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Dispersal comprises a complex life-history syndrome that influences the demographic dynamics of
especially those species that live in fragmented landscapes, the structure of which may in turn be
expected to impose selection on dispersal. We have constructed an individual-based evolutionary
sexual model of dispersal for species occurring as metapopulations in habitat patch networks. The
model assumes correlated random walk dispersal with edge-mediated behaviour (habitat selection)
and spatially correlated stochastic local dynamics. The model is parametrized with extensive data for
the Glanville fritillary butterfly. Based on empirical results for a single nucleotide polymorphism
(SNP) in the phosphoglucose isomerase (Pgi ) gene, we assume that dispersal rate in the landscape
matrix, fecundity and survival are affected by a locus with two alleles, A and C, individuals with the C
allele being more mobile. The model was successfully tested with two independent empirical datasets
on spatial variation in Pgi allele frequency. First, at the level of local populations, the frequency of the
C allele is the highest in newly established isolated populations and the lowest in old isolated
populations. Second, at the level of sub-networks with dissimilar numbers and connectivities of
patches, the frequency of C increases with decreasing network size and hence with decreasing average
metapopulation size. The frequency of C is the highest in landscapes where local extinction risk is
high and where there are abundant opportunities to establish new populations. Our results indicate
that the strength of the coupling of the ecological and evolutionary dynamics depends on the spatial
scale and is asymmetric, demographic dynamics having a greater immediate impact on genetic
dynamics than vice versa.

Keywords: evolution of dispersal; life-history evolution; metapopulation; correlated random walk;
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1. INTRODUCTION
Dispersal comprises a complex life-history syndrome

that especially influences the demographic dynamics of

species in temporally ephemeral and spatially fragmen-

ted habitats (Olivieri & Gouyon 1997; Hanski 1999;

Ronce 2007; Moore & Hendry 2009). On the other

hand, demographic dynamics under the prevailing

environmental conditions can be expected to influence

selection on dispersal. Identifying the evolutionarily

stable dispersal strategy under particular environ-

mental conditions is a classic topic in life-history theory

(Hamilton & May 1977; Comins et al. 1980; Ronce &

Olivieri 2004). These considerations also have great

practical significance. Especially in the past decades

and centuries, humans have greatly modified many

environments on the Earth, typically causing loss and

fragmentation of natural habitats. Increasing fragmen-

tation of habitats may select either for an increase
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ion, and reproduction in any medium, provided the original wor
(Heino & Hanski 2001) or a decrease in dispersal rate

(Cody & Overton 1996; Cheptou et al. 2008),
depending on a number of factors but especially on
the cost and benefit of dispersal in terms of mortality

and the chance of locating a new favourable patch of
habitat for reproduction (Heino & Hanski 2001).

Evolutionary models of dispersal do not usually
specify the actual genetic mechanism on specific traits
that would affect dispersal, but the models typically

employ the quantitative genetics framework and
assume a large number of genes with a small effect

(Ronce & Olivieri 2004). In a few cases, it is known that
some component of dispersal is affected by a single
locus. For instance, wing polymorphism in some insect

species is thought to be controlled by a single gene with
two alleles (Roff 1986). One example of a candidate

gene is the phosphoglucose isomerase (Pgi ) gene in
butterflies (Watt 1983, 1992; Haag et al. 2005), a
willow beetle (Rank et al. 2007) and probably many

other invertebrates. In the Glanville fritillary butterfly
(Melitaea cinxia), molecular variation in Pgi is associ-

ated with dispersal rate in the field (Niitepõld et al.
in press) and in a large outdoor population cage
(Saastamoinen & Hanski 2008), at least partly because
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of association between dispersal rate and flight
metabolic rate (Haag et al. 2005; Niitepõld et al.
in press). Saastamoinen (2008) has shown that
mobility in the population cage is heritable, and in
the field there is spatial variation in the dispersal rate
between individuals originating from newly established
versus old local populations (Hanski et al. 2002, 2004),
which is most parsimoniously explained by heritable
variation in dispersal. Molecular variation in Pgi is
also correlated with variation in other life-history traits,
such as egg clutch size (Saastamoinen 2007a) and even
with the growth rate of small local populations (Hanski &
Saccheri 2006).

The purpose of the present study is to construct and
analyse an evolutionary, individual-based model of
dispersal that is appropriate for the Glanville fritillary
and other comparable species living in fragmented
landscapes, implementing the genetic architecture that
is relevant for Pgi. Our particular aim is to analyse
selection that is imposed by the spatial configuration of
the habitat at the landscape level and thereby to predict
patterns in the spatial distribution of the Pgi genotypes
and dispersal phenotypes within and among different
kinds of landscapes. This study was motivated by the
availability of extensive empirical data for the Glanville
fritillary from a large network of habitat patches in the
Åland Islands in southwest Finland, where there is
much spatial variation in patch density and other
properties of the landscape (Hanski 1999; Nieminen
et al. 2004). Apart from examining how the structure of
the fragmented landscape influences the evolution of
dispersal in metapopulations, we analyse the possible
coupling between the demographic (ecological) and
genetic (evolutionary) dynamics involving dispersal.
2. EMPIRICAL DATA
The metapopulation of the Glanville fritillary butterfly
in the Ålands Islands in southwest Finland has been
studied since 1991 (Hanski 1999). These studies have
produced much empirical data on dispersal, local
population dynamics, metapopulation dynamics and
spatial genetic structure. The structure of the landscape
has been described by Hanski et al. (1996), Moilanen &
Hanski (1998), Hanski (1999) and Nieminen et al.
(2004). Within an area of 50 by 70 km, there are
altogether approximately 4000 discrete and mostly very
small dry meadow habitat patches with an average area
of 0.15 ha. Suitable habitat is largely defined by the
presence of one or both of the two larval host plant
species, Plantago lanceolata and Veronica spicata.

The key empirical data on which the present
modelling is based and with which the model
predictions are compared are as follows.

(a) Life cycle and reproduction

There is one generation per year. The adults eclose in
early June and live for an average of one to two weeks
depending on weather conditions. Most females
mate soon after eclosion in the natal population, but
10–30 per cent of females mate a second time, based on
experiments in a large outdoor cage (Sarhan & Kokko
2007; M. Saastamoinen 2007, personal communication).
Re-mating may happen either in the natal population
Phil. Trans. R. Soc. B (2009)
or in another population following dispersal. Females
lay large batches of 50–300 eggs at intervals of one
or more days, depending on weather conditions
(Saastamoinen 2007a). Each egg batch develops into
a larval group, which remains as a group until the
spring in the following year. For more details on
the life history, see Hanski (1999). Empirical results
on mating and oviposition have been reported by
Wahlberg (1995), Boggs & Nieminen (2004) and
Saastamoinen (2007a,b).

(b) Demographic dynamics

The Glanville fritillary metapopulation has been sur-
veyed annually since 1993. The survey is conducted in
late summer prior to larval diapause. The larval groups
are highly visible due to a silken web spun by the larvae
around the host plant. In these surveys, all, approxi-
mately 4000, meadows are visited by field assistants and
the numbers of larval webs are counted. The detection
probability of larval groups has been estimated to be
approximately 0.5 (Nieminen et al. 2004).

These data allow the calculation of several statistics
describing the demographic dynamics and patterns,
which can be compared with simulation results:
the distribution of local population sizes in terms
of the number of larval groups in late summer; the
average fraction of habitat patches occupied in 1 year
and variation among the years; and the numbers of
local extinctions and re-establishment of new popu-
lations per year. We have used Hanski et al.’s (1996)
classification of the entire 4000 patch network into
sub-networks with dynamically semi-independent
metapopulations. These sub-networks vary in terms
of the number, mean area and spatial connectivity of
the constituent habitat patches and thus allow
informative comparisons between landscapes with
different properties. Hanski (1999), Nieminen et al.
(2004) and Hanski & Meyke (2005) review results on
local and metapopulation dynamics.

(c) Dispersal

Mark–recapture studies on dispersal are reported by
Hanski et al. (1994) and Kuussaari et al. (1996),
while Hanski et al. (2000), Ovaskainen (2004) and
Ovaskainen et al. (2008b) describe statistical modelling
of dispersal. Other biological results on dispersal have
been reported by Hanski et al. (1995) and Kuussaari
et al. (1996).

(d) Spatial genetic patterns

Saccheri et al. (2004) used four allozymes and two
microsatellite markers to examine population differen-
tiation across the Åland Islands using pairwise FST.
Orsini et al. (2008) showed that the spatial genetic
structure correlates better with the past than the
present spatial demographic structure.

(e) Contrast between newly established

versus old local populations

Hanski et al. (2002) and Ovaskainen et al. (2008c)
have showed that female butterflies originating from
isolated local populations that had been established by
the mothers of the focal individuals are more dispersive
than females originating from isolated old local
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populations. This result implies higher than average
dispersal rate among individuals that establish new
populations at isolated habitat patches, high heritability
of the relevant traits of dispersal and rapid loss of the
more dispersive individuals from the new populations
in subsequent years. Further studies have demon-
strated that females in isolated new populations have
higher than average flight metabolic rate (Haag et al.
2005), and that flight metabolic rate is associated
with dispersal rate in the field (Niitepõld et al. in press).
Some other life-history traits, including egg clutch size,
exhibit differences between newly established versus old
populations (Saastamoinen 2007b).

(f ) Phosphoglucose isomerase locus

A series of field and laboratory studies has documented
strong and consistent associations between molecular
variation in the Pgi locus and variation in flight
metabolic rate (Haag et al. 2005), dispersal rate in the
field (Niitepõld et al. in press), body temperature in
low ambient temperatures (Saastamoinen & Hanski
2008), egg clutch size (Saastamoinen 2007a), lifespan
(Saastamoinen et al. 2009) and local population
growth rate (Haag et al. 2005; Hanski & Saccheri
2006). Orsini et al. (2009) have identified a single
nucleotide polymorphism (SNP) at Pgi, AA111, which
accounts for the functionally significant variation in Pgi.

For this paper, we have re-analysed the data used
by Hanski & Saccheri (2006) on the Pgi allelic
composition in local populations. We use the above-
mentioned sub-networks of habitat patches (Hanski
et al. 1996) to test model predictions about the
influence of landscape structure on Pgi allelic compos-
ition in the respective sub-networks.
3. THE INDIVIDUAL-BASED MODEL
We construct an individual-based sexual model that
corresponds to the life cycle of the Glanville fritillary
(for a related asexual model, see Hanski et al. 2004). The
dispersal model (§3a) assumes that the radii of
the habitat patches are substantially less than the
interpatch distances. We have therefore merged nearby
habitat patches in the real network into single patches,
with the area equalling the pooled area of the original
patches and the location of the new patch given by the
area-weighted average of the locations of the original
patches. Following the merging of the patches, we ended
up with a network of 2254 patches. This merging of
the patches does not affect the clustering of patches
into the sub-networks as described above. In all analyses,
we simulated the dynamics of the system in the
entire network, even if the results were recorded for
individual sub-networks.

For the purpose of model construction, we split
the life cycle into (adult) dispersal phase and local
(larval) dynamics, which are described in turn below,
followed by a description of how the genetic dynamics
were modelled.

(a) Dispersal

We assume that all adults eclose simultaneously in the
beginning of the flight season and that they disperse
independently of each other (no density dependence at
Phil. Trans. R. Soc. B (2009)
the adult stage). Butterflies are assumed to obey
correlated random walk both within habitat patches
and while moving in the surrounding landscape matrix,
where there are no host plants for oviposition. An
important component of the movement model is edge-
mediated behaviour (habitat selection), meaning that
movements are biased towards the habitat patch when
the individual is located close to the patch boundary.
For mathematical convenience, we employ a diffusion
approximation of the random walk model (Turchin
1998; Ovaskainen & Cornell 2003). The diffusion
model has been shown to fit well mark–recapture data
for the Glanville fritillary and other butterflies
(Ovaskainen et al. 2008a,b).

The parameters of the diffusion model are the
diffusion coefficients Dp in habitat patches and Dm in
the matrix, the respective mortality rates mp and mm,
and the coefficient kp, which gives the relative density
(number per unit area) of individuals in the habitat
patches over the density in the matrix (by definition,
matrix preference is kmZ1). Under the assumption
that patch sizes are small compared with interpatch
distances, movement probabilities between the
patches and the times that the individuals are
expected to spend in the patches and in the matrix
can be computed analytically (Ovaskainen & Cornell
2003; Zheng et al. in press). As described in the
electronic supplementary material, this allows fast
simulation of movements. As butterflies tend to spend
some time in the natal patch before commencing
subsequent movement behaviour (Ovaskainen et al.
2008b), we assume that butterflies stay in the natal
patch tc days (or less if they die) before starting to
obey the dispersal model.

(b) Mating and oviposition

The dispersal model generates a movement track for
each individual in continuous time. To simplify the
simulation of matings and ovipositions that take place
during the dispersal phase, we discretize the movement
tracks to the resolution of DtZ0.1 days. We assume that
a female mates during one time-step with probability
pMZh[1Kexp(KlMmDt)], where m denotes the num-
ber of males in the habitat patch in which the focal
female is currently located. Parameter h represents the
tendency of mating, with hZ1 for unmated females
and hZh0 for females that have already mated at least
once. Repeated mating in the same day does not occur
(M. Saastamoinen, personal communication); hence
we assume that pMZ0 if the female has already mated
in the current day. The mate for the female is chosen
randomly among the m available males.

A mated female is assumed to lay an egg clutch with
probability pLZ1Kexp(KlLDt), with the exception
that pLZ0 if the female is located in the matrix or she
has laid in the current day. In the case of multiple
matings, the father of an egg clutch is the last male to
mate with the female (Sarhan 2006).

(c) Larval survival
Each egg clutch in patch i is assumed to develop into a
larval group in the autumn and to survive over the winter
with probability pi. To simulate the effects of environ-
mental and regional stochasticities, we randomize



Table 1. Parameter values of the individual-based model.

parameter value explanation, unit

movement phase
Dm 500 000 diffusion coefficient in the matrix for the monomorphic population

DH
m 5 000 000 diffusion coefficient in the matrix for genotypes AC and CC, m2 dK1

DL
m 50 000 diffusion coefficient in the matrix for genotype AA, m2 dK1

Dp 140 diffusion coefficient in patches, m2 dK1

kp 400 preference for patches for the monomorphic population

kH
p 1300 preference for patches for genotypes AC and CC

kL
p 130 preference for patches for genotype AA

tc 1 time spent in the natal patch before starting the movement mode, d
mp 0.14 mortality in patches, dK1

mm 0.14 mortality in matrix, dK1

h0 0.02 tendency for multiple mating
lM 1 rate of mating, dK1

lL 0.4 rate of laying egg clutches, dK1

larval survival
ms logit(0.27) mean survival rate of larval groups over winter
ss 1.0 standard deviation of winter survival
d c 10 000 average distance of spatial autocorrelation in survival rate of larval groups

over winter, m
ep 0.05 probability of all larval groups in a patch going extinct
n0 6 number of adults that would hatch per larval group in the absence of density

dependence
c0 25 prefactor in the carrying capacity KiZn0c0A

c1

i , where area unit is ha

c1 0.32 exponent in the carrying capacity

genetics
f1 0.2 fraction of increased fecundity when the female is AC
f2 0.9 probability of death before eclosion for genotype CC
u 10K6 mutation rate per locus per generation for allozyme loci
u 10K3 mutation rate per locus per generation for microsatellite loci
Nl (12, 4, 3, 3, 3, 9, 11) number of alleles at neutral locus l
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(independently for each year) logit( pi ) from a
multinormal distribution with mean ms1 and variance–
covariance matrix S, where

P
ijZs2

S exp ðKdi j =dcÞ and
dij is the distance between patches i and j. The parameter
d c represents the average spatial autocorrelation dis-
tance. Additionally, we assume that all egg groups in a
given patch may die simultaneously (due to a local
catastrophe) with probability ep.

For the groups that survive, local density depend-
ence is assumed to operate via competition for food in
the late larval instars (Hanski 1999; Nieminen et al.
2004). We assume that the number of adults eclosing
from each surviving larval group in patch i follows the
Poisson distribution with mean �nZ ðn0=1Cbin0=K iÞ,
where bi denotes the number of larval groups that
survived over the winter; Ki is the carrying capacity of
patch i; and n0 is the number of adults that would eclose
per larval group in the absence of density dependence.
We assume that the carrying capacity scales with the
area of patch i as K iZn0c0A

c1

i , where Ai is the area of
patch i in ha, and the product of n0 and c0 gives the
carrying capacity in a patch with the area of 1 ha.

(d) Genetic dynamics

To examine the spatial genetic structure predicted by
the model, we simulated LZ6 independent neutral
loci, four of which are assumed to be allozymes and two
microsatellite loci. These markers were assumed
because they match what Saccheri et al. (2004) have
studied in an empirical study. We assume Nl
Phil. Trans. R. Soc. B (2009)
(lZ1, ., L) alleles in each locus, setting the Nl’s at the
values observed by Saccheri et al. (2004). We assume a
k-allele model, each allele mutating into one of the other
alleles with probability u in each generation.

To model the influence of molecular variation at Pgi
on dispersal, we assume that dispersal rate in the
matrix, given by parameter Dm, is determined by one
locus with two alleles, A and C. This corresponds to the
two nucleoties in the Pgi SNP AA111 (§2). We assume
that individuals with the C allele, the AC heterozygotes
and the CC homozygotes, have higher mobility than
the AA homozygotes. More precisely, we assume
that the flight bouts in the matrix are longer for the
more mobile individuals, but that there is no difference
in the behaviour in the patches (for justification and
alternative assumptions, see the electronic supple-
mentary material, figures S1–S3). In the diffusion
model, the mean displacement that an individual is
expected to move in a homogeneous environment
within its lifetime is given by E½r�Z ðp=2Þ

ffiffiffiffiffiffiffiffi
D=m

p

(Turchin 1998), where D is the dispersal rate and m

is the mortality rate. Assuming that the environment
would consist solely of the matrix habitat, the para-
meters in table 1 give E[r ]Z940 m for the AA
individuals and E[r ]Z9400 m for the AC and
CC individuals. However, while moving in a real
patch network, the movements in the matrix are
interrupted by visits to the patches, reducing the
expected lifetime movement range (see the electronic
supplementary material, figure S4).
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Based on empirical results, we assume two other life-
history differences between the Pgi genotypes. First,
AC heterozygote females have 20 per cent greater egg
clutch size than females of the other genotypes
(Saastamoinen 2007a). Second, the CC homozygotes
have very low early life survival (Orsini et al. 2009).
We have assumed that only 10 per cent of the CC
homozygotes survive to eclosion. Assuming a large
panmictic population, these two assumptions lead
to the maintenance of Pgi polymorphism, with the
equilibrium frequency of the C allele at 0.08 (see
the electronic supplementary material).

(e) Parameter values

Constructing and parametrizing an individual-based
evolutionary metapopulation model is challenging,
made even more so by the intrinsic difficulty of realistic
modelling of dispersal behaviour in a heterogeneous
landscape. Although there is a large amount of
information available for the Glanville fritillary meta-
population from the Åland Islands, there are still
critical data lacking for some key processes, such as
local density dependence. Nonetheless, many par-
ameters can be estimated with independent data
(table 1; see the electronic supplementary material
for justification). We assume constant values for
these parameters throughout the paper. The remaining
parameters that could not be estimated independently
were adjusted to match the simulated demographic
dynamics with the observed demographic dynamics.
The demographic model cannot therefore be critically
tested with independent data, but this model provides a
realistic framework to analyse the genetic dynamics
of the Pgi locus and the evolutionary dynamics of
dispersal. Predictions concerning the spatial variation
in the Pgi allelic composition among individual
populations and among independent metapopulations
occupying separate sub-networks of habitat patches
can be tested with independent data.

(f ) Resolving the coupling of genetic and

demographic dynamics

To examine the causality in the coupling of demo-
graphic (ecological) and genetic (evolutionary)
dynamics, we performed additional simulation experi-
ments for hypothetical networks consisting of identical
habitat patches arranged as a 10!10 regular lattice. We
varied both the density of the patches and the size of the
patches to assess the effect of network structure on
the dynamics. In addition to recording the relationships
between network structure, metapopulation size and
the frequency of the C allele, we conducted a set of
perturbation experiments. We first sampled a set of 100
snapshots from the stationary state of the model to be
used as initial conditions. We then perturbed in the
initial conditions as follows. In demographic perturb-
ations, the size of the local populations was either
doubled (by making a copy of each larval group) or
halved (by removing each larval group with probability
0.5). In genetic perturbations, the frequency of the C
allele was either increased (by transforming AA
individuals to AC individuals with probability 0.5) or
decreased (by transforming AC to AA with probability
0.5). We then followed the dynamics of the perturbed
Phil. Trans. R. Soc. B (2009)
(treatment) and the unperturbed (control) metapopu-
lations for 1 year, averaging over 100 replicates for each
initial condition to remove the effect of demographic
noise. We used the same values for the survival
probability of larval groups and the same realizations
of the probability ep of catastrophic local extinction for
each pair of control and treatment to remove the effect
of environmental noise. We measured the demographic
and genetic responses by computing the difference
between the perturbed and unperturbed metapopula-
tions in the growth rate and in the frequency of
the C allele.
4. RESULTS
(a) Demographic and neutral genetic dynamics

To match the predicted and observed average size of
the metapopulation in terms of the number of occupied
meadows and the pooled number of larval groups in the
autumn, we adjusted two parameters in table 1: ms

and n0. Similarly, to set the corresponding annual
variation in metapopulation size, we adjusted the
standard deviation of the survival of larval groups
over winter (ss). The predicted time-series are shown
in figure 1a,b. Figure 2 compares the observed time-
series for 15 years with a set of 20 independent
comparable predicted series, indicating that the
model reproduces the observed dynamics of the entire
metapopulation reasonably well. The predicted annual
population turnover rate, consisting of local extinctions
and re-colonizations of currently empty patches, is
similar to the observed turnover rate in the real data
(figure 2). The annual rate of extinction is approxi-
mately 30 per cent and the rate of re-colonization of
unoccupied patches is approximately 10 per cent.
Turnover mostly affects the smallest local population.

We examined the sensitivity of the predicted
dynamics to changes in two key parameters of dispersal
and local dynamics, which greatly influence the rate of
establishment of new populations and the rate of local
extinction. To do this, we repeated simulations for
three values of the diffusion rate in the matrix (Dm) and
three values of the average survival rate of larval groups
over winter (ms) (table 2). These values include the
diffusion rates considered to be realistic for the different
Pgi genotypes, while the survival values bracket the
default value in table 1. As expected, the average size of
the metapopulation is very sensitive to winter survival
(table 2). The size of the metapopulation also increases
with the diffusion rate Dm. One critical assumption
here is the relationship between Dm and parameter kp,
which sets the strength of habitat selection (the density
of individuals in the habitat patches over the density in
the matrix; Ovaskainen 2004). We have assumed that
kp increases in proportion to the square root of Dm.
The justification of this assumption and two alternative
assumptions are discussed in the electronic supple-
mentary material (figures S1–S3).

Assuming the set of genetic markers used in the
empirical study by Saccheri et al. (2004) and
the parameter values in table 1 and figure 1e, f shows the
predicted molecular diversity for one allozyme and one
microsatellite marker. Given the mutation rates
in table 1, the allozymes have one or two alleles at
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Figure 1. (a,b) Simulated time-series of metapopulation dynamics in a monomorphic population. (a) The fraction of occupied
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Table 2. Sensitivity of habitat patch occupancy, total number of larval groups in the metapopulation and population turnover to
dispersal rate in the matrix Dm, habitat selection kp and nest survival rate over winter logitK1(ms). (For each combination of
parameters, we simulate neutral ecological dynamics with parameter values shown in table 1. The quantile 0.5 (quantiles 0.025,
0.975) of the fraction of occupied patches (occupancy), number of larval groups, number of colonizations and number of
extinctions were calculated for the autumn population stage and the initial 500 years were dropped if the population persisted up
to 1000 years.)

Dm (m2 dK1) kp logitK1(ms)
years
persisted occupancy no. of larval groups

no. of
colonizations

no. of
extinctions

5!104 130 0.2 26 0.03 (0, 0.42) 767 (1, 17 042) 19 (0, 555) 29 (0, 434)
0.25 43 0.03 (0, 0.19) 840 (11, 4866) 22 (2, 101) 25 (3, 187)
0.3 559 0.04 (0.01, 0.16) 1473 (162, 5658) 9 (1, 24) 10 (0, 39)

5!105 400 0.2 30 0.03 (0, 0.54) 316 (3, 15 975) 43 (1, 856) 44 (6, 495)
0.25 212 0.08 (0.01, 0.26) 1111 (26, 6956) 70 (7, 222) 67 (14, 274)
0.3 1000 0.36 (0.23, 0.49) 10 024 (4466, 18 384) 184 (119, 266) 179 (106, 296)

5!106 1300 0.2 500 0.18 (0, 0.57) 2046 (5, 13 161) 122 (3, 272) 132 (3, 347)
0.25 1000 0.52 (0.37, 0.63) 13 857 (5223, 26 691) 204 (131, 288) 200 (123, 318)
0.3 1000 0.62 (0.52, 0.68) 23 233 (11681, 35 901) 180 (123, 256) 176 (115, 263)
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Figure 3. Histogram of FST values for all pairs of local populations. (a) Empirical results for 1995 (from Saccheri et al. 2004)
and (b) a snapshot from the simulation without Pgi polymorphism are shown. FST was estimated according to Weir &
Cockerham (1984).
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quasi-equilibrium, while the microsatellites have from
approximately five alleles up to the observed number of
alleles (table 1; figure 1). The main discrepancy is the
much lower molecular diversity in the allozymes than
what was observed empirically for some of them, e.g.
for pep A with 12 alleles (Saccheri et al. 2004). It is
possible that the mutation rate assumed for allozymes
was too small. Another possibility is that some
allozymes are not neutral and that selection maintains
high allelic diversity. This is most likely so for Pgi (§4b;
not included as a neutral locus in the simulation), for
which there were eight alleles in the dataset analysed
by Saccheri et al. (2004). Figure 3 shows that the
predicted isolation by distance relationship charac-
terized by the distribution of pairwise FST values
among populations matches well with the observed
result. This indicates that the assumptions made on
the demographic dynamics are consistent with the
observed neutral genetic dynamics, and thus the model
provides a well-justified baseline for examining non-
neutral dynamics.
(b) Comparison between predicted and observed

spatial patterns in the Pgi allele frequency

We next introduce a locus with two alleles, corres-
ponding to the Pgi locus that has been studied
empirically (§2). The parameter values assumed
for the different Pgi genotypes (table 1) are described
in §3e. We start by comparing the predicted spatial
Phil. Trans. R. Soc. B (2009)
variation in the Pgi allele frequency with empirical data.
In §4c we analyse the model further and examine other

predicted consequences of Pgi polymorphism for the
spatial and temporal dynamics of the metapopulation.

The model predictions that are testable with
independent empirical data concern the frequency of

the C allele in local populations of dissimilar ages and
spatial connectivities, and in sub-networks of habitat

patches with different numbers, average sizes and
average connectivities. As a measure of population

dynamic connectivity of patch i in year t, we use SiðtÞZP
jsiNjðt K1Þ exp ðKdijÞ, where Nj(tK1) is the number

of larval groups in patch j in the previous year and dij is
the distance (km) between patches i and j.

First, we compare the frequency of C in newly
established versus old local populations. Consistent

with previous empirical work (§2), the newly estab-
lished populations were colonized in the previous

generation, while, by definition, the old populations
had persisted more than 5 years since the colonization.

Figure 4a gives the predicted result for one snapshot
from the stationary state of the model. In this snapshot,

the frequency of C decreases with increasing connect-
ivity in newly established populations, but increases
with connectivity in old populations. Examining the

slope of the frequency of C against connectivity in 150
independent snapshots shows that the slope in

the simulations was higher for old than that for the
newly established populations with probability 0.96.
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Figure 4. Comparison between predicted and observed spatial variations in the frequency of the C allele among local
populations. (a,c) The frequency of C as a function of connectivity in newly established (open circles, dashed regression lines)
and old populations (filled circles, solid regression lines) is given. (b,d ) One snapshot of the frequency of C in sub-networks
of habitat patches as a function of the pooled number of larval groups in the network at the time of sampling is shown.
In the regression lines, the networks in which the C allele was absent (frequency 0) have been excluded. (a,b) Model
predictions, (c) the empirical result from fig. 2b in Haag et al. (2005) and (d ) an empirical result calculated with the data
described by Hanski & Saccheri (2006) are shown. (e) How the slope in (a) depends on the age of the population (years
since the population has been established), with data for 1500 independent snapshots is shown.
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The mean slope increases systematically with popu-

lation age and turns from negative to positive at the age

of approximately 5 years (figure 4e). Variation in the

estimate of the mean slope increases with population

age as the number of persisting local populations

decreases rapidly with increasing age.

In the empirical data of Haag et al. (2005), there is a

similar interaction between population age and

connectivity in the frequency of the Pgi genotype

( pZ0.013; figure 4c) as in the model-predicted data

(figure 4a). Haag et al.’s (2005) result was based on

allozymes, but there is close correspondence between

the allozyme allele f and the nucleotide allele C in SNP

AA111 in the DNA sequence (Orsini et al. 2009).

Turning to the level of habitat patch networks,

figure 4b shows that, in the model-predicted data, the C

allele was absent on average in 10 per cent (95%

confidence limits 3.1–25%) of the patch networks due

to genetic drift affecting especially the smallest

metapopulations. Among the remaining networks, the

frequency of C decreased with increasing metapopula-

tion size (slope negative in 100% of the 150

independent snapshots). In the empirical data from

the study of Hanski & Saccheri (2006), the C allele
Phil. Trans. R. Soc. B (2009)
was absent from 27 per cent of networks, typically,

again, the smallest networks, and in the remaining

networks the frequency of C decreased with increasing

size of the metapopulation (figure 4d, one-sided

p!0.01). In the electronic supplementary material,

we present comparable modelling results for a neutral

locus, which does not show the patterns reported here

for Pgi.
The results in figure 4a,b may be compared with the

frequency of the C allele in a non-spatial context, in an

infinitely large population with random mating,

assuming the fitnesses of the different SNP AA111

genotypes given in table 1. The non-spatial model

predicts an equilibrium frequency of 0.08 for the C

allele (see the electronic supplementary material),

maintained by the elevated fecundity of the AC

heterozygotes. Both in the model predicted as well as

in the empirical results (figure 4b,d ), the frequency of

C was generally higher than 0.08, suggesting that the

elevated dispersal rate of the AC heterozygotes leads to

a further advantage of the C allele in the real

fragmented landscape. The AC heterozygotes have a

particular advantage in the colonization of isolated

habitat patches, which will be further analysed below.
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exp ðKdijÞ, where Aj is the area of patch j (m2) and dij is the distance (km) between patches i and j. The

correlation in (e) was calculated among local populations. (b,d, f ) The correlations between the number of larval groups and
the frequency of C as a function of mean number of larval groups, at levels of (b) individual patches, (d ) sub-networks of habitat
patches and ( f ) large partitions of the entire Åland Islands are shown. Filled circles in (b,d, f ) represent cross-correlations at
lag of zero, open circles at a lag of less than 2 years (number of larval groups measured 2 years before the frequency of the C
allele) and open squares a lag of more than 2 years (frequency of the C allele measured 2 years before the number of larval
groups). In ( f ), the circles that are not joined by the curve represent the correlation at the level of the entire Åland Islands.
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(c) Phosphoglucose isomerase polymorphism

and demographic dynamics

Having demonstrated that the model predicts cor-
rectly two patterns in the spatial distribution of the
Pgi genotypes, we now turn to a more detailed
analysis of the influence of Pgi polymorphism on the
ecological dynamics.

Given the assumed difference in the dispersal rate
between the AA homozygotes and individuals posses-
sing the C allele, most of which are AC heterozygotes,
we would expect differences in the numbers of habitat
patches visited by the different genotypes in their
lifetime. The details are presented in figure S4 of the
electronic supplementary material; here we summarize
the main results.

As expected, there is a clear difference between the
genotypes, the less dispersive AA individuals visiting on
average 1.4 patches in their lifetime (including the natal
patch), whereas the more dispersive AC individuals
visited on average 6.6 patches, although with much
variation depending on the spatial connectivity of the
natal patch. Regardless of their mobility in the matrix,
Phil. Trans. R. Soc. B (2009)
butterfliesof both genotypes spent about the same time in
the habitat patches (mean 4.9 days for AA and 5.5 days
for AC). The range of lifetime movements was clearly
shorter for the AA homozygotes (mean 183 m) than that
for the AC and CC individuals (mean 3339 m).

Following colonization, the mean number of larval
groups increases and the frequency of C decreases with
increasing population age, and these changes are
greater in isolated than in well-connected populations
(figure 5a,c). These changes generate a negative
correlation between the number of larval groups
and the frequency of C for all population ages, the
strength of the correlation increasing with population
age (figure 5e).

The correlation between the number of larval
groups and the frequency of the C allele may vary
with the spatial scale. Figure 5b,d, f shows the
correlation as a function of the mean number of larval
groups, for the spatial scales from individual habitat
patches (figure 5b) to metapopulations in different sub-
networks (figure 5d ) and to even larger partitions of
the entire Åland network (figure 5 f ). Generally, the
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correlations are negative, and the magnitude of the
correlation increases with population size, excepting
the largest partitions of the entire network, for
which the correlation becomes positive. We compared
the correlations obtained by recording the frequency
of the C allele 2 years before (open squares) or 2 years
after (open circles) recording the number of larval
groups (figure 5d, f ). The correlation is stronger for the
latter case, suggesting that demographic dynamics may
have a stronger influence on genetic dynamics than vice
versa. Simulations conducted under regular patch
networks were in line with the results in figure 5, the
correlation between the frequency of C and population
size being zero for metapopulations inhabiting
sparse networks of small patches, negative for inter-
mediate networks and positive for dense networks of
large patches (see figure S5 in the electronic supple-
mentary material).

To examine the causality behind these correlations,
we conducted a set of perturbation experiments
Phil. Trans. R. Soc. B (2009)
(described in §3f ) in one intermediate network with
a negative correlation and in one dense network with a
positive correlation (see figure S5 in the electronic
supplementary material). In both cases, either increas-
ing or decreasing the frequency of the C allele reduced
the short-term growth rate (figure 6b), apparently
because of the contrasting effects of the AC individuals
having a higher growth rate but the CC individ-
uals having reduced survival. The evolutionarily stable
frequency of the C allele thus represents a compromise
between these two selective forces. Turning to
the demographic effects on genetic dynamics, in the
intermediate network, decreasing metapopulation size
leads to an increase in the frequency of the C allele
(white bars in figure 6a) due to the superior
colonization capacity of the individuals with the C
allele. In the dense network (grey bars in figure 6a), the
responses are in the opposite directions, such that
increasing metapopulation size leads to an increase in
the frequency of C. In this case, the AC individuals do
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not have an advantage in colonization as most habitat
patches tend to be occupied even at relatively low
density. Furthermore, the distances between the
patches are short, and also the AA individuals can
colonize empty patches. At high densities, density
dependence becomes important, essentially truncating
the population sizes to a level determined by patch size.
In this situation, the AC individuals have a selective
advantage, as they spread their reproductive effort
among a larger number of patches, thus avoiding high
mortality in the most crowded patches more effectively
than the AA individuals. Finally, in dense patch
networks, the overall frequency of the C allele is
much lower than that in sparse networks (figure 4), and
therefore increasing the frequency of the C allele does
not cause much reduction in population growth due to
reduced survival of the CC individuals.

Concerning the overall effect of the Pgi poly-
morphism on metapopulation dynamics, we return to
figure 1, which shows the predicted long-term dynamics
for the entire metapopulation in the absence and
presence of Pgi polymorphism. This comparison
suggests that the presence of Pgi polymorphism some-
what increases the mean metapopulation size, but does
not change the amount of variability (omitting the initial
500 years; the means in figure 1a–d are 0.25, 6351, 0.28
and 7297, and the coefficients of variation are 0.30,
0.51, 0.32 and 0.48, respectively). In the presence of
Pgi polymorphism, isolated patches have not only
greater colonization probabilities (figure 6c), but also
the respective populations have smaller extinction
probabilities (figure 6d ). The latter result indicates
that individuals with the C allele increase the demo-
graphic rescue effect. The frequency of C increases with
the mean local extinction probability in a patch network
(figure 6e), indicating that this allele has a selective
advantage when there are more opportunities for
colonizing empty patches. Pgi polymorphism increases
the metapopulation size in intermediate patch networks,
but not in large patch networks (figure 6 f ).
5. DISCUSSION
There are extensive theoretical (Olivieri et al. 1995;
Bowler & Benton 2005; Ronce 2007) and empirical
literatures on the evolution of dispersal, the latter
especially on the evolution of wing polymorphism
in insects (Roff 1986; Roff & Bradford 1996).
Evolution of dispersal is receiving much attention
in the context of management and conservation
(Kokko & Lopez-Sepulcre 2006), since climate
change, habitat fragmentation and species invasions
have ecological consequences related to dispersal and
its evolution. Assessing the selection gradients in
the evolution of dispersal is challenging, however,
as the movements of individuals are affected by
complex behavioural and physiological responses to
biotic and abiotic environmental conditions (Nathan
et al. 2008), and as the evolution of dispersal is
known to be affected by a large number of processes
(Ronce 2007). Another important challenge, which has
been the particular focus of the present work, is the
feedback between the demographic dynamics and
the evolutionary dynamics of dispersal-related traits.
Phil. Trans. R. Soc. B (2009)
An evolutionarily stable dispersal strategy is to make
movement decisions based on information about the
spatio-temporal availability of resources necessary for
survival and reproduction. If there are no costs to
movement and the information is complete, this leads
to the ideal free distribution at the population level.
Any more realistic model of the evolution of dispersal
must include an explicit or implicit assumption about
the cost of dispersal. An example of an implicit
assumption is that individuals undergo at most one
dispersal event during their lifetime, leading to the risk
of moving into a location where habitat quality is lower
than that in the natal population (Asmussen 1979;
Myers et al. 1995). Explicit assumptions about the cost
of dispersal include increased mortality during dis-
persal (Murrell et al. 2002; Rousset & Gandon 2002),
the related assumption about distance-dependent
dispersal (Heino & Hanski 2001) and time lost during
dispersal. Our model includes the latter two assump-
tions. Glanville fritillary females typically spend much
time searching for oviposition host plants before
accepting one (Singer & Hanski 2004). There is
presently no quantitative information on the extent to
which time spent during dispersal reduces the ovi-
position rate, and we have made the somewhat
simplistic assumption that the realized oviposition
rate is proportional to the search time.

Predictive modelling of the evolution of dispersal
calls not only for realistic movement models but also for
knowledge about the trade-offs that may involve
dispersal traits. Dispersal ability is often observed or
assumed to trade off with the other life-history traits, so
that the most dispersive individuals have reduced
fecundity, survival or competitive ability (e.g. wing
dimorphic insects, Roff & Bradford 1996). Somewhat
unexpectedly, there is no trade-off between dispersal
rate and ovipositing rate or even lifetime fecundity, in
the Glanville fritillary (Hanski et al. 2006; Saastamoinen
2007b). On the other hand, there are other trade-offs at
molecular, physiological and population levels that are
potentially important.

A trade-off involving molecular and physiological
traits, although not included in our model, relates to
an interaction between ambient temperature and Pgi
genotype in affecting dispersal rate. The difference in
the flight metabolic rate and the observed dispersal
rate in the field between the AC and AA genotypes is
the greatest in low ambient temperatures (Niitepõld
et al. in press), probably because of temperature-
dependent enzyme kinetics between the different
isoforms of the Pgi enzyme (Watt 1983, 1992). We
based our assumptions about the genotypic difference
in dispersal on measurements in low-temperature
conditions, because such conditions are frequent at
the high latitude where the study metapopulation
is located.

The highly dispersive AC individuals are good
colonizers, but at the same time they exhibit a
high rate of emigration from habitat patches, and,
therefore, they often disperse away from high-quality
patches sooner than would be optimal. This relation-
ship between immigration and emigration can be
interpreted as a population-level trade-off (Hanski
et al. 2006). On the other hand, fast emigration has
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the benefit of reducing inbreeding. Butterflies that
eclose in the generally small newly established popu-
lations are likely to mate with their full sibs, selecting
against the good dispersers with the AC genotype
because of the low fitness of the CC homozygotes.
Inbreeding depression generally selects for elevated
dispersal (Bengtsson 1978; Waser et al. 1986; Motro
1991; Gandon 1999).

Owing to the difficulties in obtaining relevant data
for quantitative modelling of evolution of dispersal,
there has been limited success in using models to make
quantitative predictions and testing these predictions
against empirical data. In the present work, we have
attempted to bridge the gap between theory and
empirical work by using the large amount of empirical
information that is available for the Glanville fritillary
butterfly to construct a realistic individual-based
model. Owing to the complexity of the model, and
the need to adjust some parameters to match the
predicted and observed demographic dynamics, we
cannot test the predicted ecological dynamics with
independent data. On the other hand, we could test
two predictions about the spatial variation in the
Pgi allele frequency among individual populations
and among independent metapopulations occurring
in sub-networks with different numbers, sizes and
connectivities of habitat patches (figure 4). The model
correctly predicts increasing frequency of the Pgi SNP
AA111 C allele with decreasing connectivity in newly
established populations, and decreasing frequency with
decreasing connectivity in old populations. At the
patch network level, the frequency of C was predicted
and observed to increase with decreasing metapopula-
tion size. This result is in line with the general
expectation that high rate of local extinction, which is
the case for small metapopulations occupying marginal
patch networks, generally selects for increased dispersal
rate in providing more opportunities for re-colonization
(Heino & Hanski 2001; for a review see Ronce &
Olivieri 2004).

Previous observational studies on the large meta-
population of the Glanville fritillary butterfly have
strongly suggested that demographic dynamics and
evolution of dispersal affect each other (Hanski &
Saccheri 2006; Saccheri & Hanski 2006). Our results
provide detailed insight into the nature of this coupling.
The demographic dynamics impose a number of
selection pressures at the Pgi locus. Elevated popu-
lation turnover rate in highly fragmented landscapes
selects for the C allele, especially when the meta-
population is at low density and there are opportunities
for colonization. In less fragmented landscapes, the more
dispersive genotype is selected for when the metapo-
pulation reaches high density, probably because in
these situations the level of resource and kin compe-
tition become elevated, selecting for more dispersal
(Hamilton & May 1977; Frank 1986; Taylor 1988).
Thus, variation in demographic dynamics creates
variation in selection gradients, which helps maintain
Pgi polymorphism at the regional level.

Considering the genetic effects on demographic
dynamics, the Pgi polymorphism apparently helps the
species persist in marginal situations, due to more
effective colonization of unoccupied habitat (by the
Phil. Trans. R. Soc. B (2009)
AC heterozygotes) and rapid use of the respective
resources (by the AA homozygotes). As selection
operates at the level of individuals, evolution does not
optimize the fitness or size of a population (Hamilton &
May 1977; Comins et al. 1980). In extreme cases, the
mismatch between the ‘best for the individual’ and the
‘best for the population’ may lead to an evolutionary
suicide (Gyllenberg et al. 2002). However, our
perturbation experiments with the present model
suggested that under several network structures, the
allele frequencies in the Pgi gene evolve to values that
are close to the optimal in terms of demographic
performance, as perturbing the Pgi allele frequency
either upwards or downwards from the evolved value
led to reduced growth rate. By contrast, perturbing
the metapopulation size upwards or downwards leads
to opposite responses in the Pgi allele frequency, the
directions of these responses depending further on
the size of the metapopulation. In brief, there is a strong
coupling between the ecological metapopulation
dynamics and the genetic dynamics in a locus affecting
dispersal and other life-history traits in this system.
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