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Abstract

Coping with distracting inputs during goal-directed behavior is a common challenge,

especially when stopping ongoing responses. The neural basis for this remains debated.

Our study explores this using a conflict-modulation Stop Signal task, integrating group

independent component analysis (group-ICA), multivariate pattern analysis (MVPA),

and EEG source localization analysis. Consistent with previous findings, we show that

stopping performance is better in congruent (nonconflicting) trials than in incongruent

(conflicting) trials. Conflict effects in incongruent trials compromise stopping more due

to the need for the reconfiguration of stimulus–response (S–R) mappings. These cogni-

tive dynamics are reflected by four independent neural activity patterns (ICA), each

coding representational content (MVPA). It is shown that each component was equally

important in predicting behavioral outcomes. The data support an emerging idea that

perception-action integration in action-stopping involves multiple independent neural

activity patterns. One pattern relates to the precuneus (BA 7) and is involved in atten-

tion and early S–R processes. Of note, three other independent neural activity patterns

were associated with the insular cortex (BA13) in distinct time windows. These pat-

terns reflect a role in early attentional selection but also show the reiterated processing

of representational content relevant for stopping in different S–R mapping contexts.

Moreover, the insular cortex's role in automatic versus complex response selection in

relation to stopping processes is shown. Overall, the insular cortex is depicted as a

brain hub, crucial for response selection and cancellation across both straightforward

(automatic) and complex (conditional) S–R mappings, providing a neural basis for gen-

eral cognitive accounts on action control.
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1 | INTRODUCTION

Fundamental in everyday life is the ability to stop or cancel an inap-

propriate response when this can lead to an improper outcome.

Several factors can influence the correct implementation of inhibitory

control functions (Diamond, 2013; Friedman & Miyake, 2004). A criti-

cal modulating factor during response inhibition is the presence of dis-

tracting and conflicting information affecting stimulus–response (S–R)

Received: 18 August 2023 Revised: 2 February 2024 Accepted: 18 February 2024

DOI: 10.1002/hbm.26643

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2024;45:e26643. wileyonlinelibrary.com/journal/hbm 1 of 14

https://doi.org/10.1002/hbm.26643

https://orcid.org/0000-0002-2989-9561
mailto:christian.beste@uniklinikum-dresden.de
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm
https://doi.org/10.1002/hbm.26643


associations and the study of distractor interference on response inhi-

bition functions has seen extensive investigation in the cognitive field

(Chambers et al., 2007; Eggert et al., 2022; Mückschel et al., 2016;

Ridderinkhof et al., 1999; Verbruggen et al., 2004; Verbruggen

et al., 2005; Verbruggen et al., 2014; Verbruggen et al., 2019). Special

attention has been given to the role of distractors or interfering infor-

mation because the ability to cope with distracting inputs is a frequent

complication during goal-directed behavior (Hannah & Aron, 2021).

However, our understanding of how S–R mapping processes modu-

late response inhibition and the neurophysiological dynamic and the

functional anatomical structures involved is still incomplete. A means

to study the different processes of inhibitory control (Bari &

Robbins, 2013) is to examine response inhibition via experimental

tasks in which participants are taught to respond to frequent go stim-

uli but are occasionally presented with stimuli that require them to

withhold the prepotent response (i.e., proactive inhibition) or to “can-
cel” the already initiated response process (i.e., reactive inhibition)

(Aron, 2011; Verbruggen et al., 2014). While proactive inhibition can

be studied with the Go/Nogo task, reactive inhibition can be studied

using the Stop Signal task (Logan et al., 1984; Verbruggen

et al., 2019). The Stop Signal task is often designed as a choice reac-

tion task with frequent Go trials by assigning a given stimulus

(e.g., letters A and B presented visually) to specific response effectors

(e.g., left and right index finger). The task's reactive inhibition compo-

nent consists of presenting a so-called “Stop Signal” (often a visual or

auditory stimulus) with a relatively low frequency after the presenta-

tion of the Go stimuli. Participants are instructed to inhibit their initi-

ated/ongoing response when the stop signal occurs. Thus, this task is

designed to investigate the ability of the participants to interrupt their

response by estimating the stop signal reaction time (SSRT) and mea-

suring the time necessary to successfully cancel/inhibit the ongoing

response (Verbruggen et al., 2019). Shorter SSRTs are associated with

better action cancellation performance.

Presenting distracting information during a Stop Signal task

increases SSRTs (Chambers et al., 2007; Eggert et al., 2022;

Ridderinkhof et al., 1999; Verbruggen et al., 2005; Verbruggen

et al., 2014) and this pattern has been found in various experiments

applying Stroop stimuli (Ridderinkhof et al., 1999; Verbruggen et al.,

2004), Flanker stimuli (Chambers et al., 2007; Verbruggen et al., 2004)

and perceptual load manipulations (Verbruggen et al., 2014). However,

examining interfering effects during response cancellation presents

several challenges due to conceptual problems associated with experi-

mental procedures frequently used to induce interferences

(Hommel, 2011). However, one conceptually more stringent investiga-

tion approach is to implement inhibitory control measures (or stopping)

in Simon tasks (Chmielewski & Beste, 2017; Eggert et al., 2023). Unlike

other tasks (e.g., Stroop or Flanker tasks), a Simon task does not con-

found stimulus and response-related processes during conflict monitor-

ing (Hommel, 2011). In the Simon task, participants respond (left or

right) based on a stimulus (e.g., letter “A” or “B”) shown on one side of

the screen. Spatial stimuli enhance performance when the response

matches the stimulus location (congruent condition) but impair it when

mismatched (incongruent condition). Therefore, the combination of the

Simon and Signal Stop task results in four response conditions: congru-

ent and incongruent Go trials and congruent and incongruent Stop trials.

Conceptually, the dual-route model (De Jong et al., 1994; Keye

et al., 2013) has proposed that response selection in congruent Simon

task trials operates via the direct route, requiring little computations dur-

ing response selection. In incongruent trials, however, a conflict is

induced because processing via the direct route has to be controlled by

an indirect route to avoid erroneous responding (Keye et al., 2013),

thereby enabling a reconfiguration of S–R mappings. The reconfigura-

tion of S–R mappings has also been stressed by the “Theory of Event

Coding (TEC)” on the Simon task (Hommel, 2011). According to TEC,

the so-called event files contain representations of how a given stimulus

input is mapped onto a motor output. In contrast to the process in con-

gruent trials, in incongruent trials, the information regarding the relevant

stimulus dimension (i.e., letter identity) has to be separated from an irrel-

evant stimulus dimension (i.e., spatial position), which has a strong

impact on an associated motor command. Therefore, the information

represented in the event file has to be reconfigured in incongruent

Simon task trials. As shown before, incongruency in a Simon task affects

stopping performance leading to longer SSRTs in congruent than in

incongruent trials (Eggert et al., 2023; Verbruggen et al., 2005). Thus, a

necessary reconfiguration of the event file's representational content

requires reactive inhibitory control.

Several studies have also examined the neurophysiological

underpinnings of binding and reconfiguration of event file coding

during response selection (Opitz et al., 2020; Petruo et al., 2016;

Takacs et al., 2021; Takacs, Bluschke, et al., 2020; Takacs,

Mückschel, et al., 2020; Takacs, Zink, et al., 2020) and response inhi-

bition (Eggert et al., 2023; Gholamipourbarogh et al., 2022;

Gholamipourbarogh et al., 2023; Prochnow et al., 2021). An innova-

tive method to precisely capture the temporal profiles of neurophys-

iological correlates of event file dynamics is to apply temporal signal

decomposition (i.e., residue iteration decomposition [RIDE]) to EEG

data (Ouyang et al., 2015; Ouyang et al., 2017). RIDE decomposes

EEG signals into meaningful clusters of activity with distinct func-

tional relevance (Eggert et al., 2023; Opitz et al., 2020; Petruo

et al., 2016; Takacs, Mückschel, et al., 2020; Takacs, Bluschke,

et al., 2020). Using RIDE, we recently showed that neural activity in

a cluster thought to represent event file reconfiguration processes

(i.e., C-cluster), was modulated by the level of interference during

reaction inhibition processes (Eggert et al., 2023). Critically, previous

findings showed how aspects of event file processing are temporally

coded in distinct neurophysiological signals during reactive inhibition

processes (Eggert et al., 2023), but did not investigate the strength

and temporal stability of event file representations and their spatial

distribution in distinct multiple cortical regions. This remains a criti-

cal issue considering that event file dynamics have been conceptual-

ized as network dynamics with concomitant processing in multiple

cortical regions (Hommel, 2004), a notion which has been supported

by neurophysiological evidence (Eggert et al., 2022; Takacs,

Mückschel, et al., 2020; Takacs, Zink, et al., 2020). In particular, it has

been shown that event file coding involves specific (spatially indepen-

dent) aspects of neural activity associated with distinct fronto-parietal
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cortex regions (Gholamipourbarogh et al., 2022; Gholamipourbarogh

et al., 2023; Prochnow et al., 2022). Given these conceptual consider-

ations, we aim to investigate the spatial neural dynamics during reactive

inhibition and to examine how representational dynamics unfold in

these spatially distinct neural structures. To achieve this, an innovative

combination of independent component analysis (ICA), multivariate

pattern analysis (MVPA), and source localization analysis is used. Tem-

poral generalization MVPA is an efficient method to examine the dif-

ferences in the stability of the representational content depending on

task condition (King & Dehaene, 2014). Previous findings have shown

that MVPA on EEG data captured how S–R bindings during proactive

inhibition are associated with distinct neuropsychological signals

reflecting the dynamic activation and deactivation of event file repre-

sentations (Prochnow et al., 2021). Therefore, applying MVPA on spa-

tially distinct neural activity profiles allows for investigating the multi-

regions processing of event file reconfiguration during response can-

cellation. An elegant method to achieve this is to combine MVPA with

ICA. ICA can be used to obtain the topographical location of indepen-

dent components (ICs) of activity of specific brain sources (Huster

et al., 2015; Huster & Raud, 2018). The combination of these methods

will provide information about when and how long the distinct tempo-

ral profiles of the representational content are present in isolated ICs

(Gholamipourbarogh et al., 2023). Based on previous findings showing

that a more pronounced off-diagonal activity reflects event file recon-

figuration (Prochnow et al., 2021; Takacs, Mückschel, et al., 2020), we

expect a more pronounced off-diagonal activity in incongruent stop

trials, compared to congruent ones, when event file reconfiguration is

necessary for the implementation of the response cancellation. Addi-

tionally, we assume that distinct functional neuroanatomical struc-

tures are associated with the temporally overlapping representations

of event file processes. Source localization analysis is therefore used

to investigate the functional neuroanatomical regions associated with

representational dynamics in the identified components. Considering

that previous research has found that medial and superior fronto-

parietal cortices are associated with event file coding (Beste

et al., 2023), we also hypothesize that these regions are associated

with the representational dynamics observed in the different ICs.

However, especially when it comes to conflict monitoring and

response selection functions, not only medial prefrontal but also insu-

lar cortex functions have been reported (Droutman et al., 2015;

Gogolla, 2017). Thus, it is possible that the role of the insula is of rele-

vance in the current study context.

Finally, as outlined above, there are likely multiple ICs in neural

activity reflecting the neural dynamics that support conflict-modulated

response stopping. In an explorative analysis, we investigate whether

the identified components differ regarding their relevance to explain

behavior or whether all of the identified components are relevant to

consider for behavioral performance. Importantly, it is essential to con-

sider that the interrelation between neurophysiology and behavior can

be nonlinear. Therefore, we apply logistic regression methods. This tech-

nique has been previously used for evaluating the nonlinear dependency

between parameters, independent of the type of relationship

between them.

2 | MATERIALS AND METHODS

2.1 | Participants

An a priori power analysis was conducted to calculate the required

sample size. Given the novelty of the task, an estimated small to

medium effect size f = 0.3 was used for both the behavioral and neu-

rophysiological analysis. This yielded a required sample size of

N = 26, with α error probability of 5% and a power of 95%. However,

to account for possible outliers and EEG recording issues that might

occur, a total of N = 69 participants took part in this study. The final

sample size after exclusions (see details below) consisted of N = 53

participants (30 males) aged between 18 and 35 (M = 25.5,

SD = 4.65). SSRT estimates have a higher reliability when the stop-

ping probability is close to .50 and a stopping probability range

between 0.25 and 0.75 should be considered for data analysis

(Verbruggen et al., 2019). Against this background, four participants

were excluded. Previous results showed that when the Stop task is

embedded with a Simon task, shorter SSRTs are expected incongruent

than in congruent trials (Eggert et al., 2023). Therefore, to establish if

the SSRTs in this study would show the expected direction, the differ-

ence (incongruent minus congruent) between SSRT in congruent and

incongruent Stop trials was calculated for each participant with a cut-

off value of 50 ms. One participant with a difference value larger than

50 ms was excluded. Behavioral data were also separately assessed

for each condition for possible outliers using the Tukey method imple-

mented in SPSS. Results showed that four participants were identified

as outliers in more than one measurement and therefore excluded

from the analyses. Two participants were excluded because they

scored above the cutoff value in at least one of the scales measured

by the adult self-report used to assess adult (ages 18–59) psychopa-

thology. To achieve homogeneity in the handedness of the sample,

one participant was excluded because they reported being left-

handed. Finally, four participants were excluded due to the poor EEG

data quality and the low number of remaining epochs for the stop

conditions. All participants in the final sample size were right-handed

and reported no psychiatric or neurological illnesses and normal or

corrected-to-normal vision. Written informed consent was obtained

from all the participants before taking part in the study. The study

was approved by the Ethical Committee of the Medical Faculty of TU

Dresden. The participants received either monetary compensation or

course credits for their participation.

2.2 | Task

The task used in this study combines the Simon task (Simon &

Rudell, 1967; Simon & Small Jr., 1969) and the Stop Signal task (Logan

et al., 1984). A schematic illustration of the task is shown in Figure 1.

This task has been successfully used to investigate response inhibition

and interference processing (Eggert et al., 2023). Participants were

comfortably seated in front of a 2400 LCD at an approximate distance

of 60 cm. A yellow central fixation cross was displayed at the center
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of the screen for the entire task duration and was framed horizontally

by two white boxes, each 0.7 cm apart, all displayed against a blue

background. In each trial, either the letter “A” or the letter “B” was

displayed in either the right or the left box. At the same time, a dis-

tractor stimulus consisting of three horizontal lines was simulta-

neously presented in the other frame box. The Simon element of the

task was established as follows: the participants were instructed to

press the left CTRL button with their left index finger every time the

letter “A” was presented and to press the right CTRL button with their

right index finger whenever the letter “B” was presented. Notably,

this was regardless of the spatial location in which the letter was pre-

sented (i.e., left or right box), thus constituting two trial conditions.

Whenever the letter “A” was presented in the left box or the letter

“B” was presented in the right box, these were coded as congruent

trials (i.e., the location of the stimulus corresponded to the side of the

responding finger). However, when the letter stimulus was presented

on the opposite side of the responding hand, this was coded as an

incongruent trial. The participants were instructed to respond regard-

less of the spatial location of the letter.

The stop signal component of the task was incorporated using Go

and Stop trials. Specifically, in Go trials, the letter stimulus was

presented either in the left or the right box and lasted for 1700 ms or

until a response was given. Go trials with a response could be classi-

fied as “correct/hits” or “incorrect.” In the case of no response until

1700 ms, the trial was coded as “miss.” In the Stop trials, the letter

stimulus turned red after a variable delay. The stop signal was pre-

sented for 1700 ms. In these trials, the participants were instructed to

interrupt (i.e., stop) their response. In a stop signal task, it is recom-

mended to achieve a stopping probability of 0.50 (Verbruggen

et al., 2019). Against this background, the stop signal delay (SSD)

(i.e., the time occurring from the onset of the letter stimulus and the

moment it becomes red) was regulated in every stop trial, depending

on the prior trial. When a response was correctly withheld after the

presentation of the stop signal (i.e., correct rejection), the SSD was

increased by 50 ms in the following Stop trial. On the contrary, if the

participant failed to withhold the response (i.e., failure to stop),

the SSD was decreased by 50 ms in the following Stop trial. The initial

SSD was set to 250 ms with a maximum SSD of 1000 ms and a mini-

mum SSD of 50 ms. When reaction times in the previous 50 trials

were above 450 ms from the onset of the stimulus, a speed-up warn-

ing “Bitte versuchen Sie, Schneller zu drücken” (German for “please
try to respond faster”) was displayed on the screen for 2000 ms. The

F IGURE 1 Schematic
illustration of the implemented
task with all possible stimulus
configurations. Congruent and
incongruent trials in the Go
condition are shown above, while
the congruent and incongruent
trials in the Stop condition are
shown below.
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intertrial interval lasted for 1300 ms. The task consisted of 936 trials,

of which 720 trials (77%) were Go trials and 216 (23%) were Stop tri-

als. Furthermore, the Go and Stop trials were equally divided into con-

gruent and incongruent trials. Thus, 360 Go trials were congruent and

360 were incongruent, while 108 Stop trials were congruent

and 108 were incongruent. The task was divided into 9 blocks, con-

sisting of 80 Go trials and 24 stop trials. The order of trials was ran-

domized. Before the execution of the experiment, participants were

familiarized with the task by performing an exercise version of the

task consisting of 36 trials divided into Go and Stop trials. During the

exercise task, feedback was provided at every trial regarding the accu-

racy of the response.

2.3 | Behavioral data analysis

Repeated-measures ANOVAs with factors “congruency” (congruent

vs. incongruent) and “position” (left vs. right) were used to analyze

accuracy and reaction times measures in the Go trials. Repeated-

measures ANOVAs with the same factors were also used to analyze

SRRT, error rate accuracy, and error rate reaction times in the Stop tri-

als. Importantly, only correct trials were considered for the reaction

times in the Go condition. A Greenhouse–Geisser correction was

applied where necessary to take into consideration the potential lack

of sphericity. All variables were tested for normal distribution using

Kolmogorov–Smirnov tests. In case of significant interaction effects

obtained from the repeated measures ANOVAs, these were inter-

preted using Bonferroni correction statistical hypothesis test. When

the assumption of normal distribution was violated, nonparametric

Wilcoxon signed-rank tests were used. Error rate reaction times in

Stop trials were compared with reaction times in Go trials using non-

parametric Wilcoxon signed-rank tests to investigate common pat-

terns of results in Stop Signal tasks (Schall et al., 2017). Descriptive

statistics are reported using the mean value and the standard error of

the mean.

2.4 | EEG recording and preprocessing

The EEG signal was recorded using a QuickAmp amplifier (Brain Prod-

ucts GmbH, Gilching, Germany) from 60 equidistant Ag-

AgCl-electrodes with a sampling rate of 500 Hz. The signal was then

downsampled to 256 Hz offline. The reference electrode was posi-

tioned at Fpz (θ = 90, φ = 90), and the ground electrode was

positioned at the coordinates θ = 58, φ = 78. Electrode impedances

were kept below 10 kΩ. Offline EEG processing was conducted using

the Automagic toolbox (Pedroni et al., 2019) and EEGLAB (Delorme &

Makeig, 2004) on Matlab 2019a (The Mathworks Corp). In the first

processing steps, flat channels were removed and EEG data were

referenced to an average reference. Afterward, the preprocessing

PREP pipeline (Bigdely-Shamlo et al., 2015) and the EEGLAB clean_-

rawdata() pipeline were applied to the EEG data. The PREP pipeline

removes line noise at 50 Hz using a multitaper algorithm and

implements an average reference after removing contamination by

bad channels. The clean_rawdata() detrends the EEG data by applying

an FIR high-pass filter (>0.5 Hz, order 1286, stop-band attenuation

80 dB, transition band 0.25–0.75). The Artifact Subspace Reconstruc-

tion (ASR, Mullen et al., 2013) was then applied. The ASR is an auto-

matic artifact rejection method in EEG data. Epochs with power over

15 standard deviations relative to the calibration data were recon-

structed (burst criterion = 15). Epochs that could not be

reconstructed were removed. A low-pass filter of 40 Hz was also

applied (sinc FIR; order = 86; Widmann et al., 2015). EOG artifacts

were removed using the subtraction method (Parra et al., 2005). An

ICA based on multiple artifacts rejection algorithm (Winkler

et al., 2011, 2014) was applied to remove muscle and remaining eye-

related artifacts. ICLabel pipeline (Pion-Tonachini et al., 2019) was

used to identify and remove components containing cardiac artifacts.

Removed channels were interpolated using a spherical method.

2.5 | Signal decomposition (ICA)

The group-ICA was employed to analyze EEG data and extract sub-

components, as done in previous work (Gholamipourbarogh

et al., 2022; Gholamipourbarogh et al., 2023; Yu et al., 2022). The use

of group-ICA was motivated by the fact that traditional ICA is not

directly applicable to group data, as it estimates different sets of com-

ponents for each individual or run, making it challenging to draw infer-

ences about the entire group. An aggregate dataset was created to

overcome this limitation by concatenating the pre-processed data

from all subjects. To estimate independent brain components (C) from

the homogenous neurophysiological activity of EEG data (X) across

individuals, the group-ICA approach utilizes the equation C=WX

(Calhoun et al., 2009). In this equation, W refers to the demixing

matrix (Hyvärinen & Oja, 2000).

In the first step, the aggregate dataset was subjected to principal

component analysis (PCA) to reduce computational complexity. The

PCA step retained 98% of the eigenvalues, resulting in a reduced

dataset of 20 principal components that captured most of the infor-

mation. Next, ICA (the fast-ICA method; Hyvärinen & Oja, 1997) was

applied to the reduced and concatenated datasets of all subjects to

estimate the ICs of the group data. This step aimed to identify inde-

pendent patterns of neurophysiological activities within the dataset.

The resulting group of ICs provided insights into the underlying brain

processes related to the experimental conditions. In the final step, we

conducted a back-reconstruction to obtain individual ICs. Group-ICA

was carried out on data from congruent and incongruent conditions

separately, using the EEGIFT toolbox (http://icatb.sourceforge.net/

EEGIFT) (Eichele et al., 2011; Rachakonda et al., 2011). Estimated

groups of ICs for congruent and incongruent conditions were gener-

ated with different orders and scales. So, to facilitate a comparison

between the congruent and incongruent conditions, a matching pro-

cess was performed on the estimated group-ICs. This matching was

achieved using a clustering technique called CORRMAP (http://www.

debener.de/) (Viola et al., 2009), which clusters components based on
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the correlation of their inverse weights. The CORRMAP approach

involved initializing each cluster with a group component from the

congruent and incongruent conditions and iteratively identifying com-

ponents with high correlation coefficients (above a specified threshold

of 0.85) as homogenous ICs. By applying CORRMAP clustering with

40 different initializations, the study aimed to maximize the identifica-

tion of similar components for each template. To prevent the cluster-

ing process from assigning overlapping components to multiple

clusters, a maximum of three represented components from each

group (congruent and incongruent) were allowed within each cluster.

The group-ICA was only applied to the Stop trial data.

2.6 | Multivariate pattern analysis

We employed the MVPA light toolbox to conduct MVPA on the back-

projected matching component pairs obtained from the CORRMAP

results (Yu et al., 2022). At the single-subject level, two analyses were

performed: a binary classification to identify time points with different

patterns between IC pairs for congruent and incongruent trials and a

temporal generalization analysis to examine the temporal dynamics of

the representational content at the component ERP level. For the

classification analysis, EEG channel amplitudes at individual electrodes

were used as features, creating 60 features for the SVM classifier in

both conditions. To address the overfitting problem, under-sampling

was applied to balance the number of trials in each class before

conducting MVPA for each individual and IC pair. Separate SVM clas-

sifiers were trained and validated for each IC pair, using a 5-fold

cross-validation approach. The classifier was trained on 80% of the

data and tested on the remaining 20% in a repeated procedure until

all data chunks were tested. Classification accuracy was evaluated

using the area under the ROC curve (AUC), and the average perfor-

mance across test folds was computed as the final performance met-

ric. Wilcoxon tests were performed against chance level (AUC = 0.5)

for each time sample across subjects to identify significant time points

with reliable classification performance. Cluster-based permutation

tests were applied to correct for multiple comparisons, with cluster-

level statistics calculated based on the sum of Wilcoxon teat values

within time points. This permutation process was repeated 1000

times to obtain reliable statistical results.

2.7 | Source localization

To identify the functional neuroanatomical sources associated with

the ICA and MVPA-detected time windows, the source location

method standardized low-resolution brain electromagnetic tomogra-

phy (sLORETA) (Pascual-Marqui, 2002) was applied. Specifically,

sLORETA was conducted for the IC pairs in the time windows where

MVPA revealed temporal stability. sLORETA provides higher localiza-

tion precision of deep brain structures compared to other localization

methods (Grech et al., 2008), and, most importantly, provides a linear

solution to the inverse problem without localization bias (Ocklenburg

et al., 2018; Pascual-Marqui, 2002; Sekihara et al., 2005). Further-

more, previous studies combining EEG/ MRI data and EEG/ brain

stimulations have provided evidence for the robustness of sLORETA

results (Sekihara et al., 2005). The sLORETA divides the intracerebral

volume into 6239 voxels using a spatial resolution of 5 mm within a

three-shell spherical head model. A realistic MNI152 head model

(Mazziotta et al., 2001) is used to calculate the standardized current

density for each voxel (Fuchs et al., 2002). SLORETA was used to

investigate the neurophysiological activation of the congruency

effects (congruent minus incongruent trials) in the Stop condition. To

do this, the sLORETA built-in voxel-wise randomization test with

5000 permutations was used based on statistical nonparametric map-

ping. Significant differences among voxel locations (p < .05) are

shown in the MNI brain. Since the current study aims to investigate

the interference effect during response inhibition processes

(i.e., congruency effect), the sLORETA analysis was conducted only

for Stop trials.

2.8 | Interrelation of neurophysiological and
behavioral data

To perform the complementary evaluation of the association between

neurophysiological information and behavioral data, we applied a non-

linear regression method using artificial neural network. This tech-

nique has been previously utilized for evaluating the nonlinear

dependency between parameters, independently of the type of rela-

tionship between them. To do this for each specific IC pair, we used a

feed-forward neural network with the input of AUC (averaged across

the time window that it was significant) for all subjects. The network's

output was the difference in Stop Signal reaction times between the

congruent and the incongruent condition. For the cross-validation, we

adopted the leave-one-out technique. This entailed treating one sub-

ject as the test set while the remaining subjects (N = 52) constituted

the training set. The neural network was individually trained for each

IC pair.

3 | RESULTS

3.1 | Behavioral data

3.1.1 | Go trials

For the accuracy rate in Go trials, results showed a significant main

effect of congruency (F(1,52) = 38.445; p < .001, η2p = 0.425) with

higher accuracy for congruent trials (97% ± 0.5) than for incongruent

trials (94% ± 0.7). Furthermore, a significant interaction of

congruency � position was found (F(1,52) = 7.337, p = .009,

η2p = 0.124). However, when corrected for multiple comparisons,

Bonferroni-corrected Wilcoxon paired t tests showed no significant

differences between the right and left positions of the stimulus in

both congruent and incongruent trials (all p > .05). No significant main
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effect of position was found (F(1,52) = 0.025; p = .874, η2p < 0.001).

Results for the reaction times in the Go trials showed a significant main

effect of congruency (F(1,52) = 115.309; p < .001, η2p = 0.689) with fas-

ter reaction times for congruent trials (493.7 ms ± 15.56) than for

incongruent trials (521.57 ms ± 15.07). Furthermore, a significant main

effect of position was also shown (F(1,52) = 9.311; p = .004,

η2p = 0.152) with faster reaction times for the right (503.04 ms

± 15.45) than for the left side of stimulus presentation (512 ms

± 15.21). However, no significant interaction of congruency � position

was found (F(1,52) = 0.598; p = .443, η2p = 0.011).

3.1.2 | Stop trials

Results for Stop trials in the congruent and incongruent conditions are

illustrated in Figure 2. For Stop trials, there was an error rate

(i.e., probability of responding in a Stop trial) of 50.56% (±2.9). The

mean SSD was 233.19 ms (±14.69). Furthermore, consistent with

the common pattern of results in Stop Signal tasks (Schall et al., 2017),

participants had faster reaction times (z = �6.334, p < .001) in their

failures to stop in Stop trials (449.47 ms ±12.05) than in their correct

responses in Go trials (567.81 ms ± 30.21). The SSRT was calculated

based on the mean estimation method. This method estimates SSRT

by subtracting the mean reaction times of go trials with the mean of

the inhibition functions, which is the SSD corresponding to the proba-

bility of responding equal to 0.5 (Verbruggen & Logan, 2009). For the

SSRT, results showed a significant main effect of congruency

(F(1,52) = 11.999; p = .001, η2p = 0.187) with a shorter SSRT in con-

gruent (269.86 ms ± 4.72) than in incongruent trials (279.01 ms

± 4.89). No significant main effect of position (F(1,52) = 0.416;

p = .552, η2p = 0.008) nor an interaction of congruency � position

(F(1,52) = 0.405; p = .527, η2p = 0.008) was found.

For the error rate (i.e., failure to stop during Stop trials) in the Stop

trials, the results showed a main effect of congruency (F(1,52) = 23.165;

p < .001, η2p = 0.308), with a higher error rate for congruent trials

(51% ± 0.5) than for incongruent trials (50% ± 0.4). Furthermore, there

was a significant interaction of congruency � position (F(1,52) = 14.524;

p < .001, η2p = 0.218). Bonferroni-corrected Wilcoxon signed rank

tests showed a significant difference between congruent (51.6% ± 0.5)

and incongruent (50% ± 0.4) stop trials both on the right side

(z = �4.769, p = 0.002), but not on the left side of the stimulus presen-

tation (z = �1.286, p > .05). The main effect of position was not signifi-

cant (F(1,52) = 3.893; p = .054, η2p = 0.070).

For error rate reaction times data, the results showed a significant

main effect of congruency (F(1,52) = 121.160; p < .001, η2p = 0.7),

with faster reaction times for congruent (434.78 ms ± 12.28) than for

incongruent trials (464.65 ms ± 11.98). A significant main effect of

position was also found (F(1,52) = 4.721; p = .034, η2p = 0.083), with

faster reaction times for the right (445.95 ms ± 12.07) than for left

(453.48 ms ± 12.29) side of the stimulus presentation. No significant

interaction of congruency � position was found (F(1,52) = 0.009;

p = .93, η2p < 0.001).

3.2 | Neurophysiological data

Figure 3 illustrates CORRMAP and MVPA results. The group-ICA was

used to estimate and aggregate back-reconstructed subcomponents

of congruent and incongruent Stop trials in a time window between

�200 and 1000 ms. To identify spatially similar components between

the congruent and incongruent stop conditions, we implemented the

CORRMAP clustering method. This was necessary due to the poten-

tial variations in scales and orders of components across different

conditions, requiring a matching process between conditions. CORR-

MAP aggregated components with the same weight distribution on

the channels space into a single cluster when a minimum correlation

of 85% between weight matrices was found. This process resulted in

four pairs of homogenous ICs between congruent and incongruent

Stop trials. The ICs' number and the correlation values between the IC

topographies of each pair are reported in Table 1. ERP images (scalp

topography, trial activity, and ERP signal) for congruent (left) and

incongruent (right) conditions are shown in the supplementary

material.

After identifying IC pairs, the back-projected data at the ERP level

were used to investigate the signal-to-noise ratio of matching compo-

nents and to compare them between congruent and incongruent Stop

trials. MVPA analysis was applied to each extracted homogeneous

back-projected IC pair to do this. Figure 3 illustrates the respective

ICs' topographies, binary classification performance, and the temporal

generalization matrix between congruent and incongruent trials.

Binary classification performance was significant (i.e. p < .05) when

AUC > 0.5.

For IC pair 1, the binary classification was significant between

85 and 245 ms, with peaks of 59% between 180 and 187 ms. In IC

pair 1, a temporal generalization cluster in the same time interval of

the binary classification is also shown. The back-projected ERP data

showed a negative amplitude in both the congruent and the incongru-

ent conditions. For IC pair 2, the binary classification performance

was significant (i.e., AUC > 0.5, p < .05) between �100 before and

1000 ms after the stimulus onset, with the highest performance of up

to 70% at 575 ms. The temporal generalization for IC pair 2 shows a

F IGURE 2 Stop signal reaction time (SSRT) data for congruent
and incongruent Stop trials. For each condition, a boxplot, and the
individual data points as well as the probability distribution are given.
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reactivated-like pattern (King & Dehaene, 2014). In particular, it is

possible to observe a sequence of distinct brain activity profiles that

reactivated later in time, demonstrating off-diagonal transient general-

ization. The activity of the back-projected ERP showed a negative

amplitude between 0 and 300 ms as well as between 700 and

1000 ms and a positive amplitude between 300 and 700 ms in both

the congruent and incongruent conditions. For IC pair 3, binary classi-

fication performance was significantly higher than the chance level

between 90 and 420 ms, with the highest performance of up to 61%

between 270 and 275 ms. The temporal generalization cluster central-

ized around 300 ms, comprising a time period between 100 and

450 ms. The activity at the ERP level showed a positive amplitude

between 200 and 500 ms. Finally, IC pair 4 showed significant perfor-

mance in the AUC between 110 and 430 ms, with the highest

performance of 63% at 265 and 285 ms. The temporal generalization

showed a clustering occurring mainly in the 250–400 ms time win-

dow. The back-projected ERP data show a positive amplitude in the

same time window in congruent and incongruent conditions.

Source localization results contrasting congruent and incongruent

Stop trials are shown in Figure 4. For IC pair 1, sLORETA results

showed greater bilateral activation in congruent than in incongruent

trials in the superior parietal lobe and the precuneus (BA 7). In IC pair

2, source localization results showed greater bilateral activation for

incongruent than for congruent trials in the insula (BA 13) and the

superior temporal gyrus (BA 41). For IC pair 3, sLORETA results

showed greater bilateral activation for congruent than for incongruent

Stop trials in the insula (BA 13), the anterior cingulate (32), and the

medial frontal gyrus (10). Finally, in IC pair 4, significantly greater acti-

vation in congruent than in incongruent Stop trials was shown in the

right insula (BA13) and the precentral gyrus (BA 43).

We applied machine learning nonlinear regression methods to

perform the complementary evaluation of the association between

neurophysiological information and behavioral data. For the cross-

validation, we adopted the leave-one-out technique (see Section 2).

The root mean square error (RMSE) value for every pair of ICs was

used to evaluate the accuracy of predicting behavioral data using the

mean AUCs. The mean RMSE values (with a confidence interval of

95%) for each IC pair are depicted in Figure 5. The small values of the

prediction errors show that the ACU values were able to predict

behavioral data efficiently. The statistical comparison (t test) between

the error values did not show any significant difference (all p > .473),

implying that none of the IC pairs had a greater impact on the behav-

ioral outcomes than the others and that all the components had the

same influence.

F IGURE 3 CORRMAP and multi-variate pattern analysis (MVPA) results for selected independent component (IC) pairs. (a–d) The binary
classification performances, the scalp topographies of the selected of the congruent and incongruent conditions (left), and the temporal
generalizations (right) of the IC pairs 1–4, respectively. For the binary classification, the shaded error bars represent standard deviation. The scalp
topographies reveal the weighting matrices of each IC.

TABLE 1 Similar components for the S-cluster in the congruent and incongruent NoGo conditions according to the CORRMAP analysis. The
correlation coefficient shows the similarity between scalp topographies of each IC pair.

New component

number

Original IC number for congruent

trials

Original IC number for incongruent

trials

Correlation between scalp

topographies

1 6 2 0.9

2 11 5 0.99

3 13 7 0.97

4 5 3 0.99

F IGURE 4 Standardized low-resolution brain electromagnetic
tomography (sLORETA)-derived maps for selected independent
component (IC) pairs (1–4) indicate the sources of maximal
differences between congruent and incongruent Nogo trials in time
windows showing above-chance level classification performance and
temporal stability.
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4 | DISCUSSION

Coping with distracting inputs during goal-directed behavior is a com-

mon challenge, especially when halting behavior or responses that are

no longer necessary or have become inappropriate. The neural basis

for this remains debated. Our study explores this using a conflict-

modulation Stop Signal task, integrating group-ICA, MVPA, and EEG

source localization analysis.

4.1 | Behavioral findings

At the behavioral level, results replicated findings showing that stop-

ping performance (i.e., SSRTs) was better in congruent than in incon-

gruent trials (Eggert et al., 2023) using the same combination of a

Simon and a Stop Signal task, and corroborated other studies showing

that interfering information has a detrimental effect on response can-

cellation performance (Chambers et al., 2007; Ridderinkhof

et al., 1999; Verbruggen et al., 2014). It is possible to explain the bet-

ter stopping performance in congruent than incongruent trials when

considering the dual route model of the Simon task (Keye

et al., 2013). In congruent trials, the corresponding S–R association is

resolved by simple automatic processes operated via the direct route

in both the Go and Stop trials. In incongruent trials, response pro-

cesses have a higher level of complexity due to the conflict between

the activation of both the automatic direct route and the conditional

indirect route. The increase in complexity increases SSRTs and leads

to reduced stopping performance. The effects of interfering informa-

tion on S–R mapping reconfiguration during stopping performance in

incongruent trials can be further explained through the TEC frame-

work (Hommel et al., 2001), which also accounts for Simon-task S–R

conflicts (Hommel, 2011): Interference effects in incongruent Simon

trials emerge because the event file specifies that the mappings of

stimulus features to response features need to be reconfigured to

respond appropriately. This time-consuming process (Hommel, 2009)

interferes with the process of response stopping, as evidenced by lon-

ger SSRTs in incongruent than congruent trials. The important ques-

tion answered by the neurophysiological data analysis is how the

representational content of event file dynamics underlying this (repli-

cable) behavioral effect pattern is processed at a neural level. We also

reported the results for the error rate probability for completeness.

Results showed a higher error rate probability in congruent compared

to incongruent stop trials, with a 1% error rate probability difference

between conditions. The current finding might have occurred due to

spurious differences rather than a meaningful effect of congruency.

Similarly, previous studies combining the Simon and Stop-Signal task

have not formulated hypothesis on the effect of congruency on error

rate (Eggert et al., 2023; Verbruggen et al., 2005). This is because in

the experimental design, the signal stop delay is constantly adjusted

with a staircase tracking procedure in order to obtain a stopping prob-

ability of 50%, separately for congruent and incongruent trials (see

Section 2). For this reason, it would be speculative to draw any con-

clusion from this finding.

4.2 | Neurophysiological findings

The neurophysiological data show that there are four spatially indepen-

dent neural activity profiles (cf. IC analysis) showing modulations

between congruent and incongruent Stop trials. This already suggests

that different neural subprocesses subserve the dynamics of the reconfi-

guration of the event file representations. Of note, the results of the

neural network analysis interrelating neurophysiological and behavioral

data show that each of the identified components is of similar impor-

tance in predicting behavioral modulations between the contrasted

experimental conditions (i.e., stopping in congruent and incongruent tri-

als). Previous findings on conflict-modulated proactive inhibitory control

processes also suggest that multiple independent spatial activity profiles

underlie event file reconfiguration (Gholamipourbarogh et al., 2022;

Gholamipourbarogh et al., 2023) and the same has been found for

response selection (Takacs, Mückschel, et al., 2020). Crucially, the event

file concept assumes distributed processing of perceptual and motor

aspects during goal-directed action control (Hommel, 2004). The current

findings corroborate an emerging pattern according to which different

independent neural activity patterns mediate perception-action integra-

tion during various instances of response selection and control. Intrigu-

ingly, the source localization analysis for the current data suggests that

the representational dynamics reflected by spatially independent neural

activity profiles, especially the insular cortex (BA13) play an important

role in reactive inhibitory control processes. The reason is that in three

out of four ICs (i.e., except IC-pair 1), the insular cortex reflected activity

modulations alongside other cortical regions.

F IGURE 5 Root mean square error (RMSE) values (with 95%
confidence interval) of the nonlinear regression for all independent
component (IC) pairs used to find the association between area under
the curve (AUC) values and the difference between stop signal
reaction times in two congruent and incongruent conditions. Positive
values indicate larger activation in congruent Nogo trials, while
negative values indicate larger activation for incongruent Nogo trials.
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IC-pair 1 shows a significant binary classification performance

between 85 and 245 ms after stimulus presentation, with limited off-

diagonal decoding (i.e., temporal generalization) (King &

Dehaene, 2014). For this IC-pair, source localization results revealed

greater activation in the congruent than incongruent stop condition in

the precuneus (BA 7). Evidence has demonstrated the role of the pre-

cuneus and parieto-occipital regions in attention processes, which are

relevant in Simon task S–R conflicts (Ghin et al., 2022;

Leuthold, 2011; Vahid et al., 2020; Wascher et al., 2001; Wiegand &

Wascher, 2005). Previous findings have suggested that ERP positivity

around 200 ms (i.e., P2) during a Simon task might reflect the early

allocation of attentional resources (Ghin et al., 2022). The regions of

the precuneus and parieto-occipital regions (BA7) contribute to the

selection of motor responses (Bernier et al., 2012; Cisek &

Kalaska, 2002; Jaffard et al., 2008; Sulpizio et al., 2017), possibly

because the superior parietal cortex plays a central role in S–R transla-

tion processes (Gottlieb, 2007). From that perspective, it seems that

IC-pair 1 reflects the initial representations necessary to perform S–R

translation processes, which are then followed up by processes

reflected in IC-pairs 2, 3, and 4. This interpretation is substantiated by

the finding that all IC-pairs explained behavioral performance to a sim-

ilar extent. Such a result is unlikely to occur if the representations

reflected by the different IC-pair were substantially different. Thus,

the findings suggest that the representations processed are highly

similar despite different associated spatial neural activity patterns and

the functional neuroanatomical structures associated. Importantly, dif-

ferences in the IC-pairs and associated functional neuroanatomical

structures seem to be a function of the time that has elapsed after

presenting the target stimulus which determines whether a response

had to be stopped. This is reflected by the fact that for all of the other

IC-pairs significant time windows of MVPA decoding extended

beyond the time period shown for IC-pair 1.

The decoding of representations in IC-pair 2 was associated with

the insular cortex (BA13). The insula cortex and adjacent regions in

the superior temporal gyrus have been previously associated with

response-updating functions during decision-making, and neuroimag-

ing studies have demonstrated the involvement of the insula cortex in

a plethora of functions (Droutman et al., 2015; Gogolla, 2017; Uddin

et al., 2017), from sensory functions, automaticity and motor control,

decision-making, social functions, and self-awareness (Gogolla, 2017).

Evidence shows the insula cortex's involvement in conflict monitoring

and error detection functions during Simon task performance (Ham

et al., 2013; Rosenberg et al., 2021; Son et al., 2023). Most impor-

tantly, the MVPA showed significant decoding of the representational

content and off-diagonal activity in the entire examined trial period

and the temporal generalization matrix (cf. Figure 3) revealed a

checker-board-like pattern, which suggests that representations

become reactivated periodically (King & Dehaene, 2014). This pattern

has to be seen in the context of the interpretation of IC-pair 1. The

decoding of representational content in IC-pair 2 was evident in

periods before this was possible in IC-pair 1. Thus, relevant represen-

tational content is processed by insular cortex structures and superior

parietal structures early on. However, representational content

associated with the insular cortex (BA13) was also decodable in

periods after the time window where decoding was possible for IC-

pair 2. The representation reactivation pattern observed for IC-pair

2 may reflect reiterant processing of representational content relevant

for early attentional selection stages (IC-pair 1) and processes relevant

for action cancellation (stopping) in complicated (congruent) and non-

complicated (incongruent) S–R constellations. Activation differences

between congruent and incongruent trials in the insula cortex were

also evident in IC-pairs 3 and 4. However, unlike IC-pair 2, there was

a greater activation for congruent than incongruent Stop trials. Even

though IC-pairs 3 and 4 share some similarities with regard to the

diagonal decoding and temporal generalization profile, distinct neural

activation patterns can still be observed in the AUC performance and

source localization results. In particular, IC-pair 3 was associated with

higher activation in congruent than incongruent trials in both the right

and left side insula (BA13), the anterior cingulate (BA32), and the

medial frontal gyrus (BA10). In contrast, the IC-pair 4 was associated

with higher activation in congruent than incongruent trials in the right

insula (BA13) and the precentral gyrus (BA4). The opposite activation

patterns in the insula region between congruent and incongruent tri-

als and different temporal generalization patterns observed in the IC-

pair 2 compared to IC-pairs 3 and 4 could be explained by the dual

route model of the Simon task (De Jong et al., 1994). As described

above, the direct (automatic) route is mainly involved during congru-

ent trials, whereas incongruent trials involve both direct and indirect

routes. The reactivation of representational content relative to the IC-

pair 2, as illustrated by the temporal generalization profile, indicates

the occurrence of more complex processes. This suggests that the iso-

lated IC-pair captures the response selection and stopping processes

mediated by the indirect route, in line with the greater activation in

the insula cortex for incongruent than congruent trails. On the other

hand, the limited off-diagonal temporal generalizations in the IC-pairs

3 and 4 indicate relatively automatic processing (i.e., congruent S–R

mapping) mediated by the direct route. This also would explain the

greater activation in the congruent condition than in the incongruent

trials in the insula cortex. A unifying explanation of these results sug-

gests that the insula cortex is critical for both routes and is involved in

distinct cognitive subprocesses during response cancellation. This

aligns with the suggestion that the insula cortex functions as a brain

hub, relaying neural information from and toward different neural sys-

tems (Gholamipourbarogh et al., 2022; Gogolla, 2017). The TEC

framework could also provide a complementary explanation of these

results. According to TEC, when incongruent trials occur, the operat-

ing event files need to be reconfigured to account for the discrepancy

between irrelevant stimulus location and the triggered prepotent

response. As current behavioral and prior neurophysiological evidence

suggests (Eggert et al., 2023), the reconfiguration of the event file

requires a longer processing time when the ongoing response must be

canceled. Thus, the temporal generalization of the representational

content in the IC-pair 2 might reflect the reconfiguration of the event

files. In line with this assumption, previous studies have shown that

longer off-diagonal temporal generalization can be observed in experi-

mental conditions requiring more complex cognitive operations
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compared to less complex conditions (Eggert et al., 2022; Prochnow

et al., 2021).

4.3 | Conclusions

In summary, we show that stopping performance (SSRTs) is better in

congruent (nonconflicting) trials than in incongruent (conflicting) trials,

consistent with previous findings. Conflict effects in incongruent trials

compromise stopping more due to the need of reconfiguration of S–R

mappings. Of note, these cognitive dynamics are reflected by four

independent neural activity patterns (ICA analysis) each coding repre-

sentational content (MVPA). It is shown that each component was

equally important in predicting behavioral outcomes. The data support

an emerging idea that perception-action integration in action-stopping

involves multiple independent neural activity patterns. One pattern

relates to the precuneus (BA 7) and is involved in attention and early

S–R processes. Of note, three other independent neural activity pat-

terns were associated with the insular cortex (BA13) in distinct time

windows. These patterns reflect a role in early attentional selection

but also show the reiterated processing of representational content

relevant for stopping in different S–R mapping contexts. Moreover,

the insular cortex's role in automatic versus complex response selec-

tion in relation to stopping processes is shown. Overall, the insular

cortex is depicted as a brain hub, crucial for response selection and

cancellation across both straightforward (automatic) and complex

(conditional) S–R mappings, providing a neural basis for general cogni-

tive accounts on action control.
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