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Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor 
itself, but the immune system combating the cancerous lesion. Of the many approaches 
currently under study to boost anti-tumor immune responses; modulation of immune 
co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be 
the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T 
lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint 
blockade; however, tumor infiltrating lymphocytes express a diverse array of additional 
stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immu-
nity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an 
unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor 
lymphocytes. While functional studies of 4-1BB have focused on its prominent role in 
augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B 
cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression 
on both T cells and antigen presenting cells, coupled with its capacity to promote survival, 
expansion, and enhanced effector function of activated T cells, has made it an alluring 
target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 
4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same 
time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high 
grade liver inflammation which has slowed their clinical development. In this review, we 
discuss how the underlying immunobiology of 4-1BB activation suggests the potential 
for therapeutically synergistic combination strategies in which immune adverse events 
can be minimized.

Keywords: 4-1BB, immunotherapy, CD137, co-stimulation, combination therapy

introduction

Current front-line therapies in the treatment of cancer seek to destroy large tumor lesions by either 
inducing irreparable DNA damage in the case of radiation therapy and certain chemotherapeutic 
agents (e.g., alkylating agents, anthracyclines), or by inhibiting protein synthesis, transport, or cell 
cycle progression (e.g., antimetabolites, topoisomerase inhibitors, mitotic inhibitors, proteasome 
inhibitors). Radiotherapy has proven effective against a variety of hematological and epithelial cancers 
including leukemia and lymphoma, head and neck, breast, cervical and prostate cancer. Similarly, DNA 
alkylating agents and antimetabolites are being used to treat lymphomas, leukemias, brain cancers, 
and some carcinomas. In most cases, however, tumors become refractory to treatment, leading to 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/Oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2015.00117
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fonc.2015.00117
http://journal.frontiersin.org/article/10.3389/fonc.2015.00117/abstract
http://journal.frontiersin.org/article/10.3389/fonc.2015.00117/abstract
http://loop.frontiersin.org/people/168225/overview
http://loop.frontiersin.org/people/148475/overview
mailto:mcurran@mdanderson.org


June 2015 | Volume 5 | Article 1172

Bartkowiak and Curran Activating immunotherapy through 4-1BB

Frontiers in Oncology | www.frontiersin.org

the development of therapy-resistant metastases. Furthermore, the 
delicate radio-sensitivity of many organs, inaccessibility of lesions 
to surgical resection, and toxicity of chemo- and radio-therapeutic 
agents further complicate the use of such therapies.

The ground-breaking revelation that the body’s own immune 
system can recognize tumor antigens as foreign and initiate anti-
tumor responses against growing lesions has changed the field 
of tumor therapy (1, 2); boosting the immune response against 
tumors has become an exciting new avenue in the fight against 
cancer. Immunotherapy of cancer, as opposed to drug therapy, 
provides the added benefit of sustained protection often with 
less severe and less persistent side effects compared to those 
associated with chemotherapeutics or radiation therapy. Early 
immunotherapies sought to boost systemic immune responses 
by administration of prosurvival or proinflammatory cytokines 
with varied, and often suboptimal clinical outcomes (3–6). These 
early therapies failed, in part, due to our inadequate understanding 
of the immune relevance of conserved versus mutanome antigens, 
tumor immune escape mechanisms, and, foremost, the complex 
and highly immunosuppressive tumor microenvironment. With 
a better understanding of how the immune system targets tumors 
and tumor antigens, an entire arsenal of immunotherapeutics 
has been developed to augment anti-tumor immune responses 
from vaccine strategies to adoptive transfer of tumor-reactive T 
cells. The most successful approaches that have been translated 
from bench to bedside, however, aim at targeting co-receptors 
expressed on various immune cells in the tumor microenviron-
ment. Therapeutic antibodies which block the co-inhibitory 
checkpoint receptors on T cells were among the first, and most 
effective, of the current generation of therapeutics targeting the 
immune system. Ipilimumab (αCTLA-4) became the first FDA 
approved T cell checkpoint antibody for use against melanoma, 
with patients showing a 13% objective response rate against 
Stage III/IV melanoma, with largely manageable immune-related 
adverse events (7–9). The approval of Ipilimumab paved the way for 
the transition of other checkpoint blockade antibodies into clinical 
trials. Nivolumab and Pembrolizumab [both antagonist antibodies 
targeting the programmed death receptor-1 (PD-1)] are currently 
approved for melanoma, and, more recently, non-small cell lung 
cancer (NSCLC) in the case of Nivolumab. Other trials of PD-1 
blockade are ongoing for renal cell carcinoma (RCC), NSCLC 
(NCT01844505, NCT02041533, NCT01866319, NCT02212730), 
and glioblastoma (NCT02311920, NCT02311582) among others. 
Tumor-infiltrating lymphocytes (TIL) express a wide array of 
additional co-stimulatory and co-inhibitory receptors, though, 
that may serve as potential targets for novel immunotherapeutic 
interventions (10). One such immuno-stimulatory receptor 
with promising clinical applications is the tumor necrosis factor 
superfamily member 4-1BB (CD137/TNFRSF9).

Targeting 4-1BB with agonist antibodies elicits potent anti-
tumor responses; however, clinical progress has been slowed by 
dose-limiting liver inflammation. This review will explore the cur-
rent knowledge of the function of 4-1BB and its role in the immune 
response, potentiating both antiviral and antitumor responses, 
while alleviating certain autoimmune conditions. The means by 
which the 4-1BB co-receptor can be targeted to induce anti-tumor 
immunity will be highlighted, with a particular focus on the unique 

potential for synergism between 4-1BB co-stimulation and various 
other immune and non-immune therapies.

The Role of 4-1BB in the immune 
Response

4-1BB belongs to the TNF receptor family, which includes mul-
tiple T cell co-stimulatory receptors which have been targeted 
with agonist antibodies including GITR, CD40, CD27, HVEM, 
LIGHT, APRIL, and TWEAK (11, 12). 4-1BB plays a critical role 
in sustaining effective T cell immune responses and in generating 
immunological memory. The expression profile of 4-1BB, as well as 
its unique ability to potentiate robust effector responses in multiple 
subsets of lymphocytes relevant for tumor immunity, makes 4-1BB 
a uniquely appealing target for immunotherapy (Figure 1).

expression Patterns of 4-1BB
4-1BB is expressed on a multitude of cells of the hematopoietic 
lineage (13). While 4-1BB is widely known to be transiently 

FiguRe 1 | A multi-potent role for 4-1BB targeted immunotherapy. 
4-1BB agonist therapies elicit diverse immune effector responses on both the 
innate and adaptive immune arms. The most potent of responses stimulate 
CD8+ cytotoxic T cells to proliferate and increase their effector potential 
through increased interferon gamma production and expression of multiple 
granzymes. CD4+ effector T cells can also be stimulated to expand and 
produce pro-inflammatory cytokines. The role of 4-1BB stimulation on 
regulatory T cells, however, is controversial. 4-1BB agonist therapy may 
either inhibit differentiation of conventional effector cells into Tregs while also 
inhibiting Treg suppression, or, conversely, maintain Treg expansion and 
suppressive capacity. NK cells also benefit from 4-1BB agonist therapy. Not 
only can α4-1BB antibodies stimulate antibody-dependent cell-mediated 
cytotoxicity through Fc/FcR interactions, but activated NK cells express 
4-1BB to become targets of therapy. Additionally, cells of the myeloid lineage 
upregulate 4-1BB upon activation. 4-1BB agonists targeting dendritic cells 
induce DC maturation and antigen presentation. In addition, α4-1BB 
stimulated DCs begin to express IL-12 and IL-27 as well as the enzyme IDO 
to modulate T cell function. 4-1BB+ macrophages can also be stimulated to 
increase antigen presentation and produce IL-8 as well as IDO.
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upregulated on CD8 T cells following activation (14–18), 4-1BB 
can also be expressed on activated CD4 helper T cells (17, 19, 
20), B cells (21, 22), regulatory T cells (23), natural killer (NK) 
cells (24–26), natural killer T (NKT) cells (27), gamma-delta T 
cells (28), dendritic cells (29, 30), mast cells (31), osteoclasts (32, 
33), thymocytes (34), early myeloid progenitor cells (35, 36), and 
activated endothelium (37–40). Human neural cells also express 
4-1BB, including neurons, astroglia, and microglia in the brain 
(41). Multiple subtypes of lymphomas and leukemias are also 
known to express 4-1BB, although its precise function remains 
unclear in the setting of malignancy (42–45). The broad range 
of 4-1BB expression on multiple cell types makes this receptor a 
dual-edged sword in the fight against cancer; as stimulation with 
4-1BB agonists elicits strong anti-tumor responses from a myriad 
of cell types, however, sometimes at the cost of off-target immune 
pathology. Significant progress has been made in recent years in 
describing the complex regulation of 4-1BB expression; yet, further 
studies are needed to clarify the impact of each 4-1BB expressing 
cell population toward the anti-tumor versus auto-inflammatory 
effects of 4-1BB agonist antibodies.

4-1BB Signaling
Co-stimulation through the 4-1BB receptor activates multiple 
signaling cascades within the T cell, powerfully augmenting T 
cell activation. Upon receptor ligation, 4-1BB enhances signaling 
through the T cell receptor (18). 4-1BB forms a heterotrimer com-
plex consisting of two TNF-receptor associated factor (TRAF)-2 
complexes (46) in conjunction with TRAF-1 (47). This interaction, 
through leukocyte specific protein-1 (LSP-1) (48), potentiates 
signaling through the c-Jun N-terminal kinase (JNK) pathway 
(49), the extracellular signal-regulated kinase (ERK) pathways (50, 
51), as well as through β-catenin and AKT (51). These signaling 
pathways converge on the master transcription factor NF-κB to 
regulate 4-1BB signaling, as well as effector immune responses 
(47, 52). As most of these signals are shared between TNF co-
stimulatory receptors, yet none of the others can replicate the 
phenotypic changes associated with 4-1BB activation, it is likely 
that additional molecular pathways are triggered by 4-1BB which 
have yet to be described.

Potentiation of effector immune Responses
4-1BB signaling inhibits activation-induced cell death (AICD) in 
T cells (53), promotes survival (20), is critical for the formation 
of immunological memory through upregulation of the anti-
apoptotic genes Bcl-2, Bcl-xl, and Bfl-1 (16, 17), and induces T cell 
proliferation and enhanced effector function (14). Interestingly, T 
cells from 4-1BB deficient mice demonstrate enhanced prolifera-
tive potential, while exhibiting reduced effector responses (54, 55). 
Moreover, 4-1BB−/− mice demonstrate defects in myelopoiesis as 
well as B cell deficiencies in the production of IgG2a and IgG3 (55).

In addition to enhancing IFNγ and TNFα production (56, 57), 
activation of 4-1BB has been shown to induce IL-13 production 
from both CD8 and CD4 T cells to limit inflammation (58). 
Moreover, enhanced IFNγ production leads to the generation of 
indoleamine 2,3-dioxygenase (IDO) by dendritic cells which can 
attenuate 4-1BB-mediated effector responses (59). In addition, 
4-1BB signaling induces maturation of dendritic cells leading 

to the upregulation of B7 co-stimulatory ligands, increases DC 
survival, and boosts the production of inflammatory cytokines 
such as IL-6, IL-12, and IL-27 (60, 61). Further, DCs present in the 
mesenteric lymph nodes upregulate retinal dehydrogenase through 
4-1BB signaling, which promotes Treg development in order to 
maintain homeostasis in the gut (62).

A Dual Role of 4-1BB in infectious Disease 
and Autoimmunity

The ability of 4-1BB receptor signaling to evoke robust effector 
responses has been extensively demonstrated in infectious disease 
models. Several studies have shown a role for 4-1BB in mediating 
antiviral immune responses toward influenza (63–65), hepatitis C 
(66), cytomegalovirus (67), HIV (68), lymphocytic choriomenin-
gitis virus (69), as well as poxviruses (70, 71). Additionally, 4-1BB 
mediates anti-bacterial immune responses particularly toward 
Streptococcus pneumoniae (72) and Listeria monocytogenes infec-
tion (73, 74).

Although 4-1BB potentiates strong immune responses, it also 
has the potential to alleviate autoimmune disease. Stimulation 
through 4-1BB ameliorates murine models of experimental 
autoimmune encephalomyelitis (EAE) (75, 76), systemic lupus 
erythematosus (SLE) (77–79), murine Sjögren’s disease (80), 
inflammatory bowel disease (81, 82), uveoretinitis (83), and 
rheumatoid arthritis (84). Conversely, 4-1BB may worsen type 
I diabetes (85–87), although one study demonstrated a role 
for 4-1BB in protecting mice from pathology by increasing 
CD4+CD25+ regulatory T cells (88). Further, 4-1BB may also play 
a role in alleviating allergic reactions (89, 90). The capacity of 
4-1BB to mediate both potent immune responses and ameliorate 
autoimmunity likely stems from the unique ability this receptor 
possesses to promote Th1 type responses, while inhibiting Th2- 
and Th17-related pathologies (61, 76).

Targeting 4-1BB in immuno-Oncology

The dual ability of 4-1BB to stimulate strong effector T cell responses 
toward pathogens while restricting autoimmune disease has made 
this receptor an attractive target for cancer immunotherapy. While 
4-1BB monotherapy is capable of mediating significant tumor 
regressions and even cures of numerous types of established 
murine tumors (Table 1), targeting 4-1BB with agonist antibodies 
as a monotherapy in the clinic has only yielded modest frequencies 
of RECIST partial responses and stabilization of disease. Although 
agonist antibodies have been the best studied modality for activat-
ing 4-1BB, the immune pathologies associated with their use have 
prompted the development of alternate therapeutics seeking to 
separate 4-1BB’s anti-tumor effects from its associated liver inflam-
mation (91). Each of these potential drugs for activation of 4-1BB 
has unique advantages and disadvantages for use in combination 
with other therapies.

Agonist Antibodies Against 4-1BB
By far the most straightforward and most extensively studied 
approach to targeting 4-1BB relies on the exquisite specificity of 
targeted antibodies. Melero et al. were the first group to describe 
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TABle 1 | Combinations with 4-1BB targeted therapies.

Combination Tumor Model Result Reference

Viral Gene Therapy
pAd/RSV-mIL-12 Metastatic MCA26 colon carcinoma -cured hepatic and lung metastases  

-NK & CD8+ mediated
(104)

Adv./IL-12 +Adv./4-1BBL Metastatic MCA26 colon carcinoma -↑ survival  
-NK &CD8+ mediated 

(105)

Metastatic JC breast carcinoma -↑ survival  
-Critical role for CD4+ Th

(131)

pLXSHD.m4-1BBL AG104A sarcoma  
P815 mastocytoma

-↑ CTL activity  
-complete rejection with  
CD28 stimulation

(130)

AdCMVmIL-12 DCs + α4-1BB mAb CT26 colon adenocarcinoma  
MC38 colon adenocarcinoma

-complete rejection  
-systemic immunity

(150)

Adv/IL-12 B16-F10 melanoma EL4 lymphoma -↑ CTL activity  
-NK & CD8+ mediated  
-↓ pulmonary metastases

(106)

Adv-mIL-12 + Adv/Ig-4-1BBL MCA26 colon carcinoma -complete regression 
-long-term survival

(182)

Ad-δB7/IL-12/4-1BBL B16-F10 melanoma -↓ tumor burden 
-↑ Th1 responses

(92)

Vaccinia virus + α4-1BB mAb AT-3 breast carcinoma  
MC38 colon carcinoma

-↓ tumor burden 
-↑ myeloid infiltrate in tdLN 
-↑ CD8+ T cell, NK & neutrophil tumor infiltrate

(93)

rV-4-1BBL + lymphodepletion B16-F10 melanoma -↑ MHC-I expression 
-↓ antiviral antibodies 
-↑ viral persistence 
-↑ CD8+ effector memory 

(103)

rV-4-1BBL MC38-CEA+ colon carcinoma -↓ tumor burden 
-↑ Th and CTL responses

(100)

Semliki Forest Virus-IL-12  
+ 4-1BB mAb

B16 melanoma  
TC-1 HPV+ lung adenocarcinoma

-75% complete regression 
-↑ tumor-specific CTL 
-↓ anti-vector humoral response

(98)

Checkpoint Blockade
αCTLA-4+ α4-1BB B16 melanoma -↑ survival with FVAX 

-↑ CD8+ T cell infiltrate  
-↓ Treg infiltrate 
-↑ T cell function  
-↑ T cell/MDSC ratio 

(183)

B16 melanoma  
MC38 colon carcinoma

-ineffective against melanoma 
-CD8+ T cell mediated rejection of colon 
carcinoma  
-↓ autoimmune side effects  
-↑ Treg activity

(110)

αCTLA-4 + 4-1BBL-tumor vaccine RM-1 prostate carcinoma -↑ survival  
-complete regression 
-↑ CTL responses

(109)

αPD-1 + α4-1BB B16-F10 melanoma -complete regression 
-↑ effector/memory differentiation 
-↑ CD8/Treg ratio 
-↑ effector function 
-↑ liver toxicity

(187)

CT26 colon adenocarcinoma -Compete tumor rejection 
-↑ T cell tumor infiltrate 
-↑ T cell effector responses

(186)

psPD-1 + p4-1BBL H22 hepatocarcinoma -↑ anti-tumor immunity 
-↓ tumor burden 
-↑ T cell effector function

(184)

αPD-L1 + α4-1BB ID-8 ovarian adenocarcinoma -↑ survival 
-↑ tumor infiltrate 
-↓ Treg infiltrate 
-↑ T cell effector function

(185)

α4-1BB + Radiotherapy
Single dose or fractionated radiation EMT6 mammary carcinoma  

M109 lung carcinoma
-↓ tumor burden (high dose) (196)
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Combination Tumor Model Result Reference

Focal radiation + α4-1BB + αCTLA-4 GL261 glioma -↑ long-term survival 
-↑ T cell brain  
-CD4+ T cell dependent  
-Established protective immunity

(114)

Whole brain irradiation GL261 glioma -↑ survival 
-Complete eradication 
-↑ TIL

(116)

α4-1BB + Chemotherapy
Cisplatin + α4-1BB CT26 colon adenocarcinoma -60% complete regression 

-↓ lymphopenia 
-↓ nephrotoxicity

(118)

Cisplatin α4-1BB + αPD-1 ID8 ovarian adenocarcinoma -↑ survival  
-↓ tumor volume 
-Long lasting immunity

(197)

5-fluorouracil + α4-1BB Renca renal cell carcinoma -CD8+ T cell mediated  
-complete eradication 
-↓ lymphocytopenia 
-Long-term immunity

(117)

Cyclophosphamide + α4-1BB B16 melanoma -CD8+ T cell dependent anti-tumor activity 
-↓ lymphopenia

(198)

Cyclophosphamide + Ad.4-1BB scFv TC-1 HPV+ lung adenocarcinoma -↓ tumor burden 
-↑ survival 
-↓ Treg infiltrates

(199)

α4-1BB + Cetuximab EGFR+ SCC4, SCC6, squamous cell 
carcinomas  
EGFR+ PC1 pancreatic adenocarcinoma  
T84 and HCT116 colorectal carcinoma

-↑ survival-Complete regression 
-↑ ADCC 
-↑ 4-1BB+ NK cells  
-↑ NK effector function

(141)

α4-1BB + Rituximab CD20+ B cell lymphoma (142)
α4-1BB + Trastuzumab HER2+ breast cancer (143)
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the potent anti-tumor properties of agonist 4-1BB antibodies in 
eliminating murine P815 mastocytoma and Ag104A sarcoma 
(122). This landmark work opened the field of 4-1BB-targeted 
immunotherapy. Kim et al., however, demonstrated that α4-1BB 
antibodies were ineffective as a monotherapy against subcutane-
ously implanted B16/D5 melanoma, MCA205 sarcoma, or GL261 
glioblastoma when administered systemically over a range of 
doses (123). Interestingly though, systemic monotherapy was 
effective against intracranially implanted MCA205 and GL261 
tumors, suggesting that efficacy of agonist therapy relies heavily on 
microenvironmental factors as well as intrinsic tumor-resistance 
mechanisms. In a model of plasmacytoma, May demonstrated 
that a critical effect of α4-1BB-mediated tumor regression lies in 
the ability of CD8 T cells from treated mice to survive and avoid 
AICD (124). Moreover, α4-1BB antibody therapy is dependent on 
IFNγ, as CD8 T cells were incapable of trafficking to the tumor site 
in IFNγ-deficient mice (125). The use of 4-1BB antibodies further 
provides unique advantages over other 4-1BB targeted modalities. 
For instance, binding of the Fc region of the 4-1BB antibody to 
Fc receptors may activate NK cells. Moreover, these NK cells then 
express 4-1BB and in so doing, become targets for immunotherapy 
(126). Additionally, Martinez-Forero et  al. demonstrated the 
mechanism of α4-1BB antibody binding and internalization into 
endosomal compartments and subsequent K63 polyubiquitination 
necessary to recruit TRAF2 and initiate the 4-1BB signaling cas-
cade (127). Importantly, Galectin-9 contributes to the stabilization 
of 4-1BB for multimerization and ligand binding and stimulation, 
demonstrating a role for cell surface glycoproteins in mediating 

receptor signaling (95). While the strong anti-tumor immunity 
promoted by 4-1BB agonist antibodies can engender serious 
immune-mediated pathology not evident through some other 
therapeutic modalities (91, 94, 128), the use of agonist antibodies 
in combination with other cancer therapeutics may help alleviate 
these detrimental side effects.

Soluble 4-1BBl
A surrogate approach to 4-1BB-targeted antibodies lies in the 
use of the natural 4-1BB ligand to stimulate anti-tumor T cell 
responses. Mouse forestomach cancer cells transfected with DNA 
encoding 4-1BBL were capable of doubling the cytotoxicity of 
tumor infiltrating T cells over untransfected cells, demonstrating 
the potential of 4-1BBL expression as an alternate means to target 
4-1BB therapeutically (129). Transduction of 4-1BBL into other 
tumor cell lines has also shown therapeutic potential (130–132), 
particularly the transduction of 4-1BBL into K562 leukemic cells 
to expand both T cells and NK cells (133, 134). Furthermore, work 
from the Shirwan lab has elegantly demonstrated the therapeutic 
effect of a streptavidinated 4-1BBL (SA-4-1BBL) complex to induce 
effective anti-tumor immune responses. Firstly, subcutaneous 
administration of SA-4-1BBL potently stimulated both CD8 and 
CD4 T cell proliferation compared to equal doses of a 4-1BB 
agonist antibody (94) without a dramatic increase in inflamma-
tory cytokines exhibited by antibody administration. Further, 
SA-4-1BBL induced less lymphadenopathy and splenomegaly 
than antibody therapy, suggesting that SA-4-1BBL has a higher 
therapeutic index. In this study, however, the therapeutic index of 

TABle 1 | Continued
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systemic administration of SA-4-1BBL was never tested. Moreover, 
SA-4-1BBL evoked strong anti-tumor effects when given as a 
vaccine adjuvant in the murine TC-1 HPV-driven tumor model 
(135–137), or in a Survivin+ lung carcinoma model (136, 138). 
This potential role of 4-1BB agonists as vaccine adjuvants suggests 
potential future combinations with other TNF (e.g., CD40) or 
innate (e.g., TLR9) agonists in this setting. The pre-clinical data 
with SA-4-1BBL suggest that if a clinically suitable multimeric 
form of 4-1BBL can be developed; it may offer a compelling 
alternative to 4-1BB agonist antibody mediated stimulation for 
tumor immunotherapy.

Aptamers
An alternate means of targeting 4-1BB entails the use of oligonu-
cleotide aptamer technology, pioneered in the Gilboa lab (139). 
Aptamers are single-stranded oligonucleotides designed through 
an enrichment process to develop a unique structure capable of 
binding a given target protein, usually for therapeutic purposes. 
As 4-1BB most efficiently signals through a multimer complex, 
so too do 4-1BB bivalent aptamer conjugates more efficiently 
co-stimulate CD8 T cells. Bivalent aptamers co-stimulated CD8 
T cell proliferation with similar potency to agonist antibodies 
when injected systemically, and elicited approximately two-fold 
more IFNγ production. These 4-1BB aptamers were thus able to 
protect mice from P815 mastocytoma tumors with comparable 
efficacy to antibody monotherapy (119). Much like antibodies, 
aptamers can be conjugated to various cargos in order to enhance 
therapeutic benefit (120). Berezhnoy et al. demonstrated that the 
addition of a siRNA targeting the mTOR pathway conjugated 
to a 4-1BB aptamer was able to efficiently inhibit Raptor to 
suppress mTORC1 activity and enhance the persistence of T 
cells exhibiting a memory phenotype. Moreover, T cells more 
effectively controlled growth of murine B16 melanomas when 
mice were administered 4-1BB/Raptor compared to 4-1BB 
aptamer or rapamycin monotherapies (121). Aptamers can also 
be conjugated to targeting motifs allowing for the trafficking 
and close juxtaposition of effector T cells with tumor tissue. 
Conjugation of a 4-1BB aptamer to a second aptamer targeting the 
prostate-specific membrane antigen (PSMA) inhibited growth of 
PSMA expressing tumors and prolonged survival in half of mice 
receiving the 4-1BB/PSMA aptamer conjugate (140). In a similar 
vein, 4-1BB/VEGF aptamer conjugates were able to enhance T 
cell proliferation when administered systemically to mice bear-
ing subcutaneous 4T1 mammary carcinomas or MCA induced 
fibrosarcoma in a VEGF-dependent manner (128). Notably, the 
4-1BB aptamer, 4-1BB/PSMA, and 4-1BB/VEGF conjugates did 
not induce significant pathology associated with systemic admin-
istration of 4-1BB antibodies, as CD8 T cell infiltratration into 
the spleens and livers was markedly reduced in aptamer-treated 
mice. Neither the pharmacodynamics of α4-1BB aptamers, nor 
how the 4-1BB aptamer/receptor interaction mediates signal-
ing into the T cell has been extensively studied. Whether this 
interaction disrupts 4-1BB/4-1BBL interactions, and by what 
mechanism the aptamer lessens liver inflammation relative to 
4-1BB antibody therapy remains to be determined. Further, 
4-1BB targeted antibodies have the added benefit of inducing 
antibody-dependent cell-mediated cytotoxicity (ADCC) through 

Fc/Fc receptor interactions on NK cells as a dual arm of therapeu-
tic efficacy (126, 141–143), which would be lacking in aptamer 
conjugates. Oligonucleotide aptamers, on the other hand, may 
act as stimuli for nucleotide sensing pathways in innate immune 
cells and thereby promote activation of antigen-presenting cells. 
Regardless, the enhanced therapeutic index of 4-1BB targeted 
aptamers supports their potential translation into the clinic.

effects of 4-1BB Agonists on Tumor 
Progression

Regardless of modality, 4-1BB-targeted therapies potently 
modulate anti-tumor immune responses to effectively treat a 
variety of cancers. Tumor cells expressing 4-1BB scFv potently 
stimulate anti-tumor effector responses (144, 145). In addition, 
4-1BB targeted immunotherapy has demonstrated great potential 
in treating floor of mouth squamous cell cancer (146), lymphoma 
(96), hepatocellular carcinoma (147, 148), and colon cancer to 
name a few (149, 150).

The anti-tumor potential of α4-1BB therapy stems from 
the ability to modulate the tumor microenvironment, largely 
by promoting a type 1 cytokine response (151). Palazon et  al. 
demonstrated that 4-1BB is up-regulated in limited oxygen 
environments (152), particularly in hypoxic tumor environments 
potentially enhancing the selectivity of 4-1BB agonists for cells in 
the tumor. Ye also established that 4-1BB can act as a marker for 
tumor-reactive T cells (153). Work of Ju et al. showed that 4-1BB 
agonist antibodies enhance anti-tumor responses by inducing a 
CD8+CD11c+ T cell population with enhanced IFNγ activity (56, 
154). Perhaps most strikingly, α4-1BB therapy is capable of induc-
ing a potently cytotoxic T cell phenotype mediated by the T-box 
transcription factor Eomesodermin (61, 155), which is required 
for 4-1BB-mediated tumor therapy (156). Further, perforin 
and granzyme act together during α4-1BB therapy to eradicate 
established murine lymphomas (157), adding to the body of work 
demonstrating the role of 4-1BB in enhancing cytotoxic responses. 
While 4-1BB predominantly acts on T cells, depletion of dendritic 
cells impairs the anti-tumor effects of α4-1BB, suggesting a role 
for DCs as well in anti-tumor 4-1BB agonist immunotherapy 
(158). Moreover, α4-1BB therapy can act on 4-1BB+ endothelial 
cells to increase T cell recruitment into tumor sites and sites of 
inflammation (159).

4-1BB Agonist Antibodies in the Clinic: 
Adverse events and the Potential to 
Overcome Them

Expression of 4-1BB correlates well with effective anti-tumor 
immune responses (153); however, 4-1BB agonist antibodies 
can induce a variety of pathologies that may limit their utility in 
patients.

In the setting of natural immunity, 4-1BB signaling has been 
implicated in mediating the pathogenesis of herpetic stromal 
keratitis (an HSV-1 associated eye infection that can lead to 
glaucoma and/or corneal scarring) (160), atherosclerosis (161, 
162), obesity-induced inflammation (163–165), allograft rejection 
(166–169), lung inflammation, and airway hyper-responsiveness 
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(27), as well as infection-induced fetal rejection during pregnancy 
(170). Though, mild and manageable, the potential for 4-1BB to 
precipitate auto-reactive pathologies should be considered in 
planning the management of 4-1BB agonist treated patients.

The most clinically relevant adverse events associated with 
the use of 4-1BB agonist antibodies involve defects in immune 
homeostasis (e.g., neutropenia, thrombocytopenia, and reduced B 
cell numbers) (171, 172), as well as moderate to severe liver inflam-
mation characterized by immune infiltration and concomitant 
elevation in serum levels of liver transaminases (e.g., AST, ALT). 
Dubrot et al. first demonstrated a polyclonal influx of CD8 T cells 
into the livers of mice bearing MC38 colon carcinomas which 
correlated with an increase in transaminase levels (173). Wang 
et al. further demonstrated in a mouse model of chronic Hepatitis 
C infection that, 4-1BB stimulation promotes hepatic fibrosis and 
progression to hepatocellular carcinoma (174). This progression 
was mediated by production of IFNγ from CD8 infiltrates which 
drove CD11b+ macrophages to increase production of inflamma-
tory cytokines. Interestingly, Lin et al. established a role for the 
glucocorticoid-induced TNF-related receptor (GITR) in mediating 
4-1BB-induced liver pathology (175). GITR−/− mice treated with 
4-1BB antibodies demonstrated reduced splenomegaly as well as 
decreases in both ALT and AST levels associated with liver damage. 
GITR knockout mice also had fewer T cell infiltrates into the liver 
as well as fewer 4-1BB+ regulatory T cells and dendritic cells in the 
spleens and lymph nodes, suggesting that GITR may play a role in 
systemic 4-1BB expression.

In translating 4-1BB agonists into the setting of clinical 
oncology, responses to α4-1BB have been impressive, including 
partial remission and some stable disease; however, adverse events 
have complicated progression of 4-1BB agonists into late stage 
clinical trials. As reviewed by Ascierto et al. (91), in a Phase I/
II trial conducted by Bristol–Myers Squibb (BMS) using α4-1BB 
monoclonal antibodies for advanced or metastatic solid tumors 
(NCT00309023), cases of low grade fatigue were witnessed as 
well as grade 2+ neutropenia, leukopenia, thrombocytopenia, 
and increases in AST and ALT. This mild and manageable 
toxicity profile led to a Phase II study of 4-1BB antibodies for 
previously treated stage IV melanoma patients (NCT00612664). 
Unfortunately, though, this study was terminated due to high 
incidence of severe (Grade IV), and potentially fatal, hepatitis. 
These severe adverse events led to withdrawal or termination 
of several other ongoing and approved Phase I trials designed 
to discover the breadth and potency of the anti-tumor effects of 
4-1BB agonist immunotherapy (NCT00803374, NCT00309023, 
NCT00461110, NCT00351325). There is room for improvement in 
clinical management of 4-1BB induced hepatitis as steroids alone 
may not be sufficient to ameliorate severe hepatitis without the 
addition of myelosuppressive agents. Despite these setbacks, the 
therapeutic potential of 4-1BB agonist antibodies, particularly in 
combination with other immune and traditional cancer therapies, 
has led to a revival of clinical 4-1BB antibody development.

Potential for Combinatorial Therapies

Though liver toxicity is a major concern in the treatment of 
advanced cancers, addition of 4-1BB agonists to other therapeutic 

modalities could potentiate stronger anti-tumor responses while 
necessitating reduced dosing, thus limiting severity of 4-1BB 
associated adverse events. Preclinical studies have shown coop-
erative and even synergistic therapeutic benefit by combining 
4-1BB agonists with multiple anti-tumor therapies including 
IL-12 (176), IFNα (177), vaccination (102, 149, 178–180), as 
well as various other combinations (99, 101, 141–143). The most 
alluring combinations, however, are those that combine 4-1BB 
agonists with therapies that are already approved or in clinical 
trials, particularly T cell immune checkpoint blockade.

Anti-4-1BB in Combination with gene Therapy 
and Oncolytic virotherapy
The use of oncolytic viruses to treat cancer or gene therapy to 
introduce novel genes into the tumor microenvironment has 
begun to gain new life in recent years (181). Early gene therapy 
approaches to tumor vaccination sought to activate 4-1BB as an 
adjuvant. Incorporating 4-1BB ligand co-stimulation into viral 
therapies has also proven especially fruitful (92, 93, 97, 98, 100, 
103). Work from Melero first demonstrated that Ag104A sarco-
mas transfected with both 4-1BBL and B7-1, but neither alone, 
induced potent anti-tumor responses and cured 60% of treated 
mice (130). Work from Chen et  al. further demonstrated the 
potent therapeutic benefit of combining 4-1BB targeted therapy 
with interleukin 12, a cytokine that robustly activates NK cells 
as well as induces Th1 responses. Intratumoral injection of an 
adenoviral vector containing the p35 and p40 IL-12 subunits in 
combination with systemic administration of a 4-1BB antibody 
led to a dose-dependent increase in survival and complete rejec-
tion of MCA26 colon adenocarcinomas and non-immunogenic 
B16-F10 melanomas (104, 106). Intratumoral and systemic 
administration of 4-1BBL and IL-12 showed similar effects (105, 
131, 182), and, in fact, intratumoral 4-1BBL may induce a more 
robust secondary tumor response than systemic 4-1BB antibodies 
(131). In a similar vein, while intratumoral implantation of IL-12 
transfected DCs showed some anti-tumor effects, addition of 
systemic 4-1BB agonist antibodies led to complete cures in some 
cases of both directly injected and untreated contralateral MC38 
colon adenocarcinomas (150). These early experiments using viral 
vectors clearly demonstrated the adjuvant properties of 4-1BB 
co-stimulation and opened the doors to additional dual therapies 
involving 4-1BB. Clearly, 4-1BB activation may prove a potent 
combination strategy as second generation oncolytics emerge 
which co-express co-stimulatory ligands and/or cytokines.

Combining 4-1BB Agonists with CTlA-4 
Blockade
The FDA approval of anti-CTLA-4 (Ipilimumab) checkpoint block-
ade for the treatment of advanced stage melanoma has made this an 
attractive therapeutic for combination with 4-1BB agonists. While 
a Phase I trial was approved to determine the therapeutic benefit 
of combining 4-1BB agonists with Ipilimumab (NCT00803374), 
this trial was withdrawn prior to opening enrollment due to the 
liver toxicity observed in the melanoma monotherapy trial. The 
synergistic therapeutic potential of the α4-1BB/αCTLA-4 dual 

http://www.frontiersin.org/Oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org/


June 2015 | Volume 5 | Article 1178

Bartkowiak and Curran Activating immunotherapy through 4-1BB

Frontiers in Oncology | www.frontiersin.org

therapy in preclinical models, however, cannot be overlooked. 
Three doses of α4-1BB/αCTLA-4 administered to mice bearing 
B16 melanomas demonstrated a potently synergistic curative 
effect (183). Combination therapy led to changes in the tumor 
microenvironment including increases in CD8 T cell infiltration 
as well as significantly increased CD8/Treg, CD4 Teff/Treg, and 
CD8/MDSC ratios, which favor tumor clearance and successful 
treatment. Moreover, dual therapy increased the effector capabili-
ties of T cells in the tumor microenvironment. It should be noted 
though, that this synergism was only demonstrated in combination 
with an irradiated tumor vaccine expressing Flt-3 ligand (FVAX). 
Further evidence of the therapeutic benefit of α4-1BB/αCTLA-4 
was demonstrated by the injection of prostate tumors transfected 
with a plasmid containing 4-1BBL. Enhanced survival benefit 
and complete tumor rejection were evidenced when combined 
with systemic αCTLA-4 antibody therapy, leading to long-term 
immunological protection (109).

The most convincing argument for combining α4-1BB with 
αCTLA-4 stems from the ability of each therapy to not only potenti-
ate  stronger anti-tumor responses, but to also mutually ameliorate 
the side effects of each monotherapy. Kocak et al. demonstrated 
that systemic administration of α4-1BB/αCTLA-4 antibody therapy, 
while ineffective in treating B16 melanoma, was effective in clearing 
poorly immunogenic MC38 colon adenocarcinoma (110). Most 
strikingly, whereas αCTLA-4 induced the production of anti-dsDNA 
antibodies, leading to autoimmune-like syndromes, addition of α4-
1BB appeared to alleviate antibody deposition and development of 
lupus-like pathology in the kidney. Moreover, α4-1BB induced an 
influx of T cell infiltrates into the liver, leading to hepatitis; however, 
addition of αCTLA-4 reduced cellular infiltration and liver pathol-
ogy. The clear therapeutic benefit and alleviation of pathology dem-
onstrated by Kocak suggest that this α4-1BB/αCTLA-4 combination 
should be prioritized for clinical translation.

Targeting 4-1BB and the PD-1/PD-l1 Axis to 
elicit Potent Anti-Tumor effects
Another checkpoint receptor with potential therapeutic synergy 
in combination with α4-1BB is the programmed death-1 (PD-1) 
pathway. Targeting the PD-1 pathway by blocking PD-1 (108), 
or by blocking Programed death-ligand 1 (PD-L1) (107), has 
evoked impressive clinical responses to melanoma, non-small-
cell lung cancer, and renal cancer. The recent approval of the 
PD-1 blocking antibodies Nivolumab and Pembrolizumab for 
the treatment of melanoma validates the effectiveness of αPD-1 
as a monotherapy, confirms the attractiveness of a lower toxicity 
profile than Ipilimumab, and suggests that αPD-1 may offer a more 
appealing partner for α4-1BB co-therapy.

In one of the first preclinical models of dual therapies targeting 
the 4-1BB and PD-1 pathways, Xiao et  al. demonstrated that 
systemic administration of soluble PD-1 to inhibit PD-L1 syner-
gized well with implantation of H22 hepatocarinomas transfected 
with 4-1BBL by increasing anti-tumor cytotoxicity and decreasing 
tumor burden compared to either monotherapy (184). In an ovar-
ian cancer model, co-administration of a PD-L1 antagonist with 
α4-1BB and a cellular vaccine expressing GM-CSF (GVAX) let to 
increases in both CD4 effector and CD8 T cell infiltrates into the 

tumor with a concomitant decrease in regulatory T cells (185). 
Much like with α4-1BB/αCTLA-4 therapy, this combination 
increased IFNγ and TNFα production in the tumor microenvi-
ronment. PD-1 blocking antibodies in combination with 4-1BB 
agonists have also shown increased therapeutic potential toward 
subcutaneously implanted CT26 colon carcinoma (186) or B16/
F10 melanoma (187). Interestingly, Chen et al. showed that PD-1 
blockade increased 4-1BB expression on CD8 T cells and α4-
1BB conversely induced PD-1 expression, thus pointing toward 
a mechanism of potential synergy in the combination setting. 
Furthermore, in this study, dual therapy increased the CD8/Treg 
ratio in the tumor as well as the potent effector capacity of T cells. 
Unfortunately, though, co-administration of α4-1BB and αPD-1 
appeared to exacerbate α4-1BB associated toxicities at moderate 
to high doses of 4-1BB agonist treatment in mice. At both 1 and 
5 mg/kg doses of α4-1BB, ALT and AST levels were increased 
almost two-fold over α4-1BB alone. Moreover, α4-1BB/αPD-1 
therapy failed to ameliorate, and even worsened, α4-1BB medi-
ated thrombocytopenia, lymphopenia, and neutropenia at the 
higher doses. At the lowest dose of α4-1BB, however, no increased 
toxicity was observed for the α4-1BB/αPD-1 combination relative 
to the same dose of α4-1BB alone. These results strongly suggest 
caution in choosing combination therapies, and that trial design 
should include conservative dosing in initial cohorts with the 
potential for escalation after demonstration of safety.

Combining TNF Receptor Agonists: Potential for 
4-1BB and OX-40 Dual Therapy
Another avenue for combination therapy that may have therapeutic 
potential engages combination of α4-1BB with agonists of other 
co-stimulatory TNFR family members. Clinical trials targeting 
the OX-40 pathway for tumor therapy are currently underway 
(NCT01862900, NCT02274155, NCT01303705). Moreover, the 
co-stimulatory nature of both 4-1BB and OX-40 receptors as well as 
diversity in their expression patterns may offer potential synergism 
between these two therapies in the clinic (188, 189). Work from Lee 
et al. demonstrated that activating both OX-40 and 4-1BB enhanced 
CD8 T cell proliferation, survival, and effector function over either 
monotherapy in response to staphylococcal enterotoxin A (SEA) 
stimulation (190). In the context of a prime/boost vaccine using a 
recombinant vaccinia virus (VV) vector encoding the OVA-peptide, 
α4-1BB alone enhanced CD8 T cell expansion and memory forma-
tion, whereas the α4-1BB/αOX-40 combination was able to expand 
both CD4 and CD8 responses (191). Further, OX-40 and 4-1BB 
co-stimulation may advantageously regulate Treg function as well 
(192). For instance, work from St. Rose et al. suggests that enhanced 
IFNγ production during dual co-stimulation regulates expression 
of the IL-2 receptor (CD25), limiting the expansion of regula-
tory T cells (193). Contrarily though, one report demonstrated 
enhanced expansion of Tregs during 4-1BB stimulation (194), while 
another showed that α4-1BB inhibits the suppressive capacity of 
CD4+CD25+ regulatory T cells (195), and yet a third study reported 
suppressed conversion of CD4+ T effector cells into Tregs during 
4-1BB stimulation (111). Thus, the functional consequences of 
4-1BB activation upon Tregs remains contentious, and further 
studies are necessary, particularly to clarify the impact of α4-1BB 
on human Treg expansion and suppressive capacity.
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Significant to the field of tumor immunology, Bandyopadhyay 
et al. showed that dual co-stimulation through α4-1BB/αOX-40 
fueled T cell expansion but not effector function in a murine model 
of responses toward tolerized self-antigens (113). This study, while 
suggestive of implications on tumor immunotherapy, did not take 
into account the vast array of neoantigens or polyclonal nature 
of the adaptive immune response in a natural setting. Further, 
the therapeutic potential of combining dual co-stimulation with 
whole tumor vaccines compared to peptide vaccination was clearly 
demonstrated by Cuadros et al. This strategy produced stronger 
T cell responses compared to peptide vaccination and fostered 
complete tumor rejection when combined with α4-1BB/αOX-40 
therapy, further demonstrating the need to generate an oligoclonal 
anti-tumor response to efficiently eliminate certain tumors (112). 
The ability to boost both CD8 and CD4 T cell responses while, at 
the same time, suppressing Treg expansion will likely make 4-1BB 
and OX-40 agonists attractive combination partners in the clinic.

Coupling 4-1BB Agonists with Radiation Therapy
Front-line radiation therapy is the current standard of care for many 
malignancies, often eliciting objective responses. More recently, the 
capacity of radiotherapy to awaken and augment dormant tumor 
immune responses has been demonstrated both in pre-clinical 
studies and clinical trials. Shi et al. demonstrated that high doses of 
radiation can induce expression of 4-1BBL on some murine tumors 
(196). In addition, a single dose or multiple, fractionated doses of 
radiation given prior to systemic administration of 4-1BB agonists 
induced partial tumor regression in murine models of lung and 
breast cancer. In particular, cancers of the brain and nervous system 
may benefit from the potential of α4-1BB/radiotherapy combina-
tions. As neurological cancers are highly radiosensitive and high 
doses or repeated exposure lead to cognitive impairment, therapies 
that permit lower dosages with increased anti-tumor effects are 
sorely needed. In one of the first studies seeking to combine 4-1BB 
antibodies with radiation, mice implanted with intracranial GL261 
gliomas were treated with whole brain irradiation in combination 
with systemic α4-1BB. This combination therapy dramatically 
increased survival, reduced total tumor volume, and increased 
lymphocyte infiltration with the acquisition of durable systemic 
immunological memory (116). Belcaid et al. further demonstrated 
that while αCTLA-4 therapy in combination with focal radiation 
increased the overall survival of mice intracranially implanted 
with GL261, radiotherapy in combination with αCTLA-4/α4-1BB 
further increased survival and led to long-term immunological 
protection (114). Interestingly, investigators found that CD4 T cells 
played a critical role in mediating this effect, as CD4 but not CD8 
T cell depletion abrogated the therapeutic response. The capacity 
of 4-1BB agonist antibody to expand and empower tumor-specific 
T cell responses unleashed following radiotherapy clearly will 
make this a desirable and accessible therapy in the clinic for both 
corporeal and, potentially, CNS malignancies.

Advantageous Combinations of Chemotherapy 
and 4-1BB Activation
While various chemotherapeutic drugs have demonstrated 
anti-tumor responses and become the standard of care for both 

hematological and solid tissue malignancies, most tumors become 
refractive to therapy, demonstrating a need for combination 
therapies to overcome resistance. As chemotherapy regimens can 
induce T cell co-stimulatory receptors, in particular 4-1BB (115), 
and elicit tumor antigen release, immunotherapy has emerged as 
a key candidate for combination with chemotherapy.

Agonist 4-1BB therapy with chemotherapy has proven effec-
tive pre-clinically in multiple murine tumor models. Ju et al. 
demonstrated that either α4-1BB or 5-fluorouracil (5-FU) alone 
did little to treat RCC; however, the combination of α4-1BB 
with 5-FU led to profound tumor regressions and increased 
overall survival rates in dual treated mice (117). Further, 
adding α4-1BB with the DNA-alkylating platinum-containing 
derivatives, particularly cisplatin, produced cooperative anti-
tumor responses and increased survival (118). Not only did 
α4-1BB/cisplatin induce complete rejection of CT26 colon 
adenocarcinoma, but addition of 4-1BB agonists also afforded 
protection from cisplatin-induced nephrotoxicity. In addition, 
cisplatin in combination with PD-1 blockade and α4-1BB 
antibody therapy improved responses in a murine model of 
ovarian cancer, increasing the overall survival rate in a CD8 T 
cell-dependent fashion (197). Moreover, α4-1BB acts coopera-
tively with cyclophosphamide (CTX) therapy. While CTX, given 
early, showed moderate increases in median survival, CTX in 
combination with α4-1BB increased overall survival by eliciting 
polyclonal expansion of anti-tumor T cells with significantly 
enhanced effector function (198). In a similar fashion, CTX 
treatment followed by intratumoral injection of an adenoviral 
vector encoding an agonistic scFv targeting 4-1BB synergized 
to treat murine TC-1 lung adenocarcinomas, boosting T cell 
proliferation while suppressing Treg expansion (199). Clinical 
application of 4-1BB agonist and chemotherapy combinations 
will require careful design to avoid bystander killing of the 
4-1BB amplified T cells by the cytotoxic agent; however, the 
preclincal data suggest translational promise for 4-1BB to aug-
ment the effect of selected chemotherapies.

Potentiation of Adoptive T Cell Therapy by 
4-1BB Activation
Ex vivo expansion and re-infusion of a patient’s own tumor-specific 
T cells, known as adoptive cell therapy (ACT), has become a potent 
new class of immunotherapy, particularly for melanoma. ACT 
seeks to either expand a patient’s own endogenous anti-tumor T 
cells, or alternatively, to genetically engineer endogenous T cells 
with chimeric antigen receptors (CARs) in order to redirect them 
to the tumor. While CARs offer exceptional anti-tumor specificity 
and effector function, adoptive transfer of a patient’s own tumor 
reactive TIL or PMBC initiates immunity against a broader range 
of tumor-associated antigens, thereby reducing the chance of 
tumor immune escape through antigen loss. Only recently has 
the role of 4-1BB in demarking tumor reactive T cells, and in 
rapidly and robustly expanding T cells for ACT, been appreciated 
and instituted into TIL expansion protocols (153).

Separate work from Strome et al. and Li et al. demonstrated the 
synergy of 4-1BB agonists used in combination with adoptively 
transferred T cells to treat murine lung metastases (200, 201). 
Moreover, in a hallmark paper, Maus et al. showed that the capacity 
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of K562 cells used as artificial antigen presenting cells (aAPC) to 
expand patient TIL was dramatically enhanced by co-expression of 
4-1BBL (133). This model has now become the standard protocol 
for ex vivo expansion of T cells for adoptive transfer. Work from 
Chacon et al. further uncovered the potential of adding 4-1BB 
agonist antibody stimulation after expansion of TIL in human 
melanoma, particularly in preventing AICD of TIL ex vivo (202).  
In order to gain enough T cells from patient TIL samples for ACT, 
TIL samples undergo a rapid expansion protocol (REP). By adding 
α4-1BB post-REP, Chacon demonstrated increased polyclonal 
expansion of CD8+ TIL. These cells were highly functional and 
capable of responding to antigenic restimulation. Choi et  al. 
showed in similar fashion that tumor-antigen-specific T cells can 
be harvested and expanded from a patient’s peripheral blood much 
more rapidly than traditional TIL expansion protocols permit 
via the addition of 4-1BB agonists (203). Care should be taken, 
however, in using α4-1BB to expand patient lymphocytes prior 
to reinfusion, as, despite preferential expansion of CD8+ T cells, 
4-1BB agonists may also augment other 4-1BB-expressing cell 
types including DCs, NK cells, and Tregs. Goldstein et al. showed, 
for example, that 4-1BB also is present on a population of Treg 
cells capable of suppressing anti-tumor effector function (204).

Engineering CAR T cells serves as an alternate means of 
adoptive T cell transfer in which patient T cells are transgenically 
altered ex vivo to express a tumor-targeted antibody Fab linked 
to the TCR signaling machinery. Early generation CARs bearing 
tumor-targeted scFV with CD3ζ demonstrated some anti-tumor 
potential, but failed to persist long term. Adding co-stimulatory 
endodomains (via CD28 and/or 4-1BB), however, greatly increased 
tumor-killing potential and in vivo persistence of adoptively trans-
ferred CAR T cells (205). These αCD19-BB-ζ CARs prove to be 
highly cytotoxic cells capable of potentiating strong anti-leukemia 
activity (206). Further, in a small pilot study, αCD20 CARs engi-
neered with 4-1BB endodomains produced therapeutic benefit 
against relapsed indolent B-cell and mantle cell lymphomas (207). 
From this and many other CAR T cell trials, it appears clear that the 
presence of the 4-1BB signaling domain affords advantages in both 
persistence and effector function to adoptively transferred CAR T 
cells whether alone or in combination with the CD28 endodomain.

Manipulating 4-1BB in the adoptive transfer setting to treat cancer 
is an expanding area of interest within the field of immunotherapy. 
A multitude of upcoming CAR T cell trials in both hematologic 
and solid tumors will test the value of the 4-1BB endodomain in 
enhancing their anti-tumor activity and in vivo persistence. Also, 
the potency of 4-1BB agonist antibodies in selecting, expanding, 
and conditioning the most effective tumor-specific CD8+ T cells for 
ACT will also be thoroughly tested in upcoming studies.

Other Therapies employing 4-1BB
Many other therapeutic modalities have incorporated 4-1BB 
agonists to enhance weak anti-tumor responses. Work from 
Kohrt et al. elegantly demonstrated the therapeutic potential of 
combining α4-1BB antibodies with approved tumor-targeted 
antibody therapies. In one study, combining α4-1BB with 
αCD20 antibodies profoundly enhanced NK cell-mediated anti-
lymphoma activity. By combining sequential injections of αCD20 

before administration of α4-1BB, Kohrt demonstrated that αCD20 
administration enhanced NK cell tumor-killing capacity through 
antibody-dependent cell-mediated cytotoxicity (ADCC). This led 
to increases in anti-tumor 4-1BB+ NK cells that then served as 
targets for α4-1BB therapy (142). Kohrt went further, demonstrat-
ing that NK cells from patients with various B cell lymphomas 
and leukemias upregulated 4-1BB during culture with Rituximab-
coated tumor cells, offering a proof of principle that Rituximab and 
α4-1BB work well as a dual therapy to treat B cell malignancies. In 
a similar fashion, treatment with trastuzumab or cetuximab prior 
to α4-1BB agonist therapy boosted ADCC and NK cell responses 
to HER2+ breast cancer or EGFR+ head and neck and colorectal 
carcinomas, respectively (143). These pre-clinical findings have 
fostered clinical trials of α4-1BB antibodies in combination with 
these tumor-specific antibodies.

4-1BB-Targeted Clinical Trials in Progress

Impressive preclinical anti-tumor potential (Table  1) has pro-
gressed 4-1BB targeted therapies into clinical trials. Pfizer is 
currently recruiting patients for a Phase I trial to determine the 
safety profile and potential of the combination of α4-1BB (PF-
05082566) with Pembrolizumab for the treatment of advanced 
solid tumors (NCT02179918). Additionally, patients are being 
recruited for a Phase I trial of α4-1BB (PF-05082566) in conjunc-
tion with Rituximab (αCD20) for the treatment of Non-Hodgkin’s 
lymphoma (NCT01307267).

Further, BMS is currently recruiting for multiple trials including 
a Phase I safety trial of Urelumab (BMS-663513) for advanced 
stage metastatic solid tumors and relapsed/refractory B cell 
Non-Hodgkin’s lymphoma (NCT01471210). Recruitment is also 
ongoing for a trial combining Elotuzumab (targeting SLAMF7) 
in combination with Lirilumab (targeting KIR receptors on NK 
cells) or Urelumab (α4-1BB) for the treatment of multiple myeloma 
(NCT02252263). BMS has also opened Phase I trials combining 
Urelumab with Cetuximab for metastatic colorectal cancer and 
head and neck cancer (NCT02110082), combining Urelumab 
with Rituximab for Non-Hodgkin’s lymphoma (NCT01775631), 
and Urelumab with Nivolumab (αPD-1) for the treatment of solid 
tumors and Non-Hodkin’s lymphoma (NCT02253992). All of these 
trials are still Phase I, and results are eagerly awaited.

The majority of these trials focus on modulating NK cell 
responses in order to not only boost ADCC, but to also activate 
and expand anti-tumor NK cells. While both the BMS and Pfizer/
Merck trials of α4-1BB/αPD-1 combination therapy seek to 
translate the impressive pre-clinical efficacy of this combination, 
it remains to be seen, especially for Urelumab, whether patients 
will be able to tolerate sufficient doses of these two antibodies to 
realize this potential. We believe the greatest clinical impact of 
4-1BB agonist antibodies will come in future combination trials 
with CTLA-4 blockade in which both therapeutic synergy and 
reduction in one another’s immune related adverse events appears 
likely. This would be a unique case in which both agents, which are 
currently being under-dosed in the clinic to minimize side effects, 
could be administered in higher doses than as monotherapies and 
with a better safety profile. Tumor selective 4-1BB antibodies are 
also in development using, for example, the Cytomix probody 
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anti-tumor from the liver inflammatory effects of 4-1BB antibod-
ies will dramatically accelerate the progress of this extraordinarily 
promising immunotherapy toward FDA approval.

Future Directions
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II/III clinical trials (91). Fortunately, new therapeutic modalities 
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cancer treatments, have renewed excitement for the use of 4-1BB 
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in combinations of α4-1BB with T cell immune checkpoint block-
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and, remarkably, diminishes immune related toxicities compared 
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exacerbate it (110, 187). Additionally, unlike checkpoint blocking 
antibodies which restore T cell proliferation and functionality but 
do little to alter their phenotype, 4-1BB agonists strongly suppress 
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ThEO T cell phenotype (61, 76). For tumors such as colon cancer in 
which Th17 polarized T cells play important roles in tumor forma-
tion and support, combinations involving α4-1BB which can alter 
the balance of T cell phenotypes away from a Th17 and toward a Th1 
or ThEO polarity could offer uniquely effective therapy. Ongoing 
efforts to design tumor-selective 4-1BB agonists coupled with 
pre-clinical studies focused on revealing the detailed cellular and 
molecular mechanisms by which 4-1BB agonists enhance tumor 
immunity, alone and in combination with other therapies, predict 
a significant role for these agents in the future of clinical tumor 
immunotherapy.

Conclusion

4-1BB is a co-stimulatory receptor expressed on a variety of cells 
of the immune system, particularly on CD8+ T cells. This broad 
range of expression, coupled with the ability of 4-1BB to potentiate 
strong and durable immune effector responses, has made 4-1BB a 
clinically viable target for cancer immunotherapy. Although 4-1BB 
can be targeted through a variety of mechanisms, its capacity to 
treat advanced tumors as a monotherapy is limited. The unique and 
often synergistic advantages of 4-1BB activation in combination 
with other therapies, however, suggest a prominent role for these 
agents in the treatment of multiple types of cancer. Despite early 
setbacks, 4-1BB agonists may provide a critical piece in assembling 
combination therapies capable of achieving durable complete 
responses against advanced cancers.
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