension of established
laboratory biomarkers.

Radar-based biomedical monitoring techniques have the po-
tential to fill the gap in stress and mental health research by
enabling the acquisition of a more holistic picture of human be-
havior during different psychological states, particularly outside
the laboratory. As a first step, Shi et al. [67] demonstrated the
feasibility of radar-based sensing during acute stress scenarios in
the laboratory by proposing a contactless heart rate (variability)
assessment approach using a CW sensor and an LSTM-based
ML model. Broader approaches for end-to-end stress detection
using FMCW radar have been proposed, for instance, by Ha
et al. [52], Liang et al. [144], and Muhammad et al. [145].
Fig. 9 outline the scheme of a stress level classification using
radar by measuring stress-related biometrics. In addition, Han
et al. [146] showed that different mental states can be predicted
by using a combination of a UWB radar and a kNN-based
ML algorithm. While these approaches are a promising step
toward the contactless assessment of stress and mental health in
general, there is still a considerable amount of research required,
especially regarding the possibility of not only detecting differ-
ent psychological states, but also quantifying the magnitude of
underlying physiological responses.

VIII. DISCUSSION

The integration of radar technology with ML applications
in biomedical monitoring scenarios offers high potential: Due
to the contactless wave-based character of radar signals, an
unperceived monitoring of patients’ health conditions is enabled.
Therefore, it provides an opportunity to continuously collect
real-world data without affecting daily routines. In this way, data
quality is enhanced, and continuous data acquisition is made
feasible. Compared to hospital settings, where patients often
tend to dissimulate and sugarcoat the actual disease status, a
more realistic health condition can be captured. Furthermore,
hospital assessments are often only performed several times a
year at discrete points in time, which makes it more difficult
to accurately track disease progression. Moreover, as highly
sophisticated radar sensors are becoming more and more af-
fordable, they can be applied in a more widespread manner.

However, radar sensors are not yet part of medical experts’
routine diagnostics, as the technology has not been established
in the healthcare sector so far. Until several years ago, radar
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sensors were comparably expensive with lower accuracy and
reliability in data collection compared to gold-standard tech-
niques. Recent advances in research and development [147],
[148], [149] enabled radar sensors to be performant and more
affordable, making them a promising alternative to conventional
biomedical monitoring systems. The comprehensive data from
the radar cube, on the one hand, provides an accurate and precise
data set including information on the position, speed, and direc-
tion of movement all at once. On the other hand, the complex
and multidimensional data structure poses a challenge to the
interpretation and extraction of meaningful information without
a solid foundation in an optimal and reliable pre-processing
methodology. ML and DL algorithms can help in analyzing
radar data to support clinical decision-making. However, this
has not been investigated sufficiently so far due to the lack of
large and diverse datasets that are necessary to develop models
that are generalizable across the whole population. The creation
of diverse datasets is essential to tackle challenges such as gender
and race bias in the application of radar-based ML applica-
tions [150]. Furthermore, the collection of large-scale datasets
is challenging due to the characteristics of radar signals. Due
to signal complexity, only labelers with expert radar knowledge
are able to annotate such data, resulting in small datasets that
are still expensive to collect.

Against the results of the analysis of the 54 ethics papers,
the technological advances described above are changing data
acquisition possibilities in various healthcare settings. From an
ethical perspective, it will be crucial to address the challenges
related to the use of radar-based ML applications. The analysis
of the various ethical principles is fundamental to this. Despite
the surprising frequency of some of the principles, notably
beneficence, justice and fairness, non-maleficience, and privacy,
they are mostly treated only superficially or appear due to the
technical connotation of the terms. As far as the principle of
privacy is concerned, new opportunities might arise if new
methods of analyzing radar data allowed for data anonymization.

There is another crucial point for the future use of radar-based
ML applications: the debate about non-invasive monitoring
technologies. Their consideration is promising because radar
sensors, in combination with ML technology, can be evaluated as
not only a technical but also a socio-technical system. Following
Zuboff [151], this is understood here to mean technical tools
(capacities) to comprehensively surveil data subjects–mostly,
but not only, for commercial interests. The combination of radar
and ML can, in some cases, diminish the advantages of privacy
that we found in the ethical analysis. This is the case when ML
is used to draw conclusions about the individual person from the
collected anonymous radar data. Subsequently, it can be assessed
as an analogy to other digital and AI technical systems that do
not impair bodily integrity but raise ethical concerns.

Nevertheless, the potential for applying radar and ML in
the medical field is tremendous, and the research field is still
wide open for more: Different sensor technologies can be fused
to combine the respective advantages of sensor technologies,
further improving future medical treatment. For instance, the
highly accurate velocity estimation of radar sensors can be
exploited and combined with the excellent lateral resolution of

RGB images [152]. Furthermore, while well-established and
very powerful end-to-end pipelines for RGB images already
exist, such pipelines are still lacking for radar data, although
this offers a huge potential.

IX. CONCLUSION

In this paper, we presented a review combined with a tutorial
overview of radar technology and ML for biomedical monitoring
applications. The characteristics of radar enable these sensors
to become a promising technology in future medical care. It
offers considerable advantages compared to currently utilized
gold-standard methods such as the possibility of directly assess-
ing microscopic and macroscopic motion paired with reduced
privacy concerns. In particular, the fusion of radar data with
well-designed ML algorithms enhances the interpretability of
complex radar data and augments its discriminative capabilities.
By using the combined power of radar data and ML algorithms,
not only the diagnosis can be improved, but also the disease
progress can be continuously tracked. In upcoming years, tech-
nological advances in the field of radar and ML might drastically
improve resolution, data acquisition, and data processing, which
result in further improvements in patients’ diagnosis and treat-
ment. Of course, there are still technical and ethical questions
addressed in this paper that need to be considered in the future.
For this reason, this paper outlines the promising features and
capabilities of radar and ML in relation to medical applications
using numerous examples and encourages future work on this
exciting topic.
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