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Working memory is closely involved in various cognitive activities, but its neural
mechanism is still under exploration. The mainstream view has long been that persistent
activity is the neural basis of working memory, but recent experiments have observed
that activity-silent memory can also be correctly recalled. The underlying mechanism
of activity-silent memory is considered to be an alternative scheme that rejects the
theory of persistent activity. We propose a working memory model based on spike-
timing-dependent plasticity (STDP). Different from models based on spike-rate coding,
our model adopts temporal patterns of action potentials to represent information, so it
can flexibly encode new memory representation. The model can work in both persistent
and silent states, i.e., it is compatible with both of these seemingly conflicting neural
mechanisms. We conducted a simulation experiment, and the results are similar to the
real experimental results, which suggests that our model is plausible in biology.

Keywords: spike-timing-dependent plasticity, working memory, computational model, synaptic plasticity, spiking
neural network

INTRODUCTION

Working memory is the ability to preserve information for further processing (Baddeley, 2010). It
participates in complex tasks such as reasoning, understanding, and learning, and is an important
part of the cognitive function. Reflecting its importance, working memory has been a research
object for many years, but its neural mechanism is still not fully understood. As early as 1971, a
study on short-term memory by Fuster and Alexander reported that some neurons of the prefrontal
cortex maintained a higher firing rate in the delay period than in the intertrial period (Fuster and
Alexander, 1971). Similar phenomena were observed in subsequent experiments (Funahashi et al.,
1989; Nakamura and Kubota, 1995; Watanabe and Funahashi, 2007; Wimmer et al., 2014). Since
there is no external cue stimulus during the delay period, this spontaneous activity is likely related
to the memory content. Some studies have found that if researchers try to inhibit the persistent
activity of neurons during the delay period, the accuracy of task recall will decrease (Quintana et al.,
1989). More importantly, a machine learning model trained by the neuronal spike data collected
during persistent activity can predict the behavior of animals in the recall phase (Masse et al., 2017).
Therefore, persistent activity is considered the most reasonable candidate mechanism for working
memory, and some computational models based on the interconnection of neurons have been
proposed. For example, in the ring model (Compte et al., 2000), the connection strength of neurons
is determined according to their stimulus selectivity, and the input information is maintained
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by mutual excitation of adjacent neurons. Similar models
reproduce the phenomena observed in neurobiology
experiments, but they are usually only suitable for spatial
orientation memory tasks.

Recent studies have found that working memory can be
independent of persistent activities, which provides a new way to
understand its neural mechanism. For example, under dual tasks,
even when an experimental subject makes the correct choice,
the spatial selectivity of delayed activities is significantly reduced
(Watanabe and Funahashi, 2014), indicating that working
memory can be retained in the “activity silence” neural state
(Stokes, 2015). Another study found that transient gamma
oscillations are accompanied by reactivation of coding and
sensory information (Lundqvist et al., 2016), which means
gamma oscillations may also be the basis of working memory.
Accordingly, models independent of persistent activities have
been proposed, in which information is stored by synaptic
changes rather than neural activity. This change occurs through
specific synaptic mechanisms, such as presynaptic calcium
residue (Mongillo et al., 2008) and short-term enhancement
(Fiebig and Lansner, 2017; Mi et al., 2017).

Since the observed experimental phenomena are quite
different, these two mechanisms are usually considered
incompatible. However, because of differences in species
types, individual conditions, and experimental methods, the
observed phenomena may not address the same problem.
Even in research related to persistent activity, only a part of
the neurons related to the experimental task show persistent
activity, and they may exhibit complex, diverse temporal
patterns (Watanabe and Funahashi, 2007). This suggests that
these two mechanisms may coexist in the brain or stem from
a deeper mechanism. Researchers have recently attempted
to integrate the two mechanisms into a unified framework
(Kaminski and Rutishauser, 2020). Such work provides a new
perspective on the neural mechanism of working memory, and
its significance is obvious.

A variety of synaptic plasticity mechanisms have been applied
to working memory models. Past models mostly adopted
the plasticity mechanism based on facilitation. Since synaptic
reinforcement is not selective, these models cannot explain the
encoding of novel association (Fiebig and Lansner, 2017). To
overcome these shortcomings, some researchers have adopted
Hebbian’s rule (Fiebig and Lansner, 2017), whose idea is to
use a selective synaptic enhancement mechanism. Following this
idea, we propose a working memory model based on STDP.
Under the influence of STDP, the neurons can enhance the causal
connections and ignore the irrelevant connections (Markram
et al., 2012), thus supporting more flexible encoding schemes.
Although the STDP rule is usually applied to a computational
model on a longer time scale, some experimental phenomena
under this rule at different time scales have been observed
(Caporale and Dan, 2008). Therefore, it is reasonable to apply
STDP to a computational model on a smaller time scale. We
conducted three experiments to evaluate our model, following
the common delay-match-to-sample (DMS) paradigm. The first
two experiments evaluated the model under persistent and silent
activity, and the last was compared to a psychology experiment.

The experimental results show that memory items in our model
can be well recalled in both neural activity states. The simulation
results are similar to real experiment results, suggesting that our
model is reasonable and plausible in biology.

MATERIALS AND METHODS

Neural Circuit Model
The neural circuit model represents a functional cluster of
neurons in the prefrontal cortex for single-item memory
(Figure 1). The circuit consists of NE = 24 excitatory neurons
and NI = 6 inhibitory neurons. The number of excitatory
neurons is four times that of inhibitory neurons, which meets
the proportion of neurobiological findings (Markram et al., 2004).
All excitatory neurons are fully connected, and each connection
consists of SEE = 4 synapses. The strengths of these synapses
are initially random values between 0 and 0.14. The connection
probability between excitatory neurons and inhibitory neurons is
0.8, and their connection strength is fixed. Inhibitory neurons are
used to inhibit excitatory neurons to prevent overexcitation, so
there is no connection between them. According to the reports
of axon conduction delays in cat and rabbit cerebral cortex
(Miller, 1975; Swadlow, 1990), the average conduction delay of
connections in our model is set at about 12 ms. Specifically, the
conduction delays of connections between excitatory neurons are
set to dkij = REE + k ∗ 3, where REE is a random value between
3 and 12, and k = 0, 1, 2, 3 is the index corresponding to
four synapses of each connection. The delays between inhibitory
neurons are random values between 1 and 20 ms. Among the 24
excitatory neurons in the network model, NInput = 15 are used to
receive the input of a spike sequence, and as output neurons to
extract memory items.

Neuron Model
We used the Izhikevich neuron model to simulate the firing
behavior of real neurons (Izhikevich, 2003). It combines the
advantages of the leaky integrate-and-fire and Hodgkin-Huxley
models and can simulate various spiking patterns with relatively
simple calculation. The model is represented as follows:

v′ = 0.04v2
+ 5v+ 140− u+ I, (1)

u′ = a(bv− u), (2)

if v > 30mV, then
{

v← c
u← u+ d

(3)

where v is the membrane potential of the neuron, u is the recovery
variable of the membrane potential. I is the current input to the
neuron, which includes the current from other neurons in the
model and noise current, that is:

I = Iinput + Inoise, (4)

where Inoise is Gaussian noise with mean ranging from 1.5 to
2 and variance 1.8. It can be reasonably assumed as irrelevant
input from nearby cortical tissues. a, b, c, d in Equation 2
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FIGURE 1 | The neural circuit consists of 24 excitatory neurons (triangles) and six inhibitory neurons (circles). Not all neurons are shown in the figure. Among them,
15 excitatory neurons directly receive spike signals from upstream input neurons and are connected to downstream readout neurons. All excitatory neurons are fully
connected and project to inhibitory neurons with an 80% probability. There is no connection between inhibitory neurons.

and 3 are dimensionless parameters. The model can reproduce
different spiking patterns according to the parameter settings.
The parameters of excitatory neurons in our model are a =
0.02, b = 0.2, c = −65, d = 8, and those of inhibitory neurons
are a = 0.04, b = 0.24, c = −65, d = 2.

Synapse Model
Synapses are the key parts of neurons, which pass spiking signals
to each other. In the main kind of synapse in the nervous
system of higher vertebrates, the chemical synapse, an action
potential makes the terminal of the presynaptic axon release
neurotransmitters, which diffuse across the synaptic cleft and
bind to receptor proteins on the postsynaptic membrane, causing
the increase or decrease of postsynaptic membrane potential
(Kandel et al., 2012). Following the design of Bohte et al. (2002),
we describe the time-dependent change of postsynaptic potential
caused by an action potential as:

VPSP(t) =
t
τ
e1−t/τ, (5)

where τ is a time constant, which we set to 4. The equation
describes the potential changes caused by a single spike, but in
real situations, the high-frequency spikes on a single synapse may
cause multiple potential changes to overlap. When synapses fire
multiple spikes in a short period, the amplitude of the changes
of the postsynaptic membrane potential caused by each spike
will steadily decrease due to the depletion of neurotransmitters,
which gradually return to normal over time. This effectively
reduces the possibility of over-firing of the whole neural circuit.

We refer to the model of Mongillo et al. (2008) to describe
this process:

x′ =
1− x
τD
− uxδ(t − tsp), (6)

u′ =
U − u

τF
+ U(1− u)δ(t − tsp), (7)

where x is the available resources of the synapse; u is the
utilization rate of resources by each spike;′ = d/dt; δ is the Dirac
function; t, tsp are the current time and firing time, respectively,
of a spike; U is the benchmark level of utilization; and τF, τD are
recovery time parameters set to 20 and 50, respectively, in our
model. The transmission efficiency of a synapse is expressed as
xu. Therefore, the final postsynaptic membrane potential at time
t can be expressed as:

VPSP(t) =
n∑

i=1

uixi
t − ti

τ
e1−(t−ti)/τ, (8)

where ui, xi, ti are the available resources, utilization rate, and
arrival time, respectively, of the i th spike. Figure 2 shows
the postsynaptic potential produced by spikes of different
frequencies.

Spike-Timing-Dependent Plasticity
Synaptic strength may change under certain induction events
(Gustafsson et al., 1989). Research in the late 1990s shows that the
difference of firing time between pre- and post-synaptic neurons
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FIGURE 2 | Postsynaptic potential (A) is changed by spikes (B) of different
frequencies. Under the condition of high-frequency spikes, the rising
amplitude of postsynaptic membrane potential caused by a subsequent
spike drops.

has a significant impact on the change of synaptic strength
(Gerstner et al., 1996; Markram et al., 1997; Bi and Poo, 1998).
The synaptic strength is enhanced when the pre-synaptic neuron
fires slightly before the post-synaptic neuron and depressed when
they fire in reverse order. Such synaptic plasticity is called spike-
timing-dependent plasticity (STDP). The relationship between
the difference of firing time and the change of synaptic strength is
expressed by STDP function, which can be obtained from spiking
activities with appropriate modeling (Song et al., 2015; Robinson
et al., 2016). STDP is different at different synapses. It exists not
only in excitatory synapses but also in inhibitory synapses (Haas
et al., 2006). Hence, there are many forms of STDP function. We
apply a traditional form to the model (Song et al., 2000; Bi and
Poo, 2001). The STDP function is:

1W(1t) =

{
A+exp(1t/τ+) if 1t < 0

−A−exp(1t/τ−) if 1t ≥ 0
, (9)

where 1t is the time difference between the pre- and post-
synaptic neuron; τ+, τ− are parameters that affect the time
windows; and A+,A− are the maximum degree of enhancement
or weakness, respectively. The spike pairing scheme in this
model is the nearest-neighbor scheme (Morrison et al., 2007),
i.e., a presynaptic spike is paired with only the last postsynaptic
spike, and a postsynaptic spike is paired with only the last
presynaptic spike.

Studies have shown that STDP can cause neurons to
synchronize or desynchronize (Talathi et al., 2008; Popovych
and Tass, 2012; Popovych et al., 2013; Borges et al., 2016, 2017;
Lameu et al., 2018), and the synchronization of neural activity
is bound up with brain information processing (Baravalle et al.,
2019). According to the encoding scheme in this model, the
best decoding case is that the neurons are synchronized with
specific phases (see section “Encoding and Decoding”). However,
strict synchronization, that is, all neurons fire at the same time,
is not ideal, because the order information of the spikes is

missed. Previous researches usually set the potentiation and
depression windows in STDP to be approximately the same
size. After testing, we found that this can easily lead to strict
synchronization. Therefore, we increased the depression window.
The STDP parameters in our model are: A+ = 1, A− = −1,
τ+ = 3, τ− = 18.

The synaptic strength is updated according to Wt =Wt−1 +

η1W, where η is the learning rate. The learning rate should
be higher in the working memory model because the sample
needs to be memorized quickly. On the other hand, the excessive
value will lead to unstable learning. After testing, we set the
learning rate to 0.2.

Encoding and Decoding
How the brain encodes information is a key point for the working
memory model. We focus on the temporal information carried by
the spike, just like our previous work (Wei and Du, 2019). The
encoding scheme of memory items in this model comes from
rank order coding. This strategy is based on population coding,
in which the information is represented by a group of neurons.
The idea of order coding is that the firing time order of neurons
is critical, and not the exact firing latency time (Gautrais and
Thorpe, 1998). This simple idea is plausible in biology. The time
from receiving an input to excitation is related to the input’s
intensity (Heil, 2004; Gollisch and Meister, 2008). Therefore,
when there is a stimulus input, neurons encoding different
dimensions produce spikes with various excitation latencies to
generate a specific spike train.

Applying sequential coding to a computational model has at
least two advantages. First, it helps to quickly and accurately
identify spike trains. In theory, the complete recognition time
of order coding is merely the arrival time difference between
the first and last spike, while traditional rate-based coding must
count the number of spikes over a time. To reduce the statistical
error, the time window is often large; hence, it takes more time
to discriminate different spike trains. Second, order coding has
high efficiency, and it can represent much information with
only a few neurons. If each neuron only fires one spike, then
n neurons with order coding can represent n! states, while
rate-based coding scheme can represent at most n+ 1 states
(Gautrais and Thorpe, 1998).

Although the specific firing time of each spike is immaterial
to the order coding scheme, the minimum distinguishable time
between two spikes must be considered in practice. If the firing
times of two spikes are close, then their order may be wrongly
resolved under the influence of errors. To simplify the model and
improve the recognition accuracy, we add a limitation based on
order coding: only one neuron fires a spike during any 4 ms. In
this way, the firing time of each neuron can be calculated from
a spike train. Considering the case of three neurons, the firing
times of neurons 0–2, corresponding to the sequence (1, 3, 2),
are 4 ms, 12 ms, and 8 ms.

In this coding scheme, the information can be easily
recognized by the corresponding detection neurons. The idea
of decoding comes from Izhikevich’s polychronization concept
(Izhikevich, 2006), i.e., to set the propagation delay so that a
train of spikes with a given order arrives at the corresponding
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detection neurons at the same time. In the proposed model, there
are 15 neurons to encode and decode memory items, but for
simplicity, we consider only three neurons to explain the idea
(Figure 3). Neurons a and e are detection neurons of different
spike trains, and the respective propagation delays between a and
e and neurons b, c, and d are 2 ms, 3 ms, 4 ms and 1 ms, 4 ms, 2 ms
(Figure 3A). When the firing times of b, c, and d are 2 ms, 1 ms,
and 0 ms, respectively (Figure 3B), these spikes arrive at neuron
a at the same time, causing it to excite. For neuron e, these spikes
arrive at different times. Due to the leakage of the membrane
current, these spikes cannot accumulate enough current to excite
neuron e. Conversely, if the firing times of b, c, and d are 3 ms,
0 ms, and 2 ms, then e is excited and a is not. Therefore, neurons
a and e can be used to detect spike train patterns (2, 1, 0) and
(3, 0, 2), respectively.

Experimental Procedure
We conducted three experiments to evaluate the proposed model.
The procedures followed the DMS task paradigm, and the sample
stimuli were two colors (red and green). The procedure is shown
in Figure 4. The first second of an experiment was a preparation
period, when the subjects prepared to receive the sample stimulus
prompt. At this time, there was no external input, and the
model was only affected by random noise current from other
neurons in the cerebral cortex. The next second was the cue
period. Subjects were prompted by either red or green, and the

FIGURE 3 | Spike train pattern detection. (A) Neurons a and e receive spike
inputs from neurons b, c, and d, but the synaptic transport delays of the
connections are different. (B) The transport delay of the synapse of neuron a
causes the spikes of the three upstream neurons to arrive at the same time.
Therefore, neuron a is activated and e is not. (C) Neuron e is excited but a is
not (Adapted from Izhikevich, 2006).

FIGURE 4 | Process of DMS experiment. In the cue period, red and green
color samples were encoded by 15 neurons into two input patterns of spike
trains. In the delay period, the strengths of synaptic connections were
adjusted by the STDP rule. In the response period, samples were read out by
corresponding detecting neurons (P, preparation period; C, cue period; D,
delay period; R, response period).

spike train that encoded the color was loaded into the model.
The sample stimulus disappeared at the beginning of the delay
period. After a 3-s delay, subjects were asked to recall the sample.
This was done by imposing a non-specific recall signal to the
model, e.g., an extra noise current. The input sample stimuli were
encoded by 15 neurons as two different spike train patterns, and
decoding was performed by detection neurons corresponding to
the two patterns. In the response period, the activities of detection
neurons within 0.5 s were counted, and the sample corresponding
to the more active neuron was the recalled sample.

RESULTS

Memory Under Persistent Activity
In electrophysiological experiments of working memory, it is
usually observed that some neurons relevant to the experiment
maintain a firing rate significantly higher than the reference level
during the delay period, and this is known as persistent activity.
Because of its strong correlation with the memory task, persistent
activity theory is dominant in explaining the neural mechanism
of working memory. The first experiment tested whether the
model can maintain memory and display persistent activity
during the delay period. For this purpose, we increased the mean
of the noise current by 1.5 for each excitatory neuron. This leads
to a slight depolarization, which makes the neuron likely to fire.

The spike raster of the whole neuronal population during the
experiment is shown in Figure 5. Neurons 0 and 1 (black) are
the detection neurons; neurons 2–25 (red) are excitatory neurons,
including 15 neurons (2–16) that receive input; and neurons 26–
31 (blue) are inhibitory neurons. The first second is the initial
ground state of the model. During this period, the neurons are
driven by the noise current from the surrounding cortex, so they
irregularly fire at low frequency. During the cue period of the
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FIGURE 5 | Spike raster of neural circuit under persistent activity. Black dots, red dots, and blue dots represent detection neurons, excitatory neurons, and inhibitory
neurons, respectively. The meanings of P, C, D, and R are consistent with those in Figure 4. The red sample is loaded into the model during the cue period. In the
delayed period, there is no sample stimulus, but neuron 0 is still activated until the response period, indicating that sample can still be recalled. Neuron no. 1, which
detects green, remains silent during the experiment.

first second to the second second, a sample stimulus (red) is
loaded into the network model, and the network continuously
receives the spike train encoded by 15 input neurons. No. 0
neuron is activated at the same time as the detection neuron
of red color, while no. 1 neuron, which detects the green color
stimulus, is completely silent. The delay period is from the
second to fifth second, during which the excitatory neurons show
sustained excitation. Although the input of the sample stimulus
has disappeared, neuron no. 0 is still activated frequently, which
indicates that memory items still exist in the model network.
After the response period, the activity of the whole group
of neurons decreases and returns to the ground state of low
frequency and irregular excitation.

Although there is no unified definition of persistent activity, it
is generally believed that persistent activity is related to memory
information rather than meaningless random activity. Therefore,
some researchers use machine learning methods such as support
vector machine (SVM) to analyze the activities of neurons related
to working memory. Here, we trained a simple SVM to decode
the activity data in the delay period of the model. The firing
rates of each neuron were the average spiking activity in 500-ms
bins sampled at 200-ms sliding intervals. These data were used as
samples to train the SVM.

Figure 6 shows the relationship between decoding accuracy
and time. Since there are only two types of stimulus, the
probability of decoding by chance is 50%. It can be seen that

after the end of the sample cue period, the decoding accuracy
rate reaches more than 90% and remains there for the whole
delay period, which proves that the persistent activity in the
model is indeed related to the stimulus information, rather than
purely random activity. During the delay period, the accuracy
rate decreases gradually, indicating that the memory is gradually
blurred. This is done entirely through STDP, with no other
mechanism. We also see that SVM can decode correctly from
the release activity after the end of the response period, which
indicates that there is still some residual memory.

Memory Under “Silent” State
While the mainstream view is that persistent activity underlines
working memory, some believe that memory information can
be stored in a “silent” neuron state. Therefore, our second
experiment tested whether the model can maintain memory in
the silent state. This experiment was much like the first, but the
mean of the noise current of each excitatory neuron was reduced
by 0.3, so they could not form obvious persistent activities. To
show another sample stimulus, green was used as an input.
Note that the choice of sample stimulus does not affect the
model’s performance.

The spike raster of the whole neuron group in the simulation
experiment is shown in Figure 7. The first 2 s of the experiment
are similar to experiment 1. After the cue period, the neuronal
population does not show sustained excitation as in experiment 1,
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FIGURE 6 | Decoding result of SVM classifier trained by data of neurons
during delay. Decoding accuracy expected by chance is 50%.

but returns to the low-frequency ground state due to the
inhibition. However, despite the lack of sustained activity during
the delay period, neuron no. 1, which detects green, is activated
under the stimulation of a non-specific recall signal during the
response period, implying that the sample can still be accurately

recalled. This indicates that our model preserves information
through changes in synaptic connections rather than persistent
activity. During the cue period, the information of relative
firing time difference between neurons is preserved in synaptic
connections by STDP. The recall signal in the response period
reproduces the spike pattern of the sample stimulus, which can
be discriminated by the detection neurons. Figure 8 shows the
changes in the strengths of synaptic connections after the sample
loading. In the initial state, the synaptic connection strength is
set at about 0.07 on average. After learning, most of the synaptic
strength is close to zero, and only a small part is greater than 0.2,
showing a lognormal distribution.

Simulation Experiment
In Experiment 3, we applied the model to continuous DMS tasks
and compared the data to that of a pigeon DMS experiment by
Roberts and Kraemer (1982). In their experiment, pigeons were
kept in cages with three buttons, placed side by side. After the
experiment started, the middle button lit and displayed green
or red as the sample stimulus. Next were delay and response
periods. In the response period, the left and right buttons were
illuminated, respectively, in green and red as alternative samples.
A pigeon that made the right choice was rewarded, and the
experiment was finished; otherwise, the experiment finished
directly. The next experiment started after a short interval.
Roberts and Kraemer explored the accuracy of pigeon matching

FIGURE 7 | Spike raster of neural circuit under “silent” state. The meanings of the color of these dots are the same as those in Figure 5. In this experiment, the
sample stimulus is green, which is detected by neuron no. 1. The excitatory neurons are inhibited in the delayed period, and they fire at a quite low rate. However,
neuron no. 1 is activated by the recall signal in the response period, indicating that sample can still be recalled.
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FIGURE 8 | Histogram of synaptic connection strength. (A) Initial; (B) after sample presentation.

FIGURE 9 | Memory performance comparison between simulation and psychological experiment (Roberts and Kraemer, 1982). (A) Simulation result of our model,
where “I” denotes the intertrial interval. (B) Result of psychological experiment. The simulation was conducted under the persistent activity state, and the noise
current setting was consistent with experiment 1. All the combinations of experimental conditions were repeated 100 times to calculate the accuracy (B is drawn
according to the literature).

FIGURE 10 | The interference between different memories. The meanings of the color of these dots are the same as those in Figure 5. In the third task, although the
memory is correct at the beginning of the delay period, the response period recalls the previous sample rather than the current sample.
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with different combinations of delay intervals and experiment
intervals. Our simulation experiment is basically consistent
with their experiment, except the sample prompt period and
experimental interval were reduced to one-eighth of the original
to meet the time scale of our model.

The results of model simulation are shown in Figure 9A. For
comparison, we draw Figure 9B based on the experimental data
of Roberts and Kraemer. It can be seen that the simulation results
are consistent with the trend reflected by the real experiment.
Each line in Figure 9 shows a downward trend, and the line with
the longer experimental interval is placed at the upper position.
This indicates that the recall accuracy decreases with the increase
of the delay period, and increases with the intertrial interval. It
is not surprising that the accuracy drops over time. Under the
interference of noise, the synaptic connections formed in the
cue period gradually becomes disordered, and finally, the sample
cannot be recalled. The increase of accuracy with the intertrial
interval may be related to the interference between memories.
To test this, we conducted another experiment. We used our
model to perform the DMS task three times in succession. The
first two samples were the same but different from the third.
The experiment was under the persistent activity state, and the
delay interval and the intertrial interval were 2000 ms, 0 ms,
respectively. We find that there is a possibility that the first two
samples interfere with the third sample, as shown in Figure 10.

It can be seen that our model has greater volatility and does not
strictly follow the trend under some combinations of conditions.
We deduce that this is due to the limitations of the small scale
of the model. We simulate a memory circuit consisting of only
30 neurons, which is vulnerable to noise currents. The number
of neurons in the brain is much greater, and there are many
redundant functional circuits, so the psychological experimental
performance is more stable. We believe that this difference
will be greatly reduced if multiple circuits are combined in a
larger memory network.

CONCLUSION AND DISCUSSION

We proposed a working memory neural circuit model based on
STDP, an extension of Hebbian’s rule, which is considered an
important learning rule in the brain’s nervous system. It was
verified in electrophysiological experiments on multiple time
scales. Our experiment explored the feasibility of STDP as a
mechanism of working memory and found that it could form
a specific synaptic connection state to maintain memory items
in a short time scale. The connection state could reproduce
the spike pattern of the memory item with non-specific recall
signals. In addition, due to the coding scheme based on the
spike time information, the model can memorize items flexibly
and efficiently without prior training. We tested the model in
states of persistent activity and silence, and both could correctly
recall the memory item in the response period. We compared the
simulation data to real experimental data, and the results were
similar, indicating that our model is biologically reasonable.

The internal mechanism of working memory is still under
exploration. The traditional view is that persistent activity is the

basis of working memory, but experimental phenomena observed
in recent years suggest the possibility that working memory can
be preserved in the connection state between neurons without
the continuous firing of neurons. Persistent activity theory and
connectivity theory are usually regarded as opposing views, but
some researchers have integrated them, and think that both
persistent and non-persistent mechanisms may exist in the
brain. Our model supports this view. However, as pointed out
before, memory stored in the silent state is more energy-saving,
more stable, and less susceptible to interference than in the
persistent activity state (Lundqvist et al., 2018). So, why does the
brain not preserve all memory in a silent state? A reasonable
explanation is that memory can be read more quickly in a state
of persistent activity. In our model, memory reading in the silent
state takes time, because the signal must pass to the circuit,
and memory information is then passed to the downstream
neurons. In a state of persistent activity, the memory content
is ready to be read, so there is no delay. In some psychology
theories, working memory and attention are considered to be
closely related, and memory can be divided into different states
according to the attention distribution (Cowan, 1988; Engle et al.,
1999; Oberauer, 2002). By distinguishing different states, the
brain manages working memory more efficiently. In our model,
working memory is preserved through the synaptic connection
state, and persistent activity may be an accessory produced
by the brain for faster reading during the memory process,
suggesting that the phenomena of persistent activity and the
silent state may differ according to conditions in the same
neural mechanism. Our study provides conjecture for integrating
the two mechanisms.
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