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Abstract: Bluetongue virus (BTV) and African horse sickness virus (AHSV) cause economically
important diseases that are currently exotic to the United Kingdom (UK), but have significant
potential for introduction and onward transmission. Given the susceptibility of animals kept in zoo
collections to vector-borne diseases, a qualitative risk assessment for the introduction of BTV and
AHSV to ZSL London Zoo was performed. Risk pathways for each virus were identified and assessed
using published literature, animal import data and outputs from epidemiological models. Direct
imports of infected animals, as well as wind-borne infected Culicoides, were considered as routes of
incursion. The proximity of ongoing disease events in mainland Europe and proven capability of
transmission to the UK places ZSL London Zoo at higher risk of BTV release and exposure (estimated
as low to medium) than AHSV (estimated as very low to low). The recent long-range expansion of AHSV
into Thailand from southern Africa highlights the need for vector competence studies of Palearctic
Culicoides for AHSV to assess the risk of transmission in this region.

Keywords: bluetongue; African horse sickness; Culicoides; risk assessment; zoo

1. Introduction

Vector-borne diseases are an increasing global threat to the health of humans and
animals with the spread of exotic pathogens facilitated by climate change, urbanization
and extensive global travel and trade [1–3]. Historically, the United Kingdom (UK) has
been largely protected from such pathogen incursion through its geographic isolation,
temperate climate and socioeconomic development, but recent incursions of both novel
vectors and vector-borne pathogens have occurred [4–8]. These events have triggered a
series of exercises to identify future incursion risks and to highlight potential drivers of
these events, including climate and land change [9–13].

Arboviruses are viruses that are transmitted by arthropods. Mosquitoes, ticks and
biting midges can transmit medically important viruses that pose a risk to the UK [14].
Among emerging pathogens in northern Europe, two arboviruses of ruminants and deer
transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused epidemics
in the UK. Bluetongue virus (BTV: Reoviridae: Orbivirus) was detected in 2007 following
an unprecedented outbreak in northern Europe that began in 2006 and was subsequently
eradicated from the UK in the winter of 2007/2008, following a voluntary vaccination
campaign [15–17]. Prior to this incursion, which involved a strain of BTV serotype 8 with
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a sub-Saharan origin, no Culicoides-borne arbovirus had ever been detected in the UK.
Subsequently, Schmallenberg virus (SBV: Peribunyaviridae: Orthobunyavirus) was detected in
the UK in 2011, in the same year as it was discovered in Germany, and remains endemic in
the UK and northern Europe [18–20]. Furthermore, a broad diversity of additional strains of
BTV have been transmitted successfully in northern Europe, but have not reached the UK,
illustrating that this region has experienced a steep change in vulnerability to emergence of
these arboviruses [21–25].

The impact of Culicoides-borne arboviruses in Europe is dependent upon both viru-
lence, which is determined by the strain and species of virus and host-related factors [25,26].
A high proportion of emerging arboviruses that have been detected in northern Europe
since 2006 have been largely ignored following initial assessment of pathogenicity (e.g.,
SBV [27]; BTV-25 [28]; BTV-14 [29]; BTV-6 [30]; BTV-11 [31]; and BTV-27 [32]). Other strains
that cause more severe clinical signs in ruminants have triggered major responses with
significant economic consequences, including culling, vaccination campaigns and long-
term trade restrictions imposed to reduce spread (e.g., BTV-8 [26,33,34] and BTV-1 [33]).
The UK currently imposes testing and control measures on ruminant imports from France
(including the Mayenne region in the north), Spain, Luxembourg, Belgium and Germany,
where BTV-8 has previously been detected [34]. The control strategy relies on vaccination,
certification, post-import testing and monitoring of the disease situation in both Europe
and internationally, and responsible sourcing of animals [35,36].

As a result of the emergence of BTV and SBV in northern Europe, this region is
currently perceived to be at elevated risk of further incursions of Culicoides-borne ar-
boviruses [25,37–39]. African horse sickness virus (AHSV), which is closely related to
bluetongue virus [40], but causes disease in equine hosts, is the most cited example. It is
one of the most lethal viral infections known in horses [41]. AHSV was isolated from pools
of Palearctic species of Culicoides during the 1987–1991 outbreak of AHSV-4 in Spain, caused
by the importation of infected zebra from Namibia [42,43]. While currently primarily circu-
lating in sub-Saharan Africa [44,45], a strain of AHSV serotype 1 emerged unexpectedly in
Thailand during 2020, which is suspected to have originated from importation of zebra from
Africa [46]. This is the first time AHSV has occurred in Southeast Asia, and demonstrates
the ability of the virus to be transmitted to new foci with no prior warning.

Risk assessments for the importation of AHSV have been published from the point of
view of live horse exports from the Republic of South Africa (RSA), including the use of
pre-export quarantine [47] and additionally for northern Europe [48]. In addition, the UK
has published an AHSV control strategy that outlines both likely routes of introduction and
response [49]. While some routes of incursion of Culicoides-borne viruses are relatively well
defined (e.g., movement of viraemic hosts and long-distance flight by infected Culicoides),
the origin of several outbreaks into northern Europe remain unexplained, including the
incursions of both BTV-8 [50,51] and SBV [52]. A key question has been the potential role
of wildlife, including both the potential for wild species, moved as part of globalized trade,
to carry unknown pathogens, as well as their susceptibility in the event of a new arbovirus
outbreak. While both BTV and AHSV are generally restricted to ruminant and equine hosts,
respectively, antibodies indicative of infection have been found for both viruses in a wide
variety of additional vertebrate species, though the epidemiological relevance of these is
poorly understood.

Zoological gardens are home to a wide variety of animals, many of which are of
significant conservation concern. Animals kept in zoo collections are at risk of vector-borne
diseases such as BTV and AHSV, and in some cases can be highly susceptible to severe
manifestations of disease due to a lack of previous exposure to certain pathogens and
increased potential exposure to the vectors [53]. Previous commentary has highlighted
the potential impact of BTV on rare species in zoological collections, and has called for a
detailed risk assessment of animal shipments from endemic regions [54]. Zoos, particularly
in urban areas where stocking is dense, may facilitate cross-species disease spread by
the presence of a diverse community of susceptible animals and through the inadvertent
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creation of attractive vector breeding habitats. ZSL (Zoological Society of London) London
Zoo is situated in The Regent’s Park in the centre of London, an international hub and the
largest city in the UK. In the event of a UK outbreak of BTV or AHSV, the surrounding
farmland and wildlife could act as transmission reservoirs, enabling spill-over transmission
to animals at the zoo. Of 49 zoos in northern Europe deemed at risk during the 2006 BTV
outbreak, due to them being within 20km of a reported bluetongue outbreak, clinical
disease was reported in 62 (6%) susceptible animals, with a case fatality rate of 69% [55].
A previous study has shown that the Palearctic vectors of BTV are present at ZSL London
Zoo, with large numbers collected from light traps next to the Bactrian camels [56].

This study examines the potential routes of incursion of BTV and AHSV to the UK
with specific reference to ZSL London Zoo. A qualitative risk assessment of potential
importation pathways to ZSL London Zoo is conducted, and enables an understanding of
the risk posed to animals in the zoo collection to inform preventative policies.

2. Materials and Methods
2.1. Risk Assessment Methods

All potential entry routes of BTV and AHSV into the UK were considered and sub-
sequently assessed within the context of zoological gardens. The specific risk questions
were: (i) What is the probability that a susceptible animal at ZSL London Zoo can become
infected with BTV?; and (ii) What is the probability that a susceptible animal at ZSL London
Zoo can become infected with AHSV? The potential risk of incursion of exotic diseases can
be assessed using the World Organization for Animal Health’s (OIE) Import Risk Analy-
sis framework [57]. To answer the risk questions, entry and exposure assessments were
conducted separately for each pathogen, according to the OIE Terrestrial Animal Health
Code. Risk pathways for entry and exposure were identified, and the European Food Safety
Authority’s (EFSA) qualitative probability definitions (Table 1) [58] were used to assign the
level of risk associated with each step of each pathway, which were conditional probabilities.
The overall qualitative probability of the risk pathway was then determined by combining
the probabilities of the steps along the pathway and their weighted importance [59]. Strains
and serotypes of the viruses were not considered separately, as underpinning data were
not considered sufficient to allow differentiation.

Table 1. Definitions of qualitative probability categories [58].

Risk Probability Definition

Negligible Event is so rare that it does not merit consideration

Very low Event is very rare but cannot be excluded

Low Event is rare but does occur

Medium Event occurs regularly

High Event occurs very often

Very high Event occurs almost certainly

2.2. Risk Pathways

The risk pathways for entry of BTV and AHSV into ZSL London Zoo were identified.
Entry and exposure assessments were conducted on three pathways for BTV and on two
pathways for AHSV. Minor risk pathways were considered but rejected for assessment, as
they were deemed to present a negligible risk (see Discussion). The risk pathways used
in this risk assessment are given in Figures 1 and 2. Within the wider context on BTV and
AHVS incursion into the UK, risk pathways BTVR2, BTVR3 and AHSVR2 are pertinent
across all regions, whereas BTVR1 and AHSVR1 are specific to certain locations and/or
establishments, in this case zoological gardens.
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Figure 2. Risk pathways for the entry of AHSV into ZSL London Zoo and exposure of susceptible
resident animals.

2.2.1. Qualitative Probabilities for BTV Risk Pathways
Estimation of P1: Probability of BTV-Infected Animal Entering the Zoo

Direct entry of an infected animal from a BTV-endemic or -epidemic area is a potential
route of virus incursion. This entry route is frequently cited as a potential source of new
infections [51], and has previously been demonstrated as the source of BTV infection in
ruminants in Poland [60]. The importation of BTV-infected cattle into the UK has occurred
twice in the last five years, once in 2017 [61] and once in 2018 [62]. To estimate the risk
associated with the importation of infected animals into a country or region, data are
needed on the number and frequency of susceptible animals imported from BTV-endemic
or -epidemic areas. The likelihood of an imported animal being infected is dependent on
the prevalence of BTV infection in the country/region of origin, the length of viraemia,
the vaccination status of the animal and the implementation of any control measures such
as quarantine and pre- and post-import testing.

Historically, zoological gardens in Europe have collected animals directly from the
wild, with very little regard given to the pathogens they may be carrying [63]. This
inevitably led to BTV-viraemic or seropositive animals entering zoos [64]. Modern zoos in
Europe source most of their animals from other zoo collections and are subject to veterinary
checks prior to transfer [65]. Screening for pathogens is carried out in accordance with
EU and in-country legislation [66]. In the rare event that animals are collected from the
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wild, the European Association of Zoos and Aquaria guidelines require that zoos “carry
out necessary veterinary screenings in accordance with official protocols” [67].

Between 2017–2020, ZSL London Zoo imported 52 animals from overseas
(Supplementary Table S1) [68], but none of these animals were ruminants or considered
to be susceptible to BTV infection, with the possible exception of a Sumatran tiger from
Ebeltoft, Denmark in January 2019. While there is no evidence that feline species play an
epidemiologically important role in outbreaks of BTV, antibodies have previously been
reported in members of Felidae and Canidae [69], and it has been suggested they may
become infected by oral ingestion of infected meat or through the bite of an infected vec-
tor [69–71]. During 2017, BTV was absent in all countries that exported animals to ZSL
London Zoo. In 2018 and 2019, BTV was present in France, Canada and Germany [72], but
only non-susceptible animals were imported from these countries to the zoo during this
time (Supplementary Table S1). In response to the on-going outbreak of BTV in France
and Germany, restriction zones have been set up, and voluntary vaccination for BTV-8 and
BTV-4 is encouraged in the affected countries [73]. The UK currently requires all susceptible
animals imported from France to be vaccinated against BTV [61].

If an animal is infected in the country of origin and then transferred to ZSL London
Zoo, the length of the infectious period has to be considered. This is typically dictated by the
length of viraemia in the host, however BTV has been isolated from the skin of sheep during
the post-viraemic period at 42 days post-infection (d.p.i.) and 63 d.p.i. [74,75]. Sustained
infection within the tissues is believed to be very rare, however, with several other studies
failing to isolate the virus from the skin of post-viraemic cattle and sheep [74]. Additionally,
it is possible to detect viral RNA by rt-PCR in the blood of infected ruminants after they
are no longer infectious, but this is not considered to be epidemiologically significant [76].
The viraemic period is dependent on both host factors, such as species, breed, age and
immunological status, as well as virus factors, such as strain [77]. Cattle are viraemic
for longer than sheep, with virus isolation from the blood of cattle up to 60 d.p.i. and
occasionally exceeding 100 d.p.i. [76]. Virus isolation from sheep has been observed up
to 54 d.p.i. [78]. The OIE considers the viraemic period for ruminants to be up to 60 days,
with a >99% probability of detectable viraemia ceasing by nine weeks in cattle [57,79].
This timeframe creates a plausible window for an infected animal to be imported into
ZSL London Zoo. Given that antibodies have been found in other carnivore species, an
infected tiger may be asymptomatic, increasing the chance of undetected viraemia prior to
importation. However, given the provisions for the control and eradication of bluetongue in
the EU outlined in EU Animal Health Law: Regulation (EU) 2016/429 [80] and Commission
Delegated Regulation (EU) 2020/689 [81], including animal movement restrictions from
affected areas to non-infected regions (that includes zoo animals), as well as strict border
checks at both the UK border and within the zoo, the likelihood of an infected animal being
undetected during the importation process is very low.

Estimation of P2: Probability of BTV Entering Culicoides Population in the Zoo

Following importation of an infected animal, onward transmission of BTV would
only be possible during the vector active season. In the UK, this is typically between early
May and late October [82]. Within this period, vector populations fluctuate according
to a bimodal pattern, with peak adult activity occurring in June and September [83].
Importations occurring outside of the vector active season would pose a negligible risk
of onward transmission, whereas those occurring during the active season would be
dependent on the activity of local populations of adult female Culicoides. In response to an
incursion event, real-time localized trapping can be conducted through the UK Culicoides
Reference Laboratory, although the implementation of a long-term national Culicoides
surveillance network on livestock farms since 2006 permits accurate estimates of activity at
any time throughout the year [84].

To assess the probability of onward transmission within ZSL London Zoo, data on the
local vector population are required. Between June 2014–June 2015, a previous study col-
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lected 5768 Culicoides from ZSL London Zoo, comprising 25 different species [56]. The ma-
jority of the total catch (97.8%) constituted the putative vectors of BTV in northern Europe,
C. obsoletus, C. scoticus, C. dewulfi, C. chiopterus, C. pulicaris and C. punctatus [25]. After
bloodmeal analysis, C. obsoletus/C. scoticus specimens (the females of which cannot be mor-
phologically distinguished) from ZSL London Zoo were found to have fed on alpaca/llama
(Vicugna pacos/Lama glama) and Bactrian camels (Camelus bactrianus). Both these mammal
species are susceptible to BTV infection.

The average length of viremia in a host which can infect a feeding Culicoides is
21 days, according to infection studies carrying out using Culicoides sonorensis on cat-
tle and sheep [76], providing a reasonable window of time for an infected animal entering
the zoo to be fed upon by multiple midges during viremia (assuming adult Culicoides activ-
ity). The species composition of Culicoides at the zoo reflects what is commonly found at
livestock farms in northern Europe [85]. Previous BTV outbreaks in northern Europe have
demonstrated that these Culicoides species are able to successfully transmit the virus within
and between farms [4,86]. If an infected animal were to enter the zoo during the vector
active season, it is reasonable that the virus would enter local populations of Culicoides.
However, if the importation was to occur during the seasonal vector-free period, the risk of
onwards transmission would be negligible.

Estimation of P3: Probability of Resident Zoo Animal Becoming Infected with BTV

Once BTV has entered a local population of Culicoides, susceptible animals in the
surrounding area may be at risk of infection. The transmission rate of BTV is dependent
on temperature, as this directly affects the extrinsic incubation period (EIP) of the virus as
well as the activity of adult Culicoides. A recent study has identified temperature thresholds
for Culicoides activity to be 4 ◦C in the autumn and 10 ◦C in the summer for populations in
the south of England [87]. However, the temperature threshold for BTV replication within
Culicoides is 12 ◦C [88], and therefore this is the most important threshold that must be
reached for BTV transmission from Culicoides to occur.

Of the 414 individual mammals at ZSL London Zoo, 22 are highly likely to be sus-
ceptible to BTV infection (Table 2) [89]. During the 2006–2008 outbreak, clinical diseases
were reported in 62 out of over 1000 susceptible animals held in European zoos, with a case
fatality rate (CFR) of 69% in Bovidae [90]. This is considerably higher than the mean CFR
seen in sheep and cattle during the outbreak, which were 22–41.5% in sheep and 0.22–51%
in cattle [91–93]. Average daily temperatures in London exceed 12◦C from approximately
April to October, enabling both adult Culicoides activity and viral replication [94]. If BTV is
present in local populations of Culicoides during this time, then susceptible zoo animals are
at risk from BTV infection.

Table 2. ZSL London Zoo animals at risk of BTV infection in 2019 [89].

Scientific Name Common Name Total No. of Animals

Camelus bactrianus Bactrian camel 2

Muntiacus reevesi Chinese muntjac 2

Giraffa camelopardalis Giraffe 3

Okapia johnstoni Okapi 3

Capra hircus Nigerian goat 4

Capra hircus West African pygmy goat 3

Cephalophus natalensis Red forest duiker 2

Lama glama Llama 2

Vicugna pacos Alpaca 1

Total 22
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The host-feeding preferences of Culicoides at ZSL London Zoo were discussed above,
but it is important to note that a previous study found that the largest number of Culicoides
collected at ZSL London Zoo were caught in the trap located near the Bactrian camels [56].
Bloodmeal analysis suggests that of all the susceptible animals in the zoo, the camels are
at the highest risk of BTV infection. With the exception of wild birds, the zoo Culicoides
population appears to be sustained primarily by zoo animals, which combined with the
small geographic size of the zoo and the close proximity of the animals to each other, greatly
increases the risk of transmission to susceptible zoo animals from infected Culicoides.

Estimation of P4: Probability of BTV-Infected Livestock Entering the UK

In October 2017, post-import testing on a consignment of 32 cattle from France destined
for two farms in England and two farms in Scotland identified BTV-8 positive animals [95].
BTV was again detected in late Autumn 2018 in French cattle imports [73]. The importations
occurred in periods of low vector activity and strict movement restrictions were put in place
on all detected farms, so no onward transmission occurred [96]. Between 2018–2020, a total
of 102,515 BTV-susceptible animals were imported to the UK (Supplementary Table S2) [97].
Of these, 13,960 were imported from countries with BTV circulation. Given the previously
mentioned length of viremia, an imported animal could be capable of onward transmission
upon arrival in the presence of vector activity. Recently, Spain is the only country that has
reported using BTV vaccines to the OIE, however, voluntary vaccination is encouraged in
France and Germany, and restriction zones have been set up within those countries [73].
Vaccination is mandatory in Switzerland, and enforced in the export industry [73]. After
the detection of the import cases in 2017, compliance issues with the vaccination status
of cattle in the area of France were uncovered [95]. However, the UK initiates risk-based
post-import checks of susceptible ruminants of EU-origin in accordance with Regulation
(EU) 2017/625 [98], as well as documentary, identity and physical checks of animals from
non-EU countries at border control posts [35]. The current BTV-8 outbreak in central and
northern Europe is causing a wide range of non-specific clinical signs, and may therefore
be difficult to differentiate from other common diseases. Cases are frequently mild or
asymptomatic, with animals usually making a full recovery [22,75,99]. Without post-import
testing, BTV could enter the UK and remain undetected for some time, facilitating onward
transmission to the zoo.

In the UK, the two most commonly used real-time RT-PCR post-import tests are able
to detect BTV in ruminants between 5 and 30 d.p.i. with the probability of detection
ranging from 100% at peak viraemia down to 76% at 0–2 d.p.i. [100]. The probability of
detecting a single positive individual reduces significantly in the early stages of infection, if
multiple samples are pooled. The tests were designed for detection of serotypes 1–24, but
may be unable to detect the more recently discovered “atypical” serotypes of BTV [100].
Differentiation between infected and vaccinated animals (DIVA) is an issue when using
serological tests to detect BTV infection, as there are currently no commercially available
DIVA-compliant vaccines [99]. However, the routine use of RT-PCR assays for post-import
testing in the UK negates this problem. There is the potential for detection of BTV RNA
in the blood of sheep up to nine days post-vaccination [101], and for up to three days in
the blood of cattle [102]. This could present a potential onward risk of transmission if the
vaccine used was a modified-live virus vaccine (MLV), which has previously been shown
to replicate in Culicoides [103].

Estimation of P5: Probability of BTV Entering Local Culicoides Populations

The 2006–2009 BTV-8 outbreak in northern Europe demonstrated the vectorial capacity
of Palearctic Culicoides species, namely members of the C. obsoletus and C. pulicaris com-
plexes. In laboratory tests, C. obsoletus from different geographic regions of the UK were
found to have BTV infection rates ranging from 0.4–7.4%, and C. pulicaris specimens col-
lected from Keele, UK, were found to have a 13% infection rate [104]. Some populations of
Palearctic species could reach infection rates of up to 26% using membrane and pad-feeding,
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exceeding those recorded for BTV’s putative vector in Africa, Culicoides imicola [104]. Given
the large populations of Culicoides vectors throughout the UK, substantial transmission in
the absence of control measures remains possible during the vector active season. Livestock
density and land use has been linked to Culicoides abundance, with larger populations in
areas with higher livestock density [82,105]. BTV spreads to Culicoides more effectively in
warmer conditions when populations peak due to more rapid life cycles. However, BTV
can persist in a latent phase in infected Culicoides for long periods in cold temperatures,
resuming replication once the temperatures increase [106].

Biting rates of vector Culicoides on livestock can be extremely high, and have been
observed to be in excess of 150 bites per minute on sheep [107]. If a BTV-positive livestock
import occurs during the vector active season, and average daily temperatures are >12 ◦C,
it is likely that BTV could enter local populations of Culicoides.

Estimation of P6: Probability of Spread of BTV to London Culicoides Populations

Midge dispersal has been found to be the principal mode of transmission of BTV
between farms [108]. This phenomenon of midge dispersal is referred to as a ‘stepping
stone effect,’ in which a sequence of short-range infections result in what appears to be a
long-distance transmission [109]. During the 2006–2009 BTV-8 outbreak in northern Europe,
54% of new cases occurred over distances up to 5 km, 92% over distances up to 31 km and
only 2% over distances greater than 31 km [109]. If infected livestock were imported to a
farm in the UK, this ‘stepping stone effect’ could potentially carry the infection to London
Culicoides populations, with proximity of the initial farm to London determining the time
scale. Additionally, the Culicoides species composition on farms surrounding London is
suitable for BTV transmission, with vector species present on farms in Hertfordshire, Essex,
Kent, Berkshire and Surrey (M. England, unpublished data) [82].

The proximity of susceptible livestock to London may be a limiting factor for Culicoides
dispersal. The density of cattle and sheep is low in the London area [110,111], but there is a
relatively high density of goats in some parts of Greater London, with 2–25 animals per
km2 [112]. The nearest livestock holdings to London Zoo are two city farms (1.93 km and
3 km distance from ZSL London Zoo) that have small holdings of cattle, sheep and goats.
Further small holdings that are open to the public extend outwards from central London
and are all within approximately 5 km of each other. This creates a network of livestock
holdings across London that are well within the transmission range of 31 km observed
during the 2006–2009 BTV outbreak [109].

Estimation of P7: Probability of Windborne BTV-Infected Culicoides Entering the UK

During the 2006–2008 northern Europe outbreak of BTV-8, it was proposed that in-
cursion into the UK occurred through long-distance wind dispersal of infected Culicoides
from continental Europe [113]. The small body size of Culicoides (1–3 mm in length) enables
their semi-passive dispersion over great distances by wind [114]. The UK Met Office’s
Numerical Atmospheric-dispersion Modelling Environment (NAME) [115] models the
release, spread and removal from the atmosphere of windblown midges, by analysing
meteorological data and data on Culicoides populations [114]. According to routine outputs
from NAME model runs, performed during the vector active season to estimate the poten-
tial for windborne Culicoides incursion to the UK [38,116,117], there were approximately
226 potential incursions of windblown midges from continental Europe into UK coastal
counties near London in 2017, 204 in 2018 and 229 in 2019 (Figure 3). The UK shares
many species of Culicoides with northern Europe, including the putative vectors of BTV.
A previous study found C. obsoletus accounted for 83% of Culicoides trapped in nine EU
countries between 2007–2013 [85]. Therefore, competent vectors are likely present along the
coast of continental Europe. Based upon OIE reports, it is believed that BTV was present
in France and Germany from 2017 to 2020, and present in Belgium in 2019–2020 [73]. It
is likely that infected Culicoides would survive after entry into the UK, particularly since
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incursions would likely occur during a period of high vector activity, enabling them to be
caught by the wind.
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Estimation of P8: Probability of BTV-Infection in Native UK Livestock following
Windborne Incursion of Infected Culicoides

The greatest risk for onward transmission of BTV after an incursion of infected
Culicoides occurs in areas with high livestock densities close to the coast. Comparing
data on livestock density with the incursions shown in Figure 3, East Sussex and Kent
are at the greatest risk for onward transmission. The rate of transmission is highest on
cattle-only farms, followed by sheep-only farms, and lowest on mixed farms [116]. All five
counties that experience incursions as determined by the NAME model (Figure 3), have
similar densities of cattle and goats, but East Sussex and Kent have higher densities of
sheep, potentially increasing their risk for infection [110–112]. In the absence of vaccination,
modelling has shown that there is a high chance of disease spread beyond the initial site of
incursion [118]. Additionally, modelled incursions occurring in September result in smaller
outbreaks with less geographical spread than incursions occurring in May. Incursions
occurring earlier in the year have more time for disease spread, taking full advantage of
the adult Culicoides active season [118].

2.2.2. Qualitative Probabilities for AHSV Risk Pathways
Estimation of P9: Probability of AHSV-Infected Animal Entering the Zoo

The recent outbreak of AHSV in Thailand is hypothesised to be the result of the
importation of an infected equid from an AHSV-endemic country. This shows that despite
having appropriate precautions in place, as required by the OIE, it may still be possible
for infected equids to enter a country, either illegally or through incorrect certification.
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To improve disease control and to prevent fraud, in 2018 the UK introduced new equine
identification regulations making it a legal requirement for all equids to be microchipped,
with fixed penalty fines for noncompliance [117]. All horses imported into the UK from
other countries (including the EU) must be accompanied by a health certificate issued after
physical inspection of the horse [119]. This certificate also requires that the horse is entering
the UK from a region that has been free from AHSV for two years.

In 2019, ZSL London Zoo housed two plains zebra (Equus quagga chapmani) (Table 3)
which can act as reservoir hosts for AHSV, driving its distribution and persistence in
endemic regions of Africa [40,44]. The export of AHSV-infected zebra from Namibia to
Spain in 1987 caused an outbreak that lasted for three years [120]. Zebra are viraemic for
up to 40 days, so it is reasonable that an asymptomatic zebra could have a transmissible
infection upon entry into the UK [41]. AHSV has never been reported in any of the countries
from which animals were imported to ZSL London Zoo over the last three years, and none
of the imported animals were equids (Supplementary Table S1). Additionally, export
countries have not reported the use of any vaccine to OIE, and the use of live attenuated
vaccines is not permitted in AHSV-free regions [121]. Susceptible equids undergo pre- and
post-import testing in the UK if arriving from an AHSV-endemic or seasonally endemic
area. They are also required to isolate in an AHSV-free area or vector-proof housing for a
period of up to 40 days prior to importation with appropriate serological and/or antigen
testing [57]. Post-import diagnostic tests used are highly sensitive and specific, so are likely
to correctly identify the presence of virus or antibodies. However, pre- and post-import
testing for AHSV in the UK is only carried out on equids, yet asymptomatic infections can
occur in carnivores, in particular big cats [69]. The domestic dog is the only non-equid
species known to exhibit severe disease, and it has been suggested that natural infection
could occur via a non-oral, vector-mediated route [122]. Therefore, it may be possible for
animals other than equids to introduce AHSV to the UK.

Table 3. ZSL London Zoo animals at risk of AHSV infection in 2019 [89] [H. Jenkins, personal
communication].

Scientific Name Common Name Total

Lycaon pictus African hunting dog 7

Equus asinus Donkey 2

Equus quagga burchelli Burchell’s zebra 2

Equus quagga chapmani Chapman’s zebra 2

Camelus bactrianus domestic Bactrian camel 2

Total 15

Estimation of P10: Probability of AHSV Entering Culicoides Populations in the Zoo

The primary vector of AHSV is C. imicola, which is found in high abundance across
most of AHSV’s known range [40]. However, during the 1987–1991 outbreak in Spain,
AHSV was isolated from pooled samples containing C. obsoletus and C. pulicaris, and lacking
C. imicola [42]. In Portugal, it was postulated that transmission was driven by C. imicola,
and the coinciding high abundance of C. obsoletus and C. pulicaris allowed the virus to enter
these species [123]. These findings support the theory that C. obsoletus and C. pulicaris could
act as vectors in the absence of C. imicola, as is the case with BTV in northern Europe [124].
Prevalence of AHSV infection in Culicoides is often less than 10%, so transmission relies
on high abundance and biting pressure [40]. Culicoides obsoletus in the zoo have been
shown to be non-specific opportunistic feeders, and thus have the potential to feed on an
AHSV-infected animal following importation into the zoo.

Estimation of P11: Probability of a Resident Zoo Animal Becoming Infected with AHSV

In 2019, there were 15 individual animals considered susceptible to AHSV kept in
the ZSL London Zoo collection (Table 3) [89]. Previous studies have shown antibodies to
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AHSV in dromedary camels [125,126], but the potential for infection in Bactrian camels is
unknown. For the purposes of this risk assessment, we are assuming the Bactrian camels
at ZSL London Zoo present a susceptible population. The small geographic size of the
zoo and the proximity of the animals would permit transmission by Culicoides in the event
of an incursion. During the 1987 outbreak in Spain, widespread transmission occurred
to other local equids, and resulted in an outbreak encompassing three countries [127].
The transmission rate is related to seasonal variation in Culicoides population abundance
and to the extrinsic incubation period (EIP) of the virus, which in turn is dependent
on temperature. The summer months in London are likely the only months capable of
supporting transmission. Laboratory studies on the bluetongue vector, Culicoides sonorensis,
have shown that replication of AHSV ceases at ≤15 ◦C [128]. Average daily temperatures
in London typically exceed 15 ◦C during the months of June, July and August [129], and
therefore an AHSV-infected animal imported during this time could present a risk of
onward transmission. In South Africa, average daily temperatures exceed 15 ◦C from
October to May [130], which permits transmission throughout a significant proportion of
the year. Assuming vector competence of C. obsoletus group species and/or C. pulicaris
group species to AHSV, it is possible that transmission between an imported equid and
susceptible zoo animals could occur if the import were to occur between the months of
June and August.

Estimation of P12: Probability of AHSV-Infected Equid Entering the UK

Between 2018–2020, the UK imported 16,380 equids from EU countries, and between
2018–2019, 4,254 equids from non-EU countries (Supplementary Table S3) [97]. In 2018 and
2019, AHSV was absent in all countries that exported animals to the UK. In March 2020,
an outbreak of AHS began in Thailand, but there have been no reports during 2020 from
any of the other export countries. No vaccination use was reported to OIE by any of the
export countries between 2018–2020 [131]. In EU countries, AHSV has been a notifiable
disease since December 1982, and EU countries are required to have contingency plans in
operation with restriction and surveillance zones [80]. Outside the EU, most non-endemic
countries require import testing and quarantine of equids and similar action plans if an
infection is detected. In endemic countries, which neighbor a few of the export countries
(such as Morocco and Tunisia), live attenuated vaccines are routinely used and movement
restrictions are employed in the event of an outbreak [132]. Once in the UK, the probability
an infected equid passes border checks is very low, due to strict pre- and post-import
testing required, as previously mentioned. The OIE Terrestrial Code defines the infective
period as 40 days for domestic horses [57], while donkeys are viraemic up to 17 days [133].
A range of highly sensitive and specific RT-PCR and rRT-PCR assays are used by AHSV
diagnostic laboratories [134]. These tests can detect all nine known serotypes of AHSV.
The OIE lays out a number of conditions that must be met prior to export from an infected
country, including that horses are not permitted to travel within 40 days of receiving a
vaccination [57]. In South Africa, outbreaks of AHSV have been caused by a reversion
to virulence or reassortment of AHSV live attenuated vaccines, which can be spread by
Culicoides [135].

Horses commonly exhibit severe symptoms which would likely be detected during
routine veterinary checks at border posts. However, horses from endemic regions may
present mild or sub-clinical infection due to frequent exposure to natural infection and/or
vaccination. A previous study focusing on competition thoroughbred horses has assessed
the risk of an undetected AHSV-infected horse being exported from both low-risk and
endemic areas of South Africa [47]. It was estimated that with post-import testing and
post-arrival quarantine in place, the risk was equivalent to one undetected infected horse
in every 2.2 million horses exported from low-risk areas. This increased 15 to 17 times if
the horse came from an endemic area. The risk would likely vary greatly depending on the
type/breed of horse being imported, its prior exposure and its vaccination status.
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Estimation of P13: Probability of AHSV Entering Local UK Culicoides Populations

As previously mentioned, vector competence for AHSV of the Palearctic species
C. obsoletus and C. pulicaris has been suggested. These species are widespread across the
UK in high abundance, comprising between 93.5–97% of specimens caught on farms, with
traps in some locations catching thousands of specimens in a single night [136]. Equine
holdings have shown similar Culicoides species composition and abundance [137,138].
Given the large populations of potential vectors found in the UK and the higher rate of
AHSV infection observed in Culicoides populations compared to infection rates for BTV,
it is likely AHSV circulation could occur. Studies in the UK, France and the Netherlands
determined C. obsoletus and C. pulicaris bite horses, so onward transmission would likely
occur after initial importation of an infected equid, assuming the adult vectors were
active and temperatures were sufficient for viral replication within the vector [139–141].
The destination of imported horses has been found to cluster in south-east England, where
temperatures may be sufficient to enable transmission during the summer months [142].

Estimation of P14: Probability of Spread of AHSV to London Culicoides Populations

Given suitable conditions for AHSV circulation within UK Culicoides populations,
transmission would likely follow a similar ‘stepping stone’ pattern to BTV, with small
jumps between equine holdings. The species composition in London is likely suitable for
AHSV transmission, given that studies at ZSL London Zoo caught mainly members of the
C. obsoletus and C. pulicaris complexes, albeit in lower numbers than those typically seen on
farms [56]. Unfortunately, there is limited data on the distribution and numbers of horses
and other equids in the UK. The potential spatio-temporal transmission rates of AHSV
in Great Britain have been modelled previously using ambient temperatures during the
year, seasonal abundance of Culicoides, and the distribution of other hosts [139]. The model
found the patterns of transmission were mainly influenced by the abundance of Culicoides,
the distribution of horses and the presence of non-susceptible hosts (sheep and cattle).
Previous estimates of horse density across Great Britain indicates low density in London,
which could limit transmission potential [139].

3. Results
3.1. BTV Risk Pathways

The lack of susceptible imported animals from countries with BTV transmission over
the last few years, the low probability for an infected animal to pass border checks in its
country of origin and the UK, as well as veterinary inspection at the zoo, greatly reduce
the probability of a BTV-infected animal entering the zoo. However, given the possibility
for asymptomatic animals to be imported the probability, P1, is classified as very low. This
probability is based on the assumptions that tigers may be able to carry infection undetected,
there is no opportunity for exposure during transit and that EU and Canadian border checks
are being correctly adhered to. If an infected animal is imported into ZSL London Zoo,
the suitable species composition and feeding preferences of the zoo Culicoides populations
render the probability of BTV-infected Culicoides in the zoo, P2, as medium during the
vector active season. If, however, the importation occurred outside the vector active
season or when temperatures are below that required for viral replication, P2 would be
considered negligible. The probability of a zoo animal becoming infected, P3, if BTV-infected
Culicoides are present in the zoo, is high to very high, given the availability of susceptible
zoo animals kept in close proximity to one another (Table 2) and the demonstrated host
feeding preferences of the Culicoides populations in the zoo. The probability of BTV-infected
livestock entering the UK, P4, is very low. Border checks and post-import testing currently
appear to be working well, however the frequency of imports of susceptible animals from
countries with ongoing BTV circulation (Supplementary Table S2) presents an ongoing
low-level risk of entry of an infected animal. Additionally, there is uncertainty around the
ability to detect atypical BTV serotypes. Given the large abundance of members of the
C. obsoletus and C. pulicaris complexes throughout the UK, their proven vectorial capacity
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and their association with livestock, the probability that BTV enters native Culicoides
populations, P5, from an imported infected animal is medium during the vector active
seasonal and negligible during the seasonal vector-free period. The probability of spread
of BTV to London Culicoides populations, P6, from a primary import site is low. While an
infection could plausibly spread to London from infected farms through midge dispersal,
and competent vector species are present in London, the risk is reduced by the low densities
of cattle and sheep in and around Greater London.

Windborne incursion of Culicoides to UK coastal counties near London is predicted
to occur over 200 times each year (Figure 3). Case reports of BTV in 2020 have only
occurred beyond 150 km of the coast of the UK, although positive cases of BTV-8 have been
reported in northern France (the closest to the UK are in the Mayenne region of northwest
France) [143]. Therefore, the probability, P7, is low during the vector active season and
negligible during the seasonal vector-free period. The probability of BTV-infection in native
livestock following a windborne incursion of an infected Culicoides, P8, is medium. The
presence of unvaccinated cattle, sheep and goats in coastal counties with frequent incursions
throughout the year presents a highly susceptible population. However, the associated
dependence on midge survival after importation for successful onward transmission limits
this probability to medium.

When the above probabilities are combined, the overall probability for risk pathway
BTVR1 is low, for risk pathway BTVR2 is low to medium and for risk pathway BTVR3 is
medium. These probabilities are calculated for the vector active season. During the seasonal
vector-free period, all risk pathways would present negligible probabilities due to the nature
of BTV being a vector-borne virus. The qualitative risk probabilities are summarized in
Table 4.

Table 4. Qualitative probability estimates for BTV risk parameters and pathways during the vector
active season.

Probability Qualitative Probability

BTV-infected animal enters the zoo (P1) Very low

BTV enters zoo population of Culicoides (P2) Medium

Resident zoo animal infected with BTV (P3) High to very high

BTV-infected livestock enters the UK (P4) Very low

BTV enters local population of Culicoides (P5) Medium

BTV spread to London populations of Culicoides (P6) Low

Windborne BTV-infected Culicoides enter the UK (P7) Low

BTV infection in UK livestock (P8) Medium

Risk pathway #1, BTVR1 (P1, P2, P3) Low
Risk pathway #2, BTVR2 (P4, P5, P6, P3) Low to medium

Risk pathway #3, BTVR3 (P7, P8, P5, P6, P3) Medium

3.2. AHSV Risk Pathways

The probability of an AHSV-infected animal entering the zoo, P9, is very low, given that
AHSV has never been reported in any of the export countries and no equids were imported
into the zoo over the last three years (Supplementary Table S1). The risk is not considered
negligible due to the potential for asymptomatic infection in imported non-equids. The prob-
ability of AHSV entering zoo populations of Culicoides, P10, following the importation
of an infected animal is medium (during the vector active season, negligible during the
seasonal vector-free period), given the existence of populations of potential AHSV vectors
in the zoo and their proven feeding on a wide range of hosts. The vector competence of
northern European Culicoides for AHSV is unknown, so this probability estimate assumes
that members of the Avaritia subgenus, C. pulicaris and C. punctatus are competent vectors.
This is based on their ability to act as vectors for BTV, and the vector status of C. imicola
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for both BTV and AHSV in endemic regions. The probability of a resident zoo animal
becoming infected with AHSV, P11, is medium, due to the availability of susceptible zoo
animals (Table 3) and demonstrated feeding preferences of Culicoides populations in the
zoo and across northern Europe. This assumes that AHSV can replicate and disseminate to
the salivary glands successfully in UK Culicoides under suitable environmental conditions.

The probability of an AHSV-infected equid entering the UK, P12, is very low, due
to the absence of the disease in all but one of the countries that have exported equids
to the UK in the last two years (Supplementary Table S3), as well as the strict control
measures in place both pre- and post-import into the UK. However, the large number of
susceptible equids imported into the UK every year and the global nature of horse travel
does create a non-negligible risk, as proven in 2020 by the AHSV outbreak in Thailand.
The probability of AHSV entering local Culicoides populations, P13, is low to medium, given
the large populations of potentially competent Culicoides known to be present around
equine facilities in the UK and the suitability of summer temperatures at the destinations
of the majority of imported equids. This would, of course, be negligible during the seasonal
vector-free period. The probability of AHSV spreading to London Culicoides populations,
P14, is very low, given the limited host distribution in the immediate London area.

When the above probabilities are combined, the overall probability for risk pathway
AHSVR1 is very low and for risk pathway AHSVR2 is very low to low during the vector
active season. During the seasonal vector-free period, all risk pathways would present
negligible probabilities. The qualitative risk probabilities are summarized in Table 5.

Table 5. Qualitative probability estimates for AHSV risk parameters and pathways during the vector
active season.

Probability Qualitative Probability

AHSV-infected animal enters the zoo (P9) Very low

AHSV enters zoo population of Culicoides (P10) Medium

Resident zoo animal infected with AHSV (P11) Medium

AHSV-infected equid enters the UK (P12) Very low

AHSV enters local population of Culicoides (P13) Low to medium

AHSV spread to London populations of Culicoides (P14) Very low

Risk pathway #1, AHSVR1 (P9, P10, P11) Very low
Risk pathway #2, AHSVR2 (P12, P13, P14, P11) Very low to low

4. Discussion

The risk pathways describing the probable entry and incursion routes of BTV and
AHSV have been identified and qualitatively assessed. For both viruses, the pathways are
very similar, largely due to their shared Culicoides vectors. The major divergence in risk
between the two diseases is associated with their different geographical distributions, as
BTV is already established in northern Europe. The BTV outbreaks recorded in northern
Europe and the UK demonstrate the virus’ ability to replicate in temperate conditions, be
transmitted by Palearctic Culicoides species, and spread rapidly through naïve populations
of livestock [4,113]. Its current persistence in northern Europe puts the UK at continual
risk of re-introduction. In contrast, AHSV has never been reported in temperate regions,
and there have only been a few incursions into southern Europe [120,140]. Very little is
known about its potential to spread in Palearctic Culicoides, but its geographic distance from
the UK lessens the overall risk of introduction. The current status of scientific knowledge
and distribution of AHSV is remarkably similar to that of BTV before its breakthrough to
northern Europe. Additionally, an outbreak of AHSV in the UK would disrupt an industry
(horse racing, performance sports and recreation combined) that is worth £7 billion a year
to the UK economy [141]. Therefore, while the greatest risk of the two viruses to ZSL
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London Zoo is currently posed by BTV (Table 4), the potential impact of an AHSV outbreak
cannot be ignored.

The most likely pathway of BTV introduction into the UK and on to ZSL London Zoo
is from long-distance windborne incursion of infected Culicoides from France, Belgium or
the Netherlands. This pathway, BTVR3, has been estimated to present a medium level of
risk to the UK (Table 4). Evidence suggests such windborne incursions were responsible
for the 2007 BTV-8 outbreak in the UK [109,114]. The continued presence of the disease in
countries from which models show hundreds of potential windborne Culicoides incursions
annually (Figure 3) results in this pathway currently presenting a constant risk during the
vector active season. The other two risk pathways considered here for BTV (BTVR1 and
BTVR2) both have the potential to occur and have been estimated to present a risk of low
and low to medium, respectively (Table 4). If either of these routes of incursion coincide
with the vector active season in the UK, onward transmission is possible. However, the
likelihood that an infected zoo animal or livestock import would pass both pre-import
testing in its country of origin and post-import testing within the UK is very low. While
infected cattle have departed from France undetected, the rapid identification of these cases
after arrival in the UK highlights the effectiveness of the UK’s post-import surveillance [95].
Additionally, the zoo has not imported any animals that are known to be susceptible to
BTV in the past few years (Supplementary Table S1) [68].

The introduction and onward transmission of AHSV presents a lower risk to the UK
than BTV, through either an infected animal imported directly to the zoo (risk pathway
#1, AHSV1, Figure 2) or an infected equid imported to the UK (risk pathway #2, AHSV2,
Figure 2)). The severe consequences associated with clinical disease usually seen in horses,
have forced strict pre- and post-import checks that greatly reduce the likelihood that an
infection would go undetected. The potential for transmission in non-equid hosts is poorly
understood, and this risk assessment has attempted to capture this uncertainty by consid-
ering the possible role of big cats as asymptomatic carriers. Additionally, the racehorse
industry is a global network, and as has been seen recently in Thailand, the potential
for new outbreak foci cannot be excluded. For this reason, the two pathways considered
for AHSV were not deemed to be negligible (except for during the seasonal vector-free
period). For both AHSV and BTV, the control measures in place to stop disease spread play
a significant role in reducing the risk of introduction and exposure.

4.1. Key Assumptions

For the purposes of this risk assessment, different serotypes and strains of BTV and
AHSV were not considered separately. There are phenotypic differences between strains of
BTV, which can affect detection potential. Currently, there are 24 serotypes of BTV that are
transmitted by Culicoides biting midges and are largely similar in clinical presentation [144].
Since 2008, further “atypical” strains of BTV have been discovered, such as BTV-25 which
does not cause clinical signs in goats and only mild clinical signs in sheep [145]. Indeed,
BTV-26 does not replicate experimentally within Culicoides sonorensis, although infection
studies with European species of Culicoides have yet to be conducted [146]. Instead, there
is evidence that BTV-26 can be transmitted via direct contact between goats [146]. As
well as heterogeneous geographical distribution, the differential transmission pathways
of BTV serotypes have a direct impact on the risk of disease introduction to the UK, as
well as the ability for pre- and post-import detection. Further studies to better understand
the transmission pathways of atypical BTV serotypes are required to improve future risk
assessments. There are nine serotypes of AHSV, which are variously distributed throughout
central and sub-Saharan Africa [147]. It is unknown whether there are similarly “atypical”
serotypes of AHSV circulating, and this presents further uncertainty when trying to assess
incursion risk.

From previous studies, the vector active season at ZSL London Zoo was found to
begin in late April and end in late October/early November [56]. For this risk assessment,
it has been assumed that all vector species are equally active throughout the season, and
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temporal variation in risk throughout the active season has not been considered. However,
a previous study sampled Culicoides at 12 sites across the UK and found that Culicoides
on farms exhibited bimodal seasonality, with populations peaking in April/May and
then again in September/October [83]. There was variation between the sites, but lower
abundance was noted across all sites in June. Culicoides punctatus and C. pulicaris emerged
earliest, and were continually caught later than other species, demonstrating a longer
active season compared to members of the subgenus Avaritia. These variations would
directly impact the risk of BTV and AHSV introduction, as transmission would be less
likely in periods with lower population abundance. Therefore, the greatest risk for onward
transmission would occur in April/May and September/October, but within-year variation
is not reflected in this risk assessment.

Another assumption for this risk assessment was that UK Culicoides species are ca-
pable of transmitting AHSV. This assumption is based on their ability to transmit the
closely-related bluetongue virus and the shared vector competence of C. imicola for BTV
and AHSV in endemic regions [148]. The length of the extrinsic incubation period and
temperature replication thresholds for AHSV in the UK was estimated based on laboratory
work performed on C. sonorensis [106,128]. There is clearly a need to determine the vector
competence of Palaearctic species of Culicoides for AHSV to more accurately assess risk to
the UK, and to aid preparedness and response in the event of an outbreak.

The Sumatran tiger was assumed to be susceptible to both BTV and AHSV based on
evidence of antibodies in other big cats and carnivores [69,90]. There are substantial levels
of uncertainty around this assumption, given that it is unknown whether carnivores can
be infected by vector feeding or solely through oral transmission, and whether onward
transmission would then be possible. It is unclear whether an infection would be asymp-
tomatic or have a clinical presentation, and what the length of the incubation and viraemic
periods would be. Without specific evidence of infection in tigers, their possible role in
transmission of both AHSV and BTV can only be assumed based on evidence in related
species. To understand the role of different animals in AHSV transmission, it would be
useful to assess the impact, if any, of AHSV on zoo animals in endemic regions, and the
seroprevalence within zoos across a range of species.

The reliability of OIE country reports for BTV is unknown, given countries that are
under restriction and protection zones may not report all disease events. The probability
estimates given in this risk assessment are based entirely on reports available through EU
reporting channels and those reported publicly by the OIE. The risk to the UK is highly
dependent on the proximity of outbreaks to the coast of northern Europe, and continual
monitoring of Culicoides vector activity within the UK and potential airborne incursion
events as modelled by NAME are required to understand real-time disease risk throughout
the year.

With regards to livestock and equine imports to the UK, there will always be variation
between years, so the precise risk will vary accordingly between and within years. In
this risk assessment, outputs from the NAME model were used to determine windborne
incursions to the UK (Figure 3). The nature of the model itself carries inherent uncertainty,
since it uses historical NAME outputs to determine future risk. The NAME model predicts
the windborne transport of midges across water, but once over land is unable to determine
flight behaviour and where they will land. Therefore, it was assumed that areas with higher
livestock densities would attract more midges, but what triggers Culicoides to land in certain
locations is unknown. The survival rates and number of midges arriving is also unknown,
as the model treats them as particles transported by the wind for a fixed length of time.
Studies that investigate how Culicoides fly over land, and what drives them to land after
passive wind transport, would also be useful to increase the predictability of the NAME
model, and therefore increase accuracy when estimating risk from wind-borne incursions.

The low densities of both livestock and equine populations within the Greater London
area present a potential break in the stepping-stone effect of transmission. The majority
of Culicoides collections in the UK have taken place on farms in rural or semi-rural areas,
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and whilst Culicoides vector populations are known to be present within ZSL London Zoo,
trapping within the Greater London area has not been conducted. Transmission potential
of BTV between small holdings in urban and semi-urban areas needs to be assessed by
investigating host and vector populations and their interactions in these areas. This would
provide a more complete understanding of whether susceptible animals within ZSL London
Zoo are protected from Culicoides-borne viruses by urban barriers. The presence of small
livestock holdings, largely in the form of petting zoos, across London provide a potential
network for disease transmission. Data on the distribution of horses across London is
patchy but the most visible equids in London are working horses. There are eight stables
that house the approximately 110 working horses of the Metropolitan Police Mounted
Branch, seven of which are within Greater London [149]. Additionally, the City of London
Police has a mounted branch which has stables close to St. Paul’s Cathedral [150]. These
horses are moved out of the city once a week for rest and space. There are 211 horses of the
Household Cavalry housed at Hyde Park [151], and additional high value horses kept in
the Royal Mews at Buckingham Palace [152]. The daily movement of these horses around
London, and their movements into and out of the city could potentially facilitate AHSV
transmission in the event of an outbreak.

Due to the nature of the industry, there are countless small- and large-scale movements
of horses around the UK every day from localized riding for pleasure to long-distance
transport for organized equestrian events such as polo. Evidence from previous outbreaks
in Spain and Thailand has shown that horse owners respond to an AHSV incursion by
moving their horses away from the affected areas, which inadvertently facilitates more
widespread transmission [S. Carpenter, personal communication]. These movements are
not necessarily illegal, but there is an increase in the frequency of movements at the start of
an outbreak that makes the disease harder to contain and control.

4.2. Negligible Risk Pathways

The risk pathways assessed in this study were determined to be the most likely
pathways for the incursion of BTV and AHSV into the UK, with the potential to cause
onward transmission to an animal in ZSL London Zoo. The selection of these pathways
was based upon available research on the elements of each pathway and current scientific
understanding of the diseases. Additional risk pathways were identified, but considered to
pose a negligible risk (including during the vector active season) at this time. These are
outlined below.

For BTV, it has been suggested that disease introduction could occur through the
importation of infected midges with cargo, such as cut flowers. Initially, the 2006–2009
BTV-8 outbreak in northern Europe was thought to have originated via this pathway,
since initial cases occurred in Maastricht, an international plant trading hub [25]. This
was later thought not be the case following the discovery of earlier infections on farms
nearer to Belgium [153]. However, a previous study surveyed international ships arriving
in Qinhuangdao Port, China during the summer of 2003, and found that 29 of 70 ships
inspected contained live midges, including species of Culicoides [154]. The UK imports
17% of Kenya’s flower exports (Kenya is a BTV- and AHSV-endemic country), creating an
opportunity for this pathway to occur [155]. Flowers are grown in specific areas near to
Nairobi airport, from where they are shipped directly via aeroplane at low temperatures to
the UK, and then directly on to supermarkets [J. Stokes, personal communication]. Given
the lack of susceptible livestock at either end of this pathway, as well as the conditions of
travel, the risk of incursion from this pathway is considered negligible.

Another risk pathway for BTV is the potential importation of infected germplasm.
Transmission is possible via either frozen or chilled germplasm, and it has been proposed
that frozen bull semen from 2007 caused the resurgence of BTV-8 in France in 2015 [156].
The risk of disease importation to the UK is currently negligible via this pathway, given the
testing measures in place at semen collection centres and the strict legislation surrounding
the importation of specimens from restricted areas.
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Finally, a possible risk pathway for AHSV incursion occurs through the long-distance
spread of infected midges via wind movements. In Africa, winds transporting infected
Culicoides from endemic regions have caused outbreaks in naïve equid populations in
non-endemic areas [23]. The maximum possible distance for dispersal has been postulated
as 700 km over water, or 150 km over land [148]. The risk to the UK from this route is
therefore negligible, due to the absence of AHSV within this geographical range.

5. Conclusions

Bluetongue virus and African horse sickness virus are two closely related Culicoides-
borne viruses, which have immense economic consequences and disrupt global trade. After
careful analysis of their risk of introduction to the UK and onward transmission to ZSL
London Zoo through the assessment of the most likely risk pathways, BTV was found
to pose a greater threat, but the uncertainty surrounding AHSV may underestimate (or
overestimate) the risk from the pathways assessed in this study. Overall, the probability
of BTV infecting a zoo animal in ZSL London Zoo was determined as low to medium, with
the most likely route of infection being through the windborne introduction of infected
Culicoides from mainland Europe followed by onward transmission and spread to the zoo.
The probability of a zoo animal becoming infected with AHSV was determined to be very
low to low, according to the risk pathways assessed.

To mitigate against the threat of BTV or AHSV introduction into the UK and the zoo
collection, there are several strategies that can be adopted. Stringent post-import testing on
ruminants and equids for BTV and AHSV respectively should continue, and potentially
expand to encompass the previously mentioned species found to have antibodies when
imported from countries with known disease. When importing animals from high-risk
areas appropriate quarantine periods should be adhered to, with the recommendation to
use vector-proof housing during this period. Additionally, if animals were to be imported
during the winter when Culicoides adult activity is minimum, this would reduce the risk of
onward transmission. In the event of an incursion of BTV to the UK, all susceptible animals
should be vaccinated with a serotype-specific vaccine. Vaccination against AHSV would
depend on amendments to current licensing, and would only be advised in the event of
an outbreak due to the possibility of reversion to virulence of live vaccine strains, and the
implications for longer term AHS-free status. Surveillance of Culicoides populations within
the zoo and within Greater London is recommended to monitor seasonal activity patterns
and to detect any changes in vector abundance. In the event of an outbreak of either BTV
or AHSV in the UK, reducing vector-host contact through vector-protective housing and
restricting outdoor access to periods of low vector activity (midday) would greatly reduce
the risk of infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14030502/s1, Supplementary Table S1: Imports of animals to
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imports from EU countries January 2018–July 2020. Supplementary Table S3: Imported equids from
non-EU countries from January 2018–December 2019.
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