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Tissue-resident macrophages exist in unique environments, or niches, that inform their
identity and function. There is an emerging body of literature suggesting that the qualities
of this environment, such as the types of cells and debris they eat, the intercellular
interactions they form, and the length of time spent in residence, collectively what we call
habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage’s
metabolic state can inform their function, including whether they resolve inflammation and
protect the host from excessive perturbations of homeostasis. In this review, we
summarize recent work that seeks to understand the metabolic requirements for
tissue-resident macrophage identity and maintenance, for how they respond to
inflammatory challenges, and for how they perform homeostatic functions or resolve
inflammatory insults. We end with a discussion of the emerging technologies that are
enabling, or will enable, in situ study of tissue-resident macrophage metabolism.

Keywords: tissue-resident macrophages, metabolism, homeostasis, inflammation, development
INTRODUCTION

In his “An Essay Concerning Human Understanding” (1), John Locke famously argued against
“innate principles” or the notion that we are born with knowledge that informs our identity. Instead,
Locke posited that our identity (and thus uniqueness) arises from sensory experience, “… anything as
existing at any determined time and place, we compare it with itself existing at another time, and
thereon form the ideas of identity and diversity.” Although Locke’s ideas were ultimately imperfect,
his thinking spurred centuries of discussion on the nature of identity: is our identity innately
informed or driven by experience? With this as our backdrop, several decades of work on the aptly-
named innate immune system has informed a broad understanding of intrinsically-encoded
receptors and sensors that serve to fight infection and keep the host healthy. However, with the
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development of new tools and methods, there is an emerging
body of knowledge on how an innate immune cell’s lived
experience informs its identity and function. No more so is this
true than with the study of tissue-resident macrophages (TRMs).

Specific environmental factors, such as nutrient and oxygen
availability, tissue material and debris that TRMs are exposed to,
and the length of time spent in this habitare, as well as the events
that a TRM experience (such as infectious or sterile insult), all
factor in to TRM identity and function, an idea that has been
beautifully articulated in a series of reviews and prospective
articles (2–5). Building from these insights, we propose that
each of these factors contribute to the metabolic state of TRMs,
which in turn informs the efficiency and nature of TRM function.
In this review, we discuss recent advances in our understanding
of TRM metabolism, focusing on studies that explore TRM
metabolism in situ/in vivo. We will highlight metabolic
regulation of three key aspects of TRM biology: TRM identity,
responses during infection and inflammation, and homeostatic/
reparative processes. We end with a discussion of methods
previously employed to study TRM metabolism as well as
emerging technologies that we foresee will lead to a significant
advancement in our understanding of TRM metabolism.
METABOLIC REGULATION OF TISSUE-
RESIDENT MACROPHAGE IDENTITY

Tissue-resident macrophages (TRMs) are a diverse family of cells
that arise from a common erythro-myeloid precursor, develop a
core macrophage signature during embryogenesis, and acquire
specialized transcriptional programs during organogenesis (6–8).
TRMs perform a number of canonical immune functions as well as
tissue-specific physiological functions throughout their lifespan (3,
4, 9, 10). For instance, cells in the developing organism begin to
undergo apoptosis in the yolk sac which continues in all organs
throughout development. These dying cells must be cleared by
TRMs to ensure proper organogenesis (11). Osteoclasts, a bone-
resident TRM (12), are required for bone resorption and
homeostasis, such that perturbed osteoclast activity results in
osteopetrosis (diminished osteoclast function) or osteoporosis
(excessive osteoclast function) (13). Microglia, a brain-resident
TRM, are required for synaptic pruning and optimal
neurodevelopment. Alveolar macrophages, a lung-resident TRM,
are required for surfactant clearance and airway integrity (4).
Adipose tissue TRMs contribute to insulin sensitivity,
adipogenesis, and adaptive thermogenesis (14). Bone marrow and
splenic red pulp macrophages clear millions of spent erythrocytes
each day, essential for maintenance of iron homeostasis and
prevention of diseases such as hemochromatosis, thalassemia,
and chronic anemia (15). Thus, TRMs are exposed and adapt to
a multitude of tissue-specific growth factors (16–19), dying cells
and debris with varying metabolic properties (20–27), and unique
(and often extreme) tissue environments (3, 28, 29) to ensure tissue
and organismal homeostasis.

This is important because TRMs are generally long-lived
and self-renewing, and the programs they acquire during
Frontiers in Immunology | www.frontiersin.org 2
development are thought to persist throughout life and
transmit to daughter cells (30–33). We are beginning to
elucidate some of the tissue-specific metabolic factors that
drive regulation of TRM identity. For instance, in the liver,
Kupffer cells (the main liver TRM population) rely on the
cholesterol synthesis intermediate desmosterol to induce the
nuclear receptor liver X receptor alpha (LXRa) (34), which in
turn is necessary to induce and maintain Kupffer cell
transcriptional identity (34–36). These results are particularly
intriguing because previous work suggests that the alternative
LXRa ligand oxysterol can, in some instances, induce and
potentiate pro-inflammatory gene transcription (37, 38) but in
other instances induce cholesterol efflux, repress pro-
inflammatory responses, and prevent inflammasome activation
(39–41). These findings have important implications for TRM
metabolism during homeostasis and resolution, which is
discussed further below. Similarly, both splenic red pulp and
bone marrow-resident macrophages depend on the porphyrin
synthesis product heme, which induces expression of the lineage-
defined transcription factor Spi-C via degradation of the
transcriptional repressor BTB Domain And CNC Homolog 1
(BACH1) (42, 43). However, unlike for Kupffer cells, the source
and timing of heme uptake in splenic red pulp or bone marrow-
resident macrophages remains unknown. One possibility is that
engulfment of dying erythrocytes, which both populations
perform millions of times a day (24, 44), provides the key
defining source of heme. Alternatively, splenic red pulp
macrophages are seeded in a WT1+ stromal network similar to
that observed in Kupffer cells (45), which may synthesize and
release heme that is subsequently imported via the heme
transporter HCP1 (SLC46A1) (46, 47).

The above studies also highlight an important consideration:
TRMs are generally evenly distributed throughout a complex
meshwork of interacting stromal and tissue-specific cells, each of
which contribute to the overall nature of the tissue environment
(48). Understanding such interactions is understandably
complex when considering the exponential nature at which
intercellular interactions scale (49). Nonetheless, recent work
has illustrated the contribution of resident stroma to the
metabolic regulation of TRM identity. For example, a network
of cavity-resident stromal cells produce the metabolite retinoic
acid via transcriptional regulation by Wilms’ Tumor 1 (WT1)
(50). Retinoic acid is subsequently required for cavity-resident
TRM identity and maintenance through induction of the
retinoic-acid-responsive transcription factor GATA6 (16, 17,
50), which in turn regulates the enzyme aspartoacylase (Aspa),
necessary for the synthesis of acetyl CoA (51). Conversely,
rapamycin-insensitive mTORC2 acts as a negative regulator of
GATA6, and its suppression is required for peritoneal TRM
differentiation (52). Given that WT1+ stromal cells are a major
constituent in two unrelated tissue environments (45, 50), it
seems reasonable to conjecture that WT1+ stromal cells are a
major non-cell-autonomous regulator of TRM metabolism. In
support of this hypothesis, two independent studies observed
that the liver also features WT1+ hepatic stellate cells that appear
to be important regulators of liver fibrosis and scarring (53, 54).
How these cells interact and regulate liver TRM metabolism
May 2021 | Volume 12 | Article 665782
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remains unknown. Collectively, this work serves as a
demonstration of the importance of understanding the specific
environmental factors that contribute to macrophage identity.
Beyond these studies, not much else is known about the
metabolic regulation of macrophage identity. Some clues come
indirectly from previous studies. For instance, it was previously
shown that microglia require cholesterol coupled with TGF-b
and IL-34 for identity and phagocytic capacity in mixed cell
cultures in vitro, which were specifically derived from astrocytes
(55). This is consistent with transcriptional analysis of
developing microglia indicating significant upregulation of a
lipid metabolism program (56). Furthermore, the development
of various TRM subsets depend on colony stimulating factor 1
receptor (CSF1R), a receptor for both CSF1 (M-CSF) and IL-34.
CSF1R signaling induces macropinocytosis by macrophages (57),
suggesting that TRM development and identity depend on
lysosomal catabolism of solutes, such as degradation of
proteins to generate amino acids (58, 59). Given these findings,
it will be interesting to determine how lineage-defining cytokines
combine with tissue-specific metabolites to establish and
maintain TRM identity.

It is important to note that here, we focus on TRMs that have
recently been defined as “resident macrophages” or macrophages
that arise in a tissue early on in development. This population is
in contrast to monocyte-derived macrophages that can arise in
some tissues later in life, during the course of inflammation, or in
some cases seed during inflammation and remain after
resolution, as reviewed recently (2). This distinction will
remain important moving forward not just for basic
understanding of macrophage metabolism, but also as a
possible therapeutic strategy where these subsets are either
beneficial (60) or detrimental (30, 61) to the health of the host.
Additionally, most tissues feature multiple types of resident
macrophages (2, 5). For example, there are at least three
distinct subsets of macrophages in the spleen, defined both by
location and physical properties: red pulp, marginal zone, and
metallophilic (15). As noted, red pulp macrophages rely on heme
metabolism for their identity, whereas neither marginal zone nor
metallophillic macrophages depend on heme or Spi-C. Instead,
both populations depend on LXRa (62), presumably through
metabolic processes similar to Kupffer cells. Given this, it will be
important for future studies of TRM metabolism to take into
consideration the unique intra-tissue environment differences,
including nutrient (63, 64) and oxygen (65, 66) availability, as
well as the cell types and debris they engulf (24).
MACROPHAGE METABOLISM DURING
CANONICALLY-DEFINED
MACROPHAGE POLARIZATION

Pro-Inflammatory Macrophages
Danger-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs) are at the core of sterile
inflammation and microbial infection, respectively (67, 68). Both
DAMPs and PAMPs are known to induce an inflammatory
Frontiers in Immunology | www.frontiersin.org 3
response coordinated by innate immune cells, including
monocytes, macrophages and dendritic cells, and that
uncontrolled chronic inflammation is associated with a myriad
of human diseases (68). Notably, the growing field of
immunometabolism has underscored how cellular metabolic
reprogramming is at the center of this coordinated
inflammatory response (69–71). Work more than three decades
ago hinted at metabolic changes in macrophages exposed to
microbial ligands (72–74), but through a series of elegant
in vitro experiments, we have come to better understand the
precise nature of these metabolic changes. The specifics of these
metabolic changes are detailed in several fantastic reviews. Here,
we briefly outline the broader metabolic switch that occurs in
canonically pro-inflammatory macrophages. Typically, a naïve
macrophage, defined as a macrophage differentiated from bone
marrow stem and progenitor cells cultured in high glucose (~20-
25mM), normoxic oxygen (~21% or ~160 mmHg O2), and the
differentiation cytokine(s) M-CSF/GM-CSF, relies primarily on
the tricarboxylic acid (TCA) cycle and mitochondrial respiration
to generate much of the ATP used for basic cellular processes.
However, seminal work from O ’Neill and colleagues
demonstrated that activation with the PAMP lipopolysaccharide
(LPS) induces macrophages to undergo a metabolic switch from a
state of high oxidative phosphorylation (OXPHOS) to a highly
glycolytic state (75). Accumulation of glycolytic intermediates and
byproducts further support primary functions of activated
macrophages, including providing glucose-6-phosphate to the
pentose phosphate pathway (PPP) which contributes to both
building of biomass and regulating the redox state, as well as
induce the production of immune effectors such as itaconate and
IL-1b [summarized in depth here (69)]. Building from this work,
numerous studies have demonstrated the importance of this
metabolic switch for key inflammatory macrophage functions,
including bacterial phagocytosis, production of pro-inflammatory
cytokines, synthesis of antimicrobial peptides, and generation of
reactive oxygen species (ROS) (76–79). Collectively, this work
demonstrates that quiescent macrophages undergo striking
metabolic changes in support of one of its core immunological
roles as a defender against invading pathogens (Figure 1).

Pro-Resolving Macrophages
Together with defense against pathogens, macrophages are key
orchestrators of the post-injury response (24, 29, 80). This
response, canonically known as the wound healing or resolution
response, is in many ways the mirror image of the canonical pro-
inflammatory response, including broad metabolic changes (29,
81). Generally speaking, these ‘pro-resolving’ macrophages are
derived using the same base culturing conditions as pro-
inflammatory macrophages, but naïve macrophages are
stimulated with IL-4 instead of LPS (or IFNg). In contrast to
canonical pro-inflammatory macrophages, pro-resolving
macrophages remain significantly increase TCA cycle activity and
OXPHOS, with less dependence on glycolysis, as well as exhibiting
significantly increased fatty acid oxidation (FAO) (82, 83). Though
it is important to note that the ‘importance’ of glycolysis
remains in debate, and likely depends on the nature of the
culture conditions (e.g. glucose and oxygen availability) (83, 84).
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The observed increase in TCA cycle activity is the result of IL-4-
induced PPARg transcriptional activity, which in turn modulates
expression of key enzymes, respiratory chain function, and
glutamine metabolism (85–87). An additional benefit of
enhanced TCA cycle activity is the accumulation of a-
ketoglutarate (a-KG), as a-KG was shown to blunt canonical
pro-inflammatory cytokine production via suppression of
inhibitor of nuclear factor kappa-B kinase subunit beta (IKKb)
and to induce canonical anti-inflammatory cytokine production
via activation of the histone demethylase Jumonji domain-
containing protein D3 (JMJD3) (88).

One final aspect of this metabolic program worth
highlighting, given its macrophage response-defining role, is
the importance of arginine and polyamine metabolism (29). In
mouse macrophages, it is generally thought that arginine is
catabolized via two distinct routes: via an inducible nitric
Frontiers in Immunology | www.frontiersin.org 4
oxide synthase (iNOS) catalyzed dehydration reaction that
produces citrulline and nitric oxide or by an arginase 1 (Arg1)
catalyzed hydrolysis reaction that produces ornithine and urea
(77). The former reaction is thought to be a key component of
the pro-inflammatory macrophage response to pathogen
invasion (78), whereas the latter is thought to be a key step to
the generation of pro-resolving macrophages (81). Ornithine,
and its conversion to putrescine via ornithine decarboxylase
(ODC), as part of polyamine synthesis, is essential for multiple
facets of the induction and maintenance of pro-resolving
macrophages (89) (Figure 2).

Considerations Moving Forward
Several excellent reviews provide a survey of our general
understanding of the metabolic changes that arise in macrophages
in response to IL-4 stimulation (29, 69, 71, 81). Although IL-4 has
FIGURE 1 | Overview of metabolic pathways induced in pro-inflammatory macrophages. Shown is the canonical pro-inflammatory macrophage metabolic program
(Canonical Pathways) as well as some of the more predominantly defined intermediates that accumulate in pro-inflammatory macrophages (Intermediates).
Also included are some tissue-resident macrophage (TRM)-specific metabolism observations, including that TRMs in some tissues upregulate OXPHOS and
glutaminolysis, that lipids (such as oxidized phosphoplipids and high/low-density lipoproteins) can drive a hyper-metabolic state, and in some contexts, glucose is
shunted into glycogenesis.
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served as an important model for pro-resolving macrophage
metabolism, how these macrophages arise in vivo remains an
intriguing area of investigation. For instance, one likely situation
occurs after the clearance of a pathogen or during the resolution of a
sterile injury. Those macrophages that do not die as part of the
immune response (e.g., via pyroptosis) switch to a pro-resolving
state. A less obvious example arises in the case of type 2 immunity,
where the specific infection (e.g., helminths) directly induces a pro-
resolving phenotype in macrophages. Intriguingly, macrophages are
also thought to assume a wound healing phenotype during
homeostatic apoptotic cell clearance (termed ‘efferocytosis’).
Recent work suggests that, at least in some contexts, both IL-4 (or
IL-13) and exposure to apoptotic cells is required to induce a pre-
resolving macrophage response in vivo (90) (Figure 2). Thus, it will
be important to understand the shared and unique metabolic
features of TRMs in each of these contexts.
Frontiers in Immunology | www.frontiersin.org 5
Several controversies related to macrophage metabolic (re)
programming remain unresolved. This is likely due, in part, to
supraphysiological culturing conditions. The use of in vitro
systems will remain the key to understanding macrophage
metabolism at a mechanistic level, therefore solutions as
outlined previously are warranted. An additional complication
relates to how metabolic pathways are perturbed. The use of
small molecule inhibitors, RNA interference, and increasingly
genetic deletion, to perform ‘down’ assays has informed much of
our understanding. However, it has also likely led to conflicting
results, for instance due to off-target effects in the case of small
molecules or genetic compensation in the case of genetic
deletion. Furthermore, it remains controversial how different
types of macrophages utilize these canonical metabolic programs
and how similar (or not) murine and human macrophage
metabolism are. For example, whether differential arginine
FIGURE 2 | Overview of metabolic pathways induced in pro-resolving macrophages. Shown is the canonical anti-inflammatory/pro-resolving macrophage metabolic
program (Canonical Pathways) as well as some of the more predominantly defined intermediates that accumulate in pro-resolving macrophages (Intermediates).
Also included are some tissue-resident macrophage (TRM)-specific metabolism observations, including that apoptotic cells and/or cytokine (e.g., IL-4/IL-13) induce
upregulation of glycolysis, that succinate accumulates and signals via SUCNR1 to drive inflammation resolution, and that novel pathways such as desmosterol
synthesis are induced in specific tissues, such as the CNS.
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catabolism via iNOS and ARG1 is relevant for inflammatory and
resolving functions in human macrophages remains highly
debated (91, 92).

The use of complimentary approaches, including the
incorporation of more ‘up’ assays in vitro and in vivo, will
allow the field to understand these important questions in
greater detail.
TISSUE-RESIDENT MACROPHAGE
METABOLISM DURING INFLAMMATION

As noted, much of our understanding regarding metabolic
control of macrophage immunity has come from in vitro
studies. Recently, groups have begun to extend these findings
into in vivo settings, particularly into physiologically relevant
models of human disease (93). In this section, we will first
summarize the state of in vivo macrophage immunometabolism
studies in the context of inflammation. We will particularly focus
on the most recent findings of how metabolic reprogramming
impacts and shapes the functions of inflammatory macrophages
in vivo (Figure 1). However, it is important to note that, aside
from work on microglia, the majority of in vivo macrophage
metabolism research does not necessarily delineate TRM subsets,
which will be important given there is likely spatiotemporal
regulation of macrophage metabolism, as seen in the tumor
microenvironment (94).

As briefly discussed above, aerobic glycolysis is a key feature
of inflammatory macrophages. Interestingly, byproducts of
glycolysis are repurposed to support additional metabolic
pathways that drive important macrophage functions (69).
Most notably, LPS-activated macrophages accumulate TCA
cycle intermediates that possess immunoregulatory properties
(9). The metabolite succinate was identified as an inflammatory
metabolite that induces IL-1b transcription via HIF-1a (75). In
these early studies, both macrophage-specific absence of Hif1a,
or treatment with the GABA-shunt inhibitor vigabatrin (which
prevents succinate production) protected from endotoxin-
induced sepsis (75). Interestingly, a recent study from Cardaci
and colleagues found that supplementation with D-mannose
given intraperitoneally (i.p.) or via water/oral gavage protected
mice from endotoxin-induced sepsis and dextran sodium salt
(DSS)-induced colitis, respectively (95). Mechanistically,
D-mannose treatment acts to competitively inhibit glycolytic
production of succinate, triggering a counter-intuitive increase in
mannose-6-phosphate levels, possibly owing to low level
expression of the enzyme phosphomannose isomerase (MPI)
in macrophages (95). Additionally, inflammatory macrophages
release succinate into the extracellular environment, which then
triggers an autocrine/paracrine amplification loop via signaling
through the succinate receptor SUCNR1/GPR91, increasing
IL-1b production and exacerbating joint swelling in a mouse
model of arthritis (96). Intriguingly, synovial joint macrophages
were recently described as a locally-renewing TRM population
that provide a key barrier in the synovial joint that, unlike
infiltrating monocyte-derived macrophages, act to prevent/dampen
Frontiers in Immunology | www.frontiersin.org 6
inflammation (97). How local succinate production acts on each
of these populations of synovial joint macrophages is an
intriguing question, especially given succinate can have
opposing actions depending on the cell type and context. For
instance, inflammatory microglia-derived succinate was shown to
instruct neural stem cells, via GPR91, to secrete prostaglandin E2
(PGE2). PGE2 in turn scavenged excess succinate, resulting in
decreased macrophage activation and alleviated inflammation in
experimental autoimmune encephalomyelitis (EAE), a mouse
model of CNS inflammation (12). This work highlights how
dynamics in the specific tissue microenvironment can lead to
unexpected results in vivo.

As highlighted in recent work from the O’Neill and Artyomov
labs, the TCA cycle intermediate itaconate has emerged as a
model ‘immuno-metabolite’, given its essential roles for both
pro-inflammatory and pro-resolving macrophage function (98).
On one hand, itaconate (as well as the cell-permeant derivates
dimethyl itaconate or 4-octyl itaconate) acts as a potent anti-
inflammatory modulator by suppressing production of various
inflammatory cytokines IL-1b, IL-6, and the type I interferon
IFNb. Mechanistically, itaconate (or its derivatives) functions
through multiple mechanisms, including inhibiting glycolytic
enzyme activity, activation of the oxidative stress response
transcription factor NRF2, modification and inhibition of the
NLRP3 inflammasome, and induction of ATF3-mediated
regulation of IkBz (99–105). How endogenous itaconate
directly affects TRMs in vivo is less clear, especially because
itaconate appears to directly inhibit pro-resolving macrophage
differentiation (81, 106), and enhance IFNb production in
response to LPS (104). Additionally, in vivo studies have either
used mice globally-deficient in the enzyme necessary to produce
itaconate from citrate (immune responsive gene 1, Irg1) or
delivered exogenous itaconate (or one of the cell-permeant
derivates), making conclusions about TRMs versus other
tissue-resident cells capable of utilizing exogenous itaconate
challenging (99). Nevertheless, absence of Irg1 or delivery of
exogenous itaconate derivatives were shown to dampen LPS-
induced sepsis (100), alleviated skin pathology in a mouse model
of psoriasis (99), limits myocardial infarct size during ischemia-
reperfusion injury (103), and suppressed inflammation in urate
crystal-induced peritonitis (102).

This seminal series of studies triggered subsequent
exploration of immunoregulatory roles of primary metabolites.
For instance, Fitzgerald and colleagues found that the TCA cycle
intermediate fumarate inhibits pyroptosis via succination of the
cysteines in the pyroptosis effector protein gasdermin D
(GSDMD). Indeed, treatment of mice with Tecfidera, the
fumarate derivative dimethyl fumarate (DMF), alleviated
symptoms in both EAE and Familial Mediterranean Fever
mouse models as well as providing a mechanistic explanation
for the immunomoulatory activity of Tecfidera in MS patients
(107). Unlike in classical LPS-activated macrophages,
‘hyperactivation’ of macrophages is induced by endogenous
DAMPs, such as oxidized phospholipids (108). Hyperactivated
macrophages also exhibit hyperactive metabolic activity, relying
on glycolysis, oxidative phosphorylation, and glutamine
catabolism (109). Hyperactive macrophages accumulate the
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TCA cycle intermediate oxaloacetate, likely as a result of multiple
substrates feeding the TCA cycle, which exacerbates IL-1b
production (109). This phenomenon was observed in plaque-
associated macrophages in Ldlr- and Apoe-deficient mice fed
high fat diet, which could be prevented by inhibiting either
glutaminase or ATP citrate lyase (109, 110). The atherosclerotic
plaque is likely a unique microenvironment itself, as the
metabolic state of plaque-associated macrophages (also known
as Mox macrophages) seems to be characterized by several
unique facets (111), reviewed in greater detail elsewhere (26).
We highlight Mox macrophages, however, because recent work
suggests that adipose TRMs in lean adipose tissue exhibit
metabolic characteristics similar to Mox macrophages, possibly
because of differences in individual oxidized phospholipid
species (112). Contrarily, adipose TRMs isolated from obese
mice show characteristics of canonical pro-inflammatory
macrophages such as the IL-1 pathway (113).

Unsurprisingly, the TCA cycle is not the only metabolic
pathway relevant in inflammatory macrophages. For example,
LPS induces translocation of histone deacetylase 3 (HDAC3) to
the mitochondria which subsequently deacetylates and inactivates
the alpha subunit of hydroxyacyl-CoA dehydrogenase (HADHA),
an enzyme essential for fatty acid oxidation (FAO), which was
necessary for IL-1b production (114). Myeloid cell-specific
deletion of HDAC3 lessened the severity of both LPS-induced
sepsis and diet-induced type 2 diabetes, the latter of which
appeared to be a direct effect on adipose TRM metabolism
(114). Additionally, LPS stimulation upregulates the choline
transporter CTL1 (SLC44A1), facilitating increased uptake and
generation of phospho-choline species (via the Kennedy
Pathway), altering mitochondrial phospholipid and sphingolipid
species profiles, and contributing to NLRP3 inflammasome
activation (115). Inhibition of choline kinase lessened the
inflammation in both LPS-induced sepsis and a urate crystal-
induced gout model, as well as reduced splenomegaly and size in a
mouse model of Muckle-Wells syndrome (115). The changes in
macrophage lipid metabolism observed in response to LPS
stimulation are consistent with two recent studies of lipid
metabolism in inflammatory macrophages (116, 117). Finally,
one carbon, glycogen, and PPP metabolism were shown to
regulate numerous aspects of the in vivo inflammatory
macrophage response to LPS (118–120). Taken together, it is
clear that TLR signaling induces a plethora of metabolic changes
in macrophages in vivo. It will be interesting to see how different
TRM populations respond to the combination of inflammatory
stimuli and unique tissue environment factors, such as the unique
factors in adipose tissue highlighted above. This is exemplified by
a recent study which found that alveolar macrophages, who reside
in a glucose-restricted environment, rely on OXPHOS and not
glycolysis to mount an inflammatory response to acute
inflammation induced by LPS or to influenza infection (121).
Understanding how alveolar macrophages are able to produce the
requisite inflammatory cytokines in the absence of glycolytic
reserve may also elucidate novel immunoregulatory metabolites.
Indeed, elucidating these unique metabolic regulatory pathways,
both in alveolar macrophages but also stromal and immune cells
that regularly interact with alveolar macrophages, could prove
Frontiers in Immunology | www.frontiersin.org 7
important for managing the devastating consequences of chronic
lung disease [the lung metabolic environment is reviewed in detail
elsewhere (122)]. As has likely become apparent, the vast majority
of in vivo studies of inflammatory macrophage metabolism use
variations of the LPS-induced sepsis model. Naturally, the
immunometabolism of TRMs in response to tissue-relevant
infections is an important and rapidly growing area of research.
For instance, alveolar macrophages rely on different metabolic
programs depending on the type of infection (121, 123).
Additionally, emerging evidence suggests that commensal
microbes contribute to metabolic reprogramming of intestinal
TRM populations (124–126). Given that tissue-specific infectious
defense is a core function of TRMs, moving beyond LPS will
certainly provide new insights into unique TRM metabolic
programs used during infectious immunity.

Of the long-lived TRM populations, microglia metabolism is
arguably the most studied. Beginning with seminal work from
the Barres lab, microglia researchers realized very early on
that the CNS environment, including the debris that microglia
engulf, the abundant (and unique) lipid species present, and the
types of damage that occur, are equally important to informing
microglia metabolism as intrinsic programming (63, 64, 127,
128). In some ways, microglia behave similarly to other
macrophages, such as the metabolic shift away from TCA
Cycle activity/mitochondrial ATP generation towards increased
glucose uptake (via upregulated GLUT1/SLC2A1) and
breakdown into lactate as well as increased mTOR activity, in
response to TLR ligands or inflammatory cytokine stimulation
(63, 128, 129). These microglia, termed reactive microglia, are
particularly clinically relevant because they have been shown to
arise in chronic neurodegenerative diseases, such as Alzheimer’s
Disease (AD) (130–135). Interestingly, microglia that populate
plaques in AD, termed disease-associated microglia (DAMs)
(136), appear to transition from an initial glycolytic, reactive
state into an apparent hypometabolic state with significantly
altered mTOR activity, which is possibly related to alterations in
the phagocytic and/or lipid-sensing function of the AD risk-
associated triggering receptor on myeloid cells 2 (TREM2) (130,
131, 134). However, microglia also exhibit potentially unique
properties, including the ability to utilize alternative energy
sources, which may prove especially important given the
restrictive CNS parenchyma (63, 137). An additional unique
aspect of the CNS that is likely driving microglia metabolism is
the presence of diverse lipid species, the ramifications of which
have recently been discussed extensively elsewhere (128).
Ultimately, it seems apt to look to the various studies of
microglia metabolism as a model for how we should study
peripheral TRM metabolism moving forward.
METABOLISM OF HOMEOSTATIC AND
PRO-RESOLVING TISSUE-RESIDENT
MACROPHAGES

As previously discussed, numerous studies suggest that pro-
resolving macrophages, typically defined as IL-4-stimulated,
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rely extensively on TCA cycle activity and OXPHOS for ATP
generation, anti-inflammatory cytokine production, and the
establishment of the canonical wound healing response
(Figure 2). Intriguingly, the relative importance of glycolysis to
IL-4-stimulated macrophage polarization remains controversial
(82–84, 138). It is possible that there is some level of net increase
in glycolytic flux induced by transitioning from a naïve
macrophage to a stimulated state (138). It is also possible that
the variation in macrophage response depends on the levels of
insulin/insulin-like growth factors derived from serum as well as
the dynamics of glucose availability, which can affect glucose
transporter expression and thus the ability and reliance on
glucose uptake (139–142). Interestingly, macrophages engulfing
apoptotic cells (termed ‘efferocytosis’), which is a canonical pre-
resolving macrophage function, exhibit dynamic changes in
metabolic state depending on the stage of clearance.
Specifically, receptor engagement of apoptotic cells induces
glucose uptake and aerobic glycolysis which is necessary for
rapid ATP generation to polymerize actin and promote
internalization of apoptotic cells (143). On the other hand,
internalization (and presumably digestion) of apoptotic cells
induces fatty acid oxidation (FAO) and OXPHOS, which is
required for specific aspects of the pro-resolving response
including IL-10 (144). This ultimate dependence on FAO for
pro-resolving macrophage function was also observed in
peritoneal TRMs in two models, IL-4/IL-4R complex injection
and Heligmosomoides polygyrus (H. polygyrus) (86). However, in
the latter case, the primary source of lipids was exogenous
triacylglycerol instead of apoptotic cells. What the source of
lipids are, whether different TRMs require FAO to fuel canonical
macrophage function, and if the oxygen and substrate availability
unique to different tissues changes pro-resolving TRM function
(145), remains unknown.

Pro-resolving macrophages are canonically characterized by
the preferential hydrolysis of arginine into ornithine and urea via
the enzyme Arg1. Ornithine, together with its essential role in
detoxification of ammonia in the urea cycle, is also the entry
point into the polyamine synthesis pathway. Interestingly,
Puleston and colleagues found that pro-resolving macrophages
depend on the polyamine biosynthesis pathway to support TCA
Cycle and OXPHOS (89). Intriguingly, the polyamine synthesis
product spermidine was consumed in a novel post-translational
modification termed ‘hypusination’ – or the addition of amino
acid hypusine. The only known eukaryotic protein to be
modified by hypusine is translation initiation factor 5A
(eIF5A), which in macrophages was necessary for the
expression of a subset of mitochondrial respiration proteins
(89). Importantly, the IL-4/IL-4R and H. polygyrus models of
pro-resolving peritoneal TRM function revealed the importance
of eIF5A hypusination in vivo. Similar to in vivo findings related
to lipid sources for FAO, TRMs may derive arginine, ornithine,
or spermidine from various sources, including via regulated
release by (23) or engulfment of apoptotic cells (146).

There is an emerging body of work exploring immune and
non-immune homeostatic functions of TRMs, including local
and systemic control of organismal metabolism, metabolite
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release to promote tissue regeneration, and maintenance of
tissue homeostasis via organelle clearance. For example,
previous studies suggested that liver inflammation, mediated
by generation of inflammatory liver TRMs, underlies the
presentation of obesity-induced metabolic disease including
altered hepatic glucose production, progression to steatohepatitis,
and liver fibrosis (147). However, a recent report presents striking
contradictory evidence from flies, mice, and human patients (148).
Specifically, they found that obesity-induced insulin resistance does
not induce pro-inflammatory activation of liver TRMs, but rather
produce insulin-like growth factor-binding protein 7 (IGFBP7)
which acts as a non-inflammatory immune cell-derived metabolite
to induce lipogenesis and gluconeogenesis via insulin receptor
signaling. Interestingly, variations in the IGFBP7 isoform
appeared to differentially bind the insulin receptor, possibly
explaining why some obese patients develop insulin resistance
whereas others do not (148). Importantly, this work highlights
the possibility of a TRM-specific tissue metabolic circuit
functioning independent of canonical immune pathways (149). It
is important to highlight that, although the finding that liver TRMs
(specifically Kupffer cells) remain ‘non-inflammatory’ during
obesity was recently confirmed, Scott and colleagues found
that Kupffer cells are lost over time in the obese mouse, replaced
by bone marrow-derived macrophages (150). Intriguingly, a
fraction of these macrophages express osteopontin and reside in
regions of increased desmin, suggesting that these infiltrating
macrophages are contributors to liver fibrosis. One final note,
unlike the previous study, Scott and colleagues observed that
Igfbp7 expression was restricted to the non-hematopoietic
compartment, which is consistent with the observed loss of
Kupffer cells (150). Whether these differences are simply
differences in the model used, or an interesting observation of
the changes in tissue dynamics over the course of the disease,
remains an important point of future investigation. Nevertheless, it
will be interesting to explore how systemic metabolic stress, an
ever-growing reality in many countries (151), affects various TRM
populations, in particular how TRMs fight to maintain organismal
homeostasis within biologically safe parameters and why/how
those safeguards fail (152, 153).

One possibility is that TRMs use different transporters and G-
protein coupled receptors (GPCRs) to respond to metabolites
present in the extracellular milieu. As an illustration, it was
recently shown that adipose TRMs respond to extracellular
succinate via the GPCR succinate receptor 1 (SUNCR1) (153).
Unlike its role in certain contexts, succinate signaling through
SUNCR1 maintained metabolic homeostasis across multiple
contexts, including in mice fed normal chow, fed high-fat diet,
and exposed to cold temperature (a model of adipose tissue-
browning). Importantly, these findings also correlated to
comparisons between lean and obese patients (153). This is a
striking example of how the function of an immunoregulatory
metabolite can vary depending on the tissue and context. As
discussed below, emerging methods and technologies will
facilitate a better understanding of the in situ dynamics of
TRM metabolism, including intercellular interactions. In a
recent study, Crawford and colleagues used stable isotope
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tracing-based untargeted metabolomics to investigate how
hepatocyte-derived substrates (glucose and ketone bodies) are
metabolized by liver TRMs (154). This method allowed for an
extensive characterization of liver TRMmetabolic pathways used
under various contexts, including elucidating a novel role for
acetoacetate oxidation in liver TRMs required to fuel the
glycosaminoglycan pathway and prevent of liver fibrosis (154).

Two recent papers highlight the importance of the specific
tissue microenvironment on the canonical TRM function of
tissue repair and regeneration. In the first study, Berardi,
Mazzone, and colleagues elucidate a system of muscle
regeneration by which muscle TRMs act as sensors of
glutamine availability which is a key determinant of successful
regeneration. Specifically, upon muscle injury or in aged muscle,
glutamine levels fall in the extracellular milieu, inducing TRMs
to switch from glutamate oxidation (via glutamate
dehydrogenase 1, GLUD1) to increased glutamine synthesis
(via glutamine synthetase, GS) and release (155). Satellite cells,
the multipotent muscle stem cell, consume TRM-derived
glutamine via the transporter SLC1A5 which facilitates their
proliferation and differentiation into mature muscle. This circuit
was tunable, allowing for both improved and impaired muscle
regeneration across multiple in vivo models (155). In the second
study, Nave, Saher, and colleagues report that microglia-
mediated CNS repair depends on the synthesis of desmosterol
(instead of the sterol synthesis end-product cholesterol) from the
engulfed myelin (156). Desmosterol, in turn, signals via the liver
X receptor (LXR) to induce lipid efflux and secretion of
reparative factors to support remyelination. Indeed, inducing
sterol synthesis promoted quicker remyelination in vivo (156).
Conceptually, each tissue features unique accessory and primary
cell types, as highlighted in the above studies, that function
collectively to perform the required functions of that tissue. The
types of material transferred to TRMs is not restricted to
metabolites, as two recent studies found that mitochondria are
transferred to or cleared by TRMs in the adipose tissue and the
heart as part of tissue homeostatic processes (157, 158).
Collectively, these findings highlight exciting and emerging
areas of TRM metabolism and biology.

As noted in the beginning of this review, a TRM’s life-long
environment, or habitare, is the sum total of factors that are
experienced. Two recent reviews make the conjecture that a
TRM’s habitare includes time spent in residence. Although this is
a relatively understudied aspect of TRM biology, there is at least
some evidence to suggest that TRMmetabolism is affected during
aging. In two separate studies, the Andreasson lab details how
aging peritoneal TRMs and microglia exhibit altered, although
potentially reversible, changes in metabolism that accompany
perturbed homeostatic function (159, 160). In the first study, the
authors show that macrophages synthesize nicotinamide adenine
dinucleotide (NAD+) via the kynurenine pathway (KP), which is
necessary for mitochondrial respiration and canonical pro-
resolving macrophage function (159). Intriguingly, the ability
to synthesize NAD+ via the KP is decreased in aging peritoneal
TRMs but was reversed via overexpression of the KP pathway
enzyme nicotinate-nucleotide pyrophosphorylase (QPRT) or via
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exogenous delivery of the NAD+ precursor nicotinamide
mononucleotide (NMN) (159). In the second study, peritoneal
TRMs and microglia exhibited an age-dependent perturbation in
OXPHOS resulting from increased PGE2-mediated glycogenesis.
Increased PGE2 signaling via its cognate receptor EP2 resulted in
a maladaptive pro-inflammatory state that altered mouse
cognition, which was reversible when inhibited in vivo (160).

One final point worth highlighting when discussing the time
TRMs spend in residence is the effect that chronic, low-grade
perturbations have on TRM identity. This is best exemplified by
recent studies of Kupffer cells in mouse models of metabolic-
associated fatty liver disease (MAFLD). Intriguingly, Kupffer cell
numbers and/or identity is lost during the course of the MAFLD
sequelae non-alcoholic steatohepatitis (NASH) (62, 150, 161,
162). These cells are, at least in part, replaced by monocyte-
derived macrophages that appear to seed the liver long-term and
assume transcriptional programs similar to those of their long-
term TRM counterparts. This is intriguing because these
newcomers, despite exhibiting transcriptional, epigenetic, and
functional similarities to their long-lived Kupffer cell
counterparts (34, 150, 161), appear to have different responses
to lipids (including triglycerides) and contribute to NASH
progression differently (161, 162). For instance, on one hand,
monocyte-derived liver TRMs appear to less efficiently promote
storage of triglycerides and exacerbate liver fibrosis (161). On the
other hand, mice lacking CCR2, which prevented monocyte-
derived liver TRM seeding, resulted in increased liver fibrosis
(162). These seemingly contradictory results may actually
represent functional evolution of monocyte-derived liver
TRMs, ultimately supporting the notion that the time spent in
a particular tissue, particularly as the nature of that tissue
changes, informs the function and metabolic state of the TRM.
Taken together, it is apparent that future work will need to take
into consideration the multiple factors that constitute a TRM’s
habitare, especially time spent in residence and the changing
nature of that residence.
NOVEL TECHNIQUES TO STUDY TISSUE-
RESIDENT MACROPHAGE METABOLISM

The majority of what we know about macrophage metabolism
comes from a combination of in vitro mechanistic and in vivo
genetic/small molecule targeting studies. These approaches will
continue to be essential moving forward, and the utilization of
methods for modeling the appropriate tissue environment and
differentiating unique TRM subsets will further advance our
understanding of TRM metabolism (163, 164). However, the
emergence of better methods and technologies will allow for a
holistic understanding of TRM metabolism, including at the
single cell level in situ. For an in-depth overview of single cell
analysis of cellular metabolism, including statistical methods for
analyzing single cell RNA sequencing, we recommend the
perspective from Artyomov and Van den Bossche (165). Here,
we outline some of the methods and technologies used to study
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metabolism in vivo that have been or could easily be applied to
study TRM metabolism.

Raman Spectroscopy and Fluorescence Imaging. Molecules,
especially complex metabolites, exhibit numerous unique
properties that can be exploited to study cell metabolic
processes. These approaches generally fall under the umbrella
of molecular imaging. One such property is the Raman effect (or
Raman scattering), which is the inelastic scattering of photons
when a molecule is excited by a laser beam. Raman spectroscopy
(RS) imaging combines information obtained from this property
together with light microscopic information to perform label-
free, non-destructive analysis of cellular metabolism. Proof-of-
principle studies have shown that RS imaging can be used to
image macrophage heme metabolism (166) as well as
macrophage fatty acid and lipid metabolism (167).
Additionally, deuterium can be used as a stable isotope label of
a metabolite of interest, allowing for both analysis of intracellular
distribution and metabolic flux in macrophages (167). RS
imaging exhibits high sensitivity and specificity for metabolite
detection and is capable of rapid imaging speeds (167). On the
other hand, despite improved technology and methods, RS
imaging continues to suffer from relatively low spatial
resolution (167). Despite this caveat, RS imaging still has the
potential to analyze cellular metabolism in situ when combined
with confocal, multiphoton, or lightsheet microscopy (168–171).

Cellular metabolism is modulated, in large part, by the redox
state of the cell. One major determinant of this redox state is the
ratio of oxidized and reduced forms of nicotinamide adenine
dinucleotide (NAD+/NADH) and nicotinamide adenine
dinucleotide phosphate (NADP+/NADPH). Classically, NAD+
is a key cofactor for ATP production via glycolysis (in the
cytosol) and OXPHOS (in the mitochondria), whereas NADP+
(and importantly its reduced form NADPH) is a key cofactor for
the synthesis of the antioxidant glutathione (GSH) and for
anabolic metabolism pathways, such as lipid synthesis.
Naturally, there has been much effort put into developing
methods for real-time monitoring of NAD(P)/NAD(P)H pool
sizes (172, 173), and more recently subcellular localization (174),
using genetically-encoded fluorescent protein sensors in live cells
and transparent model organisms. Recently, two independent
groups reported the development of ratiometric fluorescence
probes that allow for specific monitoring of NADP/NADPH
(175, 176). The first, Apollo-NADP+, relies on the principle
of fluorescence anisotropy (also known as fluorescence
polarization), that occurs because of the Förster resonance
energy transfer (FRET) that occurs between homologous
fluorescence proteins. Fluorescence anisotropy, similar to the
anisotropy exhibited by tissues and exploited by magnetic
resonance, is when the emitted light from an excited
fluorescent protein exhibits unequal polarization across spatial
dimensions and has become an important tool for studying
protein-protein interactions (177, 178). Apollo-NADP+
functions by monitoring the single photon-induced anisotropy
of monomeric (inactive) glucose-6-phosphate dehydrogenase
(G6PD) and dimeric (active) G6PD, based on the knowledge
that NADP+ binding to G6PD stabilizes G6PD dimers (179).
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Importantly, Apollo-NADP+ is a direct metric of NADP/
NADPH levels and a more rapid indicator of cellular redox
state than fluorescent protein reporters of hydrogen peroxide
(176). The second collection, termed iNap (175), is a series of
pH-resistant, ratiometric sensors based on the circularly
permuted YFP NADH/NAD sensor, SoNar (180). Both iNap
and SoNar function by fusing the NAD(H) binding domain Rex
from Thermus aquaticus, with iNap including modifications to
Rex to facilitate binding to NADP(H) instead of NAD(H).
Excitingly, both SoNar and iNap were shown to be capable of
monitoring subcellular pools in live cells in vitro (175, 181) as
well as single cell metabolic function in vivo (175, 182). Finally, as
a proof-of-principle, the authors used iNap to demonstrate the
ability to rapidly assess NADPH pool size decrease in response to
LPS+IFNg stimulation of macrophages, consistent with the
knowledge that inflammatory macrophages consume NADPH
to produce superoxide free radicals via NADPH oxidase activity.

The fluorescent protein sensors described above are just a
subset of the numerous reporters developed to monitor cellular
metabolism in live cells [reviewed in (172)]. As noted, in vivo use
of fluorescent protein reporters of metabolic activity has
primarily focused on model organisms that can be imaged
easily. However, proof-of-principle studies in mice do exist, for
instance with both the SoNar and iNap reporters described above
in muscle cells of young and aged mice. One limitation relates to
how to introduce a genetically-encoded reporter. Both muscle
and neurons (another regularly investigated cell type), for
instance, are easily electroporated or transduced with adeno-
associated viruses (AAV). Macrophages, especially TRMs that
are not replenished by bone marrow-derived progenitors, are
generally resistant to such approaches. The natural solution is to
introduce these reporters into mice using a conditionally-
induced transgene strategy. This has historically been a cost-
ineffective strategy: however optimized protocols for using
CRISPR/Cas9-induced homology-directed repair to introduce
such transgenes into fertilized oocytes has made such an
endeavor more realistic. It would be interesting to combine
NAD/NADH or NADP/NADPH reporter mice together with
recently described tools to manipulate these ratios in vivo (183–
186) to study TRM redox state and metabolism in vivo.

It is also worth highlighting that NADH (and NADPH)
exhibits fluorescence (460 ± 50 nm) when excited by an
ultraviolet laser (340 ± 30 nm) or a tunable infrared two-
photon laser (750 ± 30 nm) (137, 187, 188). When excited,
free NADH has a much shorter fluorescence lifetime than bound
NADH, which can be quantified using fluorescence lifetime
imaging microscopy (FLIM). Indeed, as noted above, MacVicar
and colleagues used two-photon FLIM to demonstrate that
microglia can adapt to hypoglycemia by using glutamine to
maintain NAD(P)H levels (137). In a separate study, Keely and
colleagues provide proof-of-principle evidence that FLIM can be
used to monitor NAD(P)H and FAD levels in stromal-resident
macrophages, in this case tumor-associated macrophages in the
mammary tumor microenvironment (188). Both of these studies
were unable to distinguish between NADH and NADPH because
of their similarities. A previous study highlighted FLIM methods
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that distinguish between NADH and NADPH (187). Given the
distinct functional importance, future work should incorporate
this method. It will be interesting to see if different TRM
populations exhibit unique NAD(P)H profiles in situ.

The methods detailed in this review require special
equipment or expertise, therefore methods that are more
readily available are warranted. Flow cytometry is a gold
standard immunological technique, with instruments that are
more readily available and have gone down significantly in price.
Two recent studies detail methods that use high-throughput
multi-parameter flow cytometry to either 1) specifically detecting
important metabolic proteins including rate-limiting enzymes
and transporters (189) or 2) quantify puromycin uptake as a
surrogate of cellular metabolism (190). Unfortunately, both of
these methods could possibly require time-consuming and
cumbersome tissue digestions to release TRMs, which could
ultimately affect the metabolic state of the cell (191). Similar to
RNA sequencing-based approaches, these methods are restricted
in their ability to directly assess metabolic activity. Nevertheless,
these methods provide additional tools to the immunologist’s
repertoire that are easy to adapt to assess TRM metabolism.

One final fluorescence-based method that is important to
discuss involves the combination of histocytometry and enzyme
histochemistry to probe the enzymatic activity of common
metabolic pathways in situ (192). Specifically, Haschemi and
colleagues took advantage of the knowledge that intact tissues
fresh-frozen in a preservative such as OCT remain metabolically
active and performed nitroblue tetrazolium chloride (NBT)-
based enzymatic essays on tissue sections to assess the
glycolytic pathway (via GAPDH activity), pentose phosphate
pathway (via G6PD activity), fermentation (via LDH activity),
and the TCA cycle (via both IDH3 and SDH activity).
Immediately following the enzymatic assay, the same (or
serial) tissue sections are stained and analyzed using whole-
tissue histocytometry. By combining these two methods,
Haschemi and colleagues were able to resolve the metabolic
activity of immune and non-immune cells in situ across multiple
tissues and tissue environments, including human colon cancer.
For instance, the authors observed that macrophages in the
tumor microenvironment generally exhibited decreased
metabolic activity across all enzymes assessed relative to tissue
macrophages in healthy control tissue (192). This method comes
with a few caveats. The first caveat relates to NBT itself. NBT is
less sensitive to O: –

2 , more susceptible to reduction by tissue
reductases, and more susceptible to autoxidation, than
alternatives such as dihydroethidium, each of which can result
in non-specific NBT fluorescence (193). Additionally, the
enzymatic assays are performed at saturating concentrations of
substrates and confactors, which may not faithfully reflect the
metabolic activity of a cell in its native environment where
substrates and cofactors are limiting. Finally, the activity of
these enzymes is a measurement of steady state activity and
does not necessarily reflect the flux of substrates nor the ultimate
outcome of the intermediates and products formed. Nonetheless,
this method is an important advance for measuring TRM
metabolic activity in situ.
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Nuclear Magnetic Resonance, Single
Photon Emission Computed Tomography,
and Positron Emission Tomography

Molecular imaging of metabolism is not limited to light-based
approaches. The molecular imaging umbrella includes three
techniques that, while technically lacking in spatial resolution,
make up for it with high specificity and minimal invasiveness:
nuclear magnetic resonance (NMR), single photon emission
computed tomography (SPECT), and positron emission
tomography (PET). The use of each of these methods to study
metabolism have been broadly reviewed in detail elsewhere
(194–198). Both PET and SPECT rely on injection of
radioactive tracers and detection of gamma ray emission, both
allow for dynamic measurements, and both require registration
to structural images (typically obtained using computed
tomography), yet each has unique advantages and
disadvantages (198). PET imaging generally has higher spatial
resolution (4-6 mm for human scanners, 1 mm for small animal
scanners), although advancements in micro-SPECT technologies
have significantly improved this parameter for small animal
imaging (10 mm for human scanners, below 1 mm for small
animal scanners) (199). Additionally, the time required to
acquire a full sequence of PET slices is significantly less than
for SPECT. On the other hand, the tracers used for SPECT are
significantly more stable than the tracers used for PET (200).

Both PET and SPECT have been used extensively to study
macrophages in vivo in both murines and humans (201), owing
largely to the advancements made in radiolabeled antibodies
(known as radiopharmaceuticals) which allow for significantly
enhanced cellular sensitivity and specificity (202). Examples of
SPECT tracers that specifically target macrophages include
imaging of a radiolabeled translocator protein (TSPO) small
molecule in the inflamed ankles of a murine model of
rheumatoid arthritis (203), of a second generation variant of
the TSPO-targeting small molecule (iodo-DPA-713) in the
pancreas, liver, and intestines of mice treated with cerulein
(198), and of combined 14C-methionine and 99mTc-
methoxyisobutylisonitrile in a murine model of acute
myocardial infarction (204). This latter study is an excellent
example of the ability to simultaneously label cells and monitor
metabolite uptake in vivo using micro-SPECT (205, 206).
Examples of PET tracers that specifically target macrophages
including imaging of combined 89Zr-Feraheme (FH) and
18F-Fludeoxyglucose (FDG) in non-human primates experiencing
acute open wound injury or arthritis (207), of a long-circulating,
dextran-coated nanoparticle labeled with 64Cu in atherosclerotic
plaques of ApoE-deficient mice (208), and of phospholipid or
apoA-I conjugated 89Zr-high-density lipoprotein (HDL) in an
orthotopic mouse model of breast cancer (209). For both PET
and SPECT, there are now numerous contrast agents and
metabolites that can be imaged (210, 211). Given the significant
advances already made, we believe future studies will be able to
combine advances in macrophage-specific radiolabeling with
unique metabolic tracers which will allow for in situ live animal
imaging of TRM metabolism.
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Although PET/SPECT allow for specific targeting of
macrophages, these methods only allow one to measure uptake
of a desired metabolite, not whether, how much, and in what way
a given substrate is used. However, there are two alternative non-
destructive/non-terminal approaches that are capable of
measuring each of these parameters in living tissue, both of
which rely on the principles of nuclear magnetic resonance
(NMR): magnetic resonance imaging (MRI) and magnetic
resonance spectroscopy (NMR). The use of these techniques to
measure metabolism in vivo have been reviewed in great detail
previously (194, 210, 212–215). Both MRI and MRS rely on the
detection of energy exchange between the external magnetic field
applied to the tissue/sample and atomic nuclei, however they
vary in that MRI detects emitted radio frequency (RF) signal
whereas MRS detects the chemical shift induced by the magnetic
field interacting with electrons that surround the nucleus
(“shielding”). Imaging of living tissue using 1H-MRS (proton
MRS) has historically been challenging because of the high
background signal that comes from water and the typically low
abundance of desired metabolites combine to give low signal-to-
noise ratio (SNR). However, several advances have led to
improvements of MR-based in vivo imaging of cellular
metabolism (194, 210, 212, 213). Specifically, magnets with
increased field strengths, such as 11.7 T in humans and 21.1 T
in rodents (216, 217), the use of body region-specific RF surface
coils and MRI cryoprobes, and the use of infusion to introduce
hyperpolarized metabolites [e.g., [6-13C, 15N3]-Arginine (218),
for reviews, see (194, 210, 212, 213)], have each significantly
improved the SNR for MR imaging of living tissue. Because of
the ability to take repeated measurements of animals (or
humans), hyperpolarized MR will continue to be an important
method for studying TRM metabolism in health and disease.
Mass Spectrometry-Based Methods
The workhorse for cellular metabolism broadly, and for
macrophage biology specifically, is and will likely remain mass
spectrometry (MS). The topic of ex vivo isolated tissue and
cellular MS using gas chromatography (GC) or liquid
chromatography (LC) have been reviewed in detail elsewhere.
However we will highlight a series of excellent reviews on the
broader technology, methodology, and approaches (from the
Rabinowitz lab) (191, 219), the pioneering use of these
techniques in mouse and human cancer (reviewed by the
DeBerardinis lab) (220), and the application of these
methodologies to study immunometabolism, particularly of T
cells (reviewed by Jones and colleagues) (164). Together with the
improved sensitivities of MS technology, we are excited by
emerging accompanying approaches such as chemical isotope
labeling nanoflow (nano)LC-MS, which potentially allows for
LC-MS detection of thousands of metabolites in the ultralow cell
number (e.g., 100-10,000) range (221). Unfortunately, each of
the above MS-based methods requires isolation of cells or tissue,
including potentially detrimental digestion and isolation steps.
This is particularly problematic for TRMs, as noted above,
because TRMs are integrally embedded in the tissue stromal
meshwork which makes isolation difficult. Here, we briefly
Frontiers in Immunology | www.frontiersin.org 12
highlight three spatial MS imaging approaches that, if adopted
and optimized, will allow for unparalleled investigation of in situ
TRM metabolismml: MIBI-TOF, Nano-SIMS, and MALDI-
MS imaging.

Both multiplexed ion beam-imaging by time of flight (MIBI-
TOF) and nanoscale secondary ion mass spectrometry (Nano-
SIMS) rely on detection of released secondary ions. For a review
of SIMS principles, we recommend the following reviews (222,
223). Briefly, a surface (in this case the tissue section or tissue
culture of cells) is rasterized with a focused primary ion beam
which induces ejection of secondary ions. These secondary ions
are then collected and analyzed for their mass/charge ratio using
MS, typically TOF or sector field MS (for Nano-SIMS) but can
also be analyzed using a quadrupole mass analyzer. In MIBI-
TOF, a tissue of interest is prepared via standard histological
approaches such as formalin-fixed, paraffin-embedded (FFPE) or
fresh frozen (for immunofluorescence, and subsequently stained
using antibodies conjugated to a unique metal isotope similar to
those used for mass cytometry (CyTOF) (224). MIBI-TOF is
capable of imaging at resolutions down to 260 nm (near-single
molecule) with a modest field of view (800 mm x 800 mm). The
detail that makes up the strength of MIBI-TOF is also its
weakness. Specifically, MIBI-TOF requires antibodies that are
capable of recognizing a protein of interest. Importantly, MIBI-
TOF was recently used to study human cytotoxic T cells using a
panel of metabolic pathway regulatory proteins such as transport
proteins and essential enzymes (225). Thus far, MIBI-TOF has
been restricted to proteins, although antibodies do exist against
some metabolites, therefore it is theoretically possible to exploit
these antibodies for MIBI-TOF in the future. On the other hand,
Nano-SIMS improves on the successes of TOF-SIMS (226, 227)
imaging by reducing the distance between the primary probe and
the sample (228) which theoretically allows for subcellular
(nanometer) detection of metabolites (222, 223). A beautiful
example of the potential of Nano-SIMS was shown by i.v.
injection and imaging of 13C-labeled triglyceride-rich
lipoproteins or 13C-labeled fatty acids into mice (222). Nano-
SIMS images of the cells in a tissue are generated either from
independent analysis of single secondary ions (e.g., 12C− 13,C−) or
the ratio of secondary ions (e.g., 12C− to 13C−). Arguably the most
important feature of Nano-SIMS is its ability to not only analyze
metabolite pool sizes, but also analyze isotopic enrichment in situ
at both relatively high lateral resolution and high spatial
resolution. On the other hand, Nano-SIMS is limited by the
number of unique masses that can be analyzed in parallel (up to 7
with the NanoSIMS 50L). One could imagine future TRM
research combining NanoSIMS with other in situ methods
such as spatial RNAseq or spatial MALDI imaging (see below)
to study both cellular and subcellular TRM metabolism across
large tissue areas.

Finally, it is important to imaging mass spectrometry (also
known as mass spectrometry imaging, or MSI). Over the last
several years, numerous techniques and equipment have been
developed to perform MSI [reviewed here (229, 230)]. MSI,
broadly speaking, is a collection of tools used to study the
spatial distribution of molecules of interest (ranging from small
metabolites up to more complex glycans, lipids, and proteins)
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across a region or the entirety of a tissue section. Here, we
highlight matrix-assisted laser desorption/ionization (MALDI)
MSI, including the recently released MALDI-2 (231), because of
its improved sensitivity to small metabolites (including under
100 kDa) and improved spatial resolution (down to ~5-10-
microns). Indeed, several modifications have allowed for
dramatically improved mass accuracy, including the use of
hybrid mass analyzers such as QTOF or Fourier-transform ion
cyclotron resonance (FT-ICR) (232, 233). Much of this work has
focused on spatial imaging of lipid metabolism down to 10-
micron resolution (234, 235), however several proof-of-principle
studies have demonstrated its utility to smaller metabolites
including glutamine and glucose (236, 237). Importantly,
MALDI MSI was also recently shown to be useful for isotope
flux analysis in situ of 13C5-glutamine in the intestines (236).
MALDI MSI can principally be used on tissue biopsies or whole
tissues to perform qualitative MS of hundreds to thousands of
metabolites, as well as perform quantitative and isotopic
enrichment analyses of metabolites of interest (Figure 3A).

MALDI involves four key steps (Figure 3B). Tissues of
interest must be immediately snap frozen, which are then cut
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onto appropriate slides using a cryostat (1). This step is essential
to ensure minimal change in regional cellular distribution or
tissue structure as well as to minimize changes in metabolites.
Previous groups have also used FFPE tissues, which are fairly
common in clinical settings, although report noticeable loss in
abundance of desired metabolites. Principally, serial sections
would be kept for immunofluorescence staining (and possibly
also spatial RNAseq), which is necessary for subsequent cellular
localization of identified metabolites. Then, a matrix material is
applied to the tissue section using a matrix sprayer (such as the
HTX TM-Sprayer) which helps to evenly distribute gaseous
matrix substance onto tissues (2). Then, samples coated with
matrix substance are rasterized with a laser at the desired pixel
size which causes ablation and desorption of the matrix-coated
sample (3). In the case of MALDI-2 (such as the one housed in
the timsTOF Flex 2), a second laser has been added that allows
for a 10x improvement in sensitivity and resolution (down to
single cell) (231). Metabolites are ionized and accelerated for
identification viaMS, for example using FT-ICR (as illustrated in
Figure 3B). Finally, data is first processed similar to typical MS
studies, including identification of mass-charge ratios (m/z ratio, 4).
FIGURE 3 | Schematic of spatial metabolomic analysis using MALDI Mass Spectrometry imaging. (A) 1. Isolated whole or sectioned tissue can be analyzed using a
combination of untargeted approaches involving various MALDI matrix substances, such as 9-AA, allowing for profiling of a broad range of metabolite sizes and
classes. 2. Quantitative analysis of metabolites of interest can be performed using two interconnected approaches: On-tissue spotting and metabolite concentration
curves. On-tissue spotting involves taking a slurry of known metabolites (at known concentrations) and dabbing them onto tissues of interest. This allows for an
internal reference standard to control for matrix deposition and laser excitation. Metabolite concentration curves allow for quantification of the concentration of a
specific metabolite or finite number of metabolites of interest. 2. Metabolic flux analysis can be performed by adopting conventional in vivo infusion of 13C-labeled
metabolites, such as uniformly-labeled 13C-Glucose into mice. (B) 1. Samples are cut entirely into serial sections. Interleaved sections are used for MALDI or H&E/
immunofluorescence staining. 2. Slides used for MALDI are sprayed with matrix of interest using a standard MALDI matrix sprayer. Up to two slides can be sprayed
and run at a given time, and slides with applied matrix should be imaged immediately. 3. Slides are then analyzed using a MALDI MSI (such as the SolariX XR
MALDI-FT-ICR instrument, pictured). Slides are analyzed at a desired pixel resolution within the limits of the machine (e.g., 20-micron), meaning that the MALDI laser
is rastered over the whole tissue surface, exciting 20-micron regions at a time. 4) Mass spectrometry peaks are subsequently analyzed for identity (see method) and
mapped back onto H&E or IF stained slides.
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However, it is worth mentioning that because of the incredible
amount of data generated by scanning an entire tissue (or tissue
section) coupled together with the need to register these m/z ratios
to the individual pixels in an immunofluorescence image, it is likely
that novel computational approaches will be required, especially as
we begin to generate 3-dimensional renderings of whole tissues as
illustrated. We anticipate registration tools, such as those long used
for neuroimaging, may help in this endeavor.
CONCLUSIONS

In this Review, we have highlighted exciting new findings on
tissue-resident macrophage (TRM) metabolism. We define a
macrophage’s time spent in a particular environment (or
‘niche’), and the features that define that environment, as its
habitare. We believe habitare is apt, because it carries with it a
quality that is more than just the cold residence in which one
resides, but instead includes the richness and warmth that makes
the place one resides in a home. We make the case that TRM
metabolism is defined by their early entrance into this habitare
and is informed over time by the factors that the TRM comes
into contact with, both during homeostasis and inflammation.
Clearly John Locke never imagined that one’s environment
would imprint at the biological level, as it does for memory.
We argue that TRMs are instructed in a similar way, first
informed by intrinsic programs but ultimately, and continually,
informed by their lived experience. Finally, we highlight the
Frontiers in Immunology | www.frontiersin.org 14
emerging technologies that we think will help move forward this
important field of study. We believe that lowered costs, increased
availability, and better analytical algorithms will allow for
widespread adoption of these techniques, and we look forward
to the future work to come.
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