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Abstract 

Background:  Improved breast cancer risk assessment models are needed to enable personalized screening strate-
gies that achieve better harm-to-benefit ratio based on earlier detection and better breast cancer outcomes than 
existing screening guidelines. Computational mammographic phenotypes have demonstrated a promising role in 
breast cancer risk prediction. With the recent exponential growth of computational efficiency, the artificial intelligence 
(AI) revolution, driven by the introduction of deep learning, has expanded the utility of imaging in predictive models. 
Consequently, AI-based imaging-derived data has led to some of the most promising tools for precision breast cancer 
screening.

Main body:  This review aims to synthesize the current state-of-the-art applications of AI in mammographic pheno-
typing of breast cancer risk. We discuss the fundamentals of AI and explore the computing advancements that have 
made AI-based image analysis essential in refining breast cancer risk assessment. Specifically, we discuss the use of 
data derived from digital mammography as well as digital breast tomosynthesis. Different aspects of breast cancer risk 
assessment are targeted including (a) robust and reproducible evaluations of breast density, a well-established breast 
cancer risk factor, (b) assessment of a woman’s inherent breast cancer risk, and (c) identification of women who are 
likely to be diagnosed with breast cancers after a negative or routine screen due to masking or the rapid and aggres-
sive growth of a tumor. Lastly, we discuss AI challenges unique to the computational analysis of mammographic 
imaging as well as future directions for this promising research field.

Conclusions:  We provide a useful reference for AI researchers investigating image-based breast cancer risk assess-
ment while indicating key priorities and challenges that, if properly addressed, could accelerate the implementation 
of AI-assisted risk stratification to future refine and individualize breast cancer screening strategies.

Keywords:  Artificial intelligence, Deep learning, Breast cancer, Breast cancer risk, Breast density, Mammographic 
density, Digital mammography, Breast tomosynthesis, Mammographic imaging
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Introduction
Randomized trials and screening cohort studies have 
clearly demonstrated that routine, mammographic 
screening is associated with a reduction in breast can-
cer morbidity and mortality [1]. Initially, breast cancer 
screening was performed with analog screen-film-based 
mammography systems, but over the last 20 years, mam-
mographic screening has transitioned to fully digital 
platforms (full-field digital mammography (FFDM)) 
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which allowed pixilated data to be reconstructed into the 
quasi-3D format of digital breast tomosynthesis (DBT) 
[2]. Additional efforts to improve breast cancer screen-
ing outcomes have focused on intensifying screening 
intervals and reading formats, e.g. yearly versus bi-annual 
screening and double-reading instead of single-reading, 
and introducing supplemental forms of screening in 
addition to mammography such as breast ultrasound or 
MRI [3]. In general, these enhanced screening protocols 
require additional resources and while they may detect 
more cancers, the additional imaging and increased 
intensity of screening may also result in higher false-pos-
itive rates [3]. As a result, there has been increasing advo-
cacy for “personalized” breast cancer screening regimens, 
tailored to an individual women’s breast cancer risk 
based on a combination of imaging, demographic, and 
when available, genetic information [4]. Improvements in 
breast cancer risk assessment algorithms with the incor-
poration of image-derived data have the potential to help 
balance the harm-to-benefit ratios while better informing 
screening algorithms.

This complex landscape of mammographic screening 
offers several opportunities for improvements including 
the incorporation of computational imaging phenotyp-
ing of breast tissue. Importantly, doing so comes at lit-
tle additional cost in terms of patient engagement and 
imaging time. For instance, mammographically assessed 
breast density, which reflects the amount of radio-dense 
tissue within the breast, has been well established as a 
risk factor for breast cancer as well as a feature that can 
reduce the sensitivity of mammography, since dense tis-
sue may obscure or, “mask” tumors [5]. The recognition 
of breast density as a key biomarker in risk assessment 
has created a need for computational imaging efforts 
that deliver accurate and reliable measures of breast den-
sity areas, volumes and texture [6]. Recently, an array of 
computerized tools has been developed to convert mam-
mographic images into phenotypic features for compu-
tational artificial intelligence (AI), commonly grouped 
under the umbrella of radiomic AI. The incorpora-
tion of breast radiomic features into breast cancer risk 
assessment algorithms has shown immense potential in 
improving breast cancer risk assessment and potentially, 
patient outcomes [7].

In the last 6 years, the computational medical imaging 
community has taken notice of an AI revolution driven 
by the introduction of deep learning (DL)-based convo-
lutional neural networks (CNNs), which, compared to 
radiomic AI, possesses the advantage of ingesting images 
directly without explicit feature conversion [8]. These 
DL-based CNNs not only expanded the utility of imag-
ing in predictive models but also pervaded breast cancer 
screening as one of the most promising computerized 

breast imaging tools. As in the title of this review, it is 
common to refer to AI, DL and CNNs almost inter-
changeably. However, AI generally refers to the creation 
of systems that perform tasks that usually require human 
intelligence, branching off into different techniques [9]. 
DL is one technique belonging to AI, and CNNs are only 
a subset of DL [9].

This narrative review synthesizes the current state-of-
the-art applications of AI in mammographic phenotyp-
ing of breast cancer risk. For a more complete view of AI 
updates in breast cancer screening, we refer the reader 
to many excellent recent review papers on AI-enabled 
breast cancer detection [10] and broader applications of 
AI to breast imaging [11–13]. This review focuses on AI 
developments with the greatest potential to impact breast 
cancer risk assessment, specifically in the evaluation of 
digital 2D mammograms and 3D tomosynthesis images. 
We first briefly introduce key underlying concepts of AI 
and explore the advancements that led to the DL-driven 
revolution in computational medical imaging. Next, we 
focus on AI applications for assessing breast cancer risk 
from mammographic images, including breast density 
measurements as well as direct evaluation of breast can-
cer risk. Last, we discuss AI challenges that are unique 
to mammographic images and future directions for this 
promising research field.

Main body
The “wind of change” for AI in medical image computing
AI is an umbrella term that encompasses various 
approaches to making machines mimic human decision-
making (Fig.  1). Machine learning (ML) falls under the 
larger category of AI and includes all approaches that 
enable computers to learn from features extracted from 
training examples without those features being explicitly 

Fig. 1  Diagram explaining the relationship between the different 
techniques in the field of artificial intelligence
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programmed [9]. Examples of ML approaches include 
regression, support vector machines, random forest 
classifiers, k-nearest neighbor algorithms, and artificial 
neural networks (ANNs) [9]. ML methods are divided 
into two broad paradigms: unsupervised learning and 
supervised learning [9]. Unsupervised learning aims to 
discover novel patterns in data that has no labels or cat-
egories assigned to training examples. The most common 
unsupervised learning task is clustering, which consists 
of grouping similar examples together according to pre-
defined similarity metrics. In contrast, supervised ML 
methods train algorithms to classify data or predict out-
comes by leveraging pre-labeled datasets. However, ML 
methods only work well if the input data contains mean-
ingful predictive features from the start. Within ML, lies 
DL, which was developed to improve the performance of 
conventional ANNs using deep, multi-layered architec-
tures [14]. Among the different deep ANNs, CNNs are 
based on convolutional operations that decode raw image 
data into complex data representations without needing 
to be explicitly fed image-derived features [14].

In general, the development of DL models requires a 
large amount of data for training, validation, and test-
ing, with various imaging studies reporting logarithmic 
trends between model performance and data sample 
size [15]. However, the exact amount of data needed to 
achieve sufficient accuracy varies depending on the qual-
ity and variability of the data, as well as the DL model 
design, learning task and training approach [15–17]. The 
training set is usually the largest data set and is used to 
parameterize the model. The validation data set con-
sists of data withheld from training that is used to fur-
ther optimize the model’s hyper-parameters. Finally, the 
independent testing data set is used to determine perfor-
mance benchmarks. DL and CNNs are not new concepts. 
Historically, training deep CNNs was considered imprac-
tical due to the limited availability of necessary data cou-
pled with high computational costs. These challenges 
have been alleviated today because improved computa-
tional resources (such as advanced graphics processing 
units) and large data sets are becoming increasingly avail-
able. These computational advancements, along with the 
development of pivotal DL algorithms and training meth-
odologies [18, 19], have brought DL to the mainstream in 
medical image computing, including applications assess-
ing mammographic imaging data for breast cancer risk 
assessment.

AI studies demonstrating robust and reproducible breast 
density assessment for improved risk estimation
The most commonly used method to assess breast den-
sity in the clinical setting is the visual and subjective 
grading of breast density by the interpreting radiologist 

into one of 4 categories outlined by the American Col-
lege of Radiology (ACR) Breast Imaging-Reporting and 
Data System (BI-RADS) [20]. However, it has been well-
established that a large degree of inter- and intra-reader 
variability exists in the assignment of breast density, par-
ticularly among less-experienced readers, with κ statistics 
ranging from 0.4 to 0.7 [21]. Furthermore, density cate-
gories were initially based on approximating the percent 
area of dense tissue in relation to the whole breast area 
(BI-RADS fourth edition, 2003 [22]), however, recently 
(BI-RADS fifth edition, 2013 [20]), the categories are no 
longer defined by percent density but rather the poten-
tial for masking of cancers by dense breast tissue. This 
change in BI-RADS definitions for the visual assess-
ment of breast density has led to an increased number of 
women assigned to heterogeneously or extremely dense 
breast categories [23].

Despite the large inter- and intra-reader variation in 
BI-RADS density assessments, using them as the gold-
standard in AI density models is a common approach, 
mainly due to the lack of large datasets with ground-
truth density estimations. Actual ground-truth density 
estimations could be obtained only via breast excisions, 
while manual density segmentations are extremely time-
consuming. Therefore, BI-RADS density assessments are 
usually the only ground-truth density information availa-
ble for large mammographic datasets. Of note however is 
that despite the variability in subjective BI-RADS density 
assignments, they still remain highly predictive of future 
breast cancer risk [24].

To enhance reproducibility in breast density assess-
ment, several studies have developed DL models of 
various architectures that learn to automatically classify 
mammographic images into BI-RADS density categories, 
using radiologists’ assessments [25–35] (Table  1). For 
instance, using raw (i.e., ‘For processing’) FFDM images 
from 1427 women, Mohamed et al. [33] applied transfer 
learning to develop a DL approach based on the AlexNet 
architecture. Their model achieved an AUC of 0.94 in BI-
RADS density classification. Subsequently, using a sepa-
rate dataset of 963 women, the authors demonstrated 
that the model performance varies by FFDM view type, 
with higher accuracy in mediolateral oblique (MLO) 
views (AUC = 0.95) than in craniocaudal (CC) views 
(AUC = 0.88) [34]. Then, using a substantially larger 
cohort consisting of processed (i.e., ‘For presentation’) 
FFDM images from 39,272 women, Lehman et  al. [32] 
developed another DL model based on the ResNet-18 
architecture and reported good agreement with 12 radi-
ologists (four-class kappa (K) = 0.67). In the same paper, 
the DL model was evaluated in a reader study with five 
radiologists working in consensus on 500 FFDM exams 
randomly selected from the test set (four-class K = 0.78), 
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Table 1  Representative studies in AI-enabled breast density evaluation from mammographic images

The table describes the development image dataset used in each study, including format of mammographic images, sample size, and vendors, as well as 
methodological details for the AI model (output breast density measure, model architecture and availability of spatial density maps) and the model performance in 
breast density evaluation

FFDM: full-field digital mammography, SM 2D synthetic mammographic image acquired with digital breast tomosynthesis, APD% area percent density, MLO medio-
lateral oblique, CC cranio-caudal, cGAN conditional generative adversarial network, CNN convolutional neural network, ECNN entirely convolutional neural network, 
CSAE convolutional sparse auto encoder, DSC dice score, APDdiff difference in APD%, K Cohen kappa coefficient, AUC​ area under the ROC curve, Acc accuracy

*Indicates publicly available AI model. N/R not explicitly reported in the paper

Study Model development dataset Model design Model 
performance

Image format # images (# 
women)

Vendors (# 
sites)

Model 
architecture

Output density 
measure

Density maps

Roth et al. [35] FFDM (Pro-
cessed)

109,849 images 
(N/R)

N/R (7 sites) DenseNet-121 BI-RADS density No Four-class 
K = 0.62–0.77

Dontchos et al. 
[25]

FFDM (Pro-
cessed)

N/R (2174 
women)

Hologic (1 site) ResNet-18 BI-RADS density 
(13 interpreting 
radiologists)

No Dense versus non-
dense Acc:
94.9% (academic 
radiologists)
90.7% (community 
radiologists)

Matthews et al. 
[26]

FFDM (Pro-
cessed) and SM

FFDM: 750,752 
images (57,492 
women)
SM: 78,445 
images (11,399 
women)

Hologic (2 sites) ResNet-34 BI-RADS density 
(11 interpreting 
radiologists)

No Four-class K = 0.72 
for FFDM, Site 1
Four-class K = 0.72 
for SM, Site 1
Four-class K = 0.79 
for SM, Site 2

Saffari et al. [27] FFDM 410 images (115 
women)

Siemens (1 site) cGAN, CNN BI-RADS density Yes DSC = 98% in 
dense tissue 
segmentation

Deng et al. [28] FFDM 18,157 images 
(women)

Hologic (1 site) SE-Attention 
CNN

BI-RADS density No Acc = 92.17%

Perez Benito 
et al. [29]

FFDM (Pro-
cessed)

6680 images 
(1785 women)

Fujifilm, Hologic, 
Siemens, GE, IMS 
(11 sites)

ECNN BI-RADS density 
(2 interpreting 
radiologists)

Yes DSC = 0.77

Chang et al. [30] FFDM (Raw) 108,230 images 
(21,759 women)

GE, Kodak, Fis-
cher (33 sites)

ResNet-50 BI-RADS density 
(92 interpreting 
radiologists)

No Four-class K = 0.67

Ciritsis et al. [31] FFDM 20,578 images 
(5221 women)

N/R (1 site) CNN BI-RADS density 
(consensus of 
2 interpreting 
radiologists)

No AUC = 0.98 for 
MLO views
AUC = 0.97 for CC 
views

Lehman et al. 
[32]

FFDM (Pro-
cessed)

58,894 images 
(39,272 women)

Hologic (1 site) ResNet-18* BI-RADS density 
(12 interpreting 
radiologists)

No Four-class K = 0.67

Mohamed et al. 
[33]

FFDM (Pro-
cessed)

22,000 images 
(1427 women)

Hologic (1 site) CNN AlexNet BI-RADS density No AUC = 0.94

Mohamed et al. 
[34]

FFDM (Pro-
cessed)

15,415 images 
(963 women)

Hologic (1 site) CNN AlexNet BI-RADS density No AUC = 0.95 for 
MLO views
AUC = 0.88 for CC 
views

Haji Maghsoudi 
et al. [38]

FFDM (Raw) 15,661 images 
(4437 women)

Hologic (2 Sites) U-net* APD% Yes DSC = 92.5% in 
breast segmenta-
tion
APDdiff = 4.2–4.9%

Li et al. [37] FFDM (Raw) 661 images (444 
women)

GE (1 site) CNN APD% Yes DSC = 76% in 
dense tissue 
segmentation

Kallenberg et al. 
[36]

FFDM (Raw) N/R (493 women) Hologic (1 site) CSAE APD% Yes DSC = 63% in 
dense tissue 
segmentation
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and was also implemented in routine clinical practice, 
where eight radiologists reviewed 10,763 consecutive 
FFDM exams assessed with the DL model (four-class 
K = 0.85). Recently, the authors implemented their DL 
model at a partner community breast imaging practice 
and reported a high clinical acceptance rate among both 
academic (94.9%) and community (90.7%) radiologists as 
well as a reduction in the proportion of mammograms 
assessed as dense from 47 to 41% (P < 0.001) [25].

Another important effort towards automating BI-
RADS density classification via DL was based on a large 
multi-institution screening cohort of FFDM images 
from 21,759 women provided by the Digital Mammo-
graphic Imaging Screening Trial, which acquired the 
images from various FFDM vendors and the interpreta-
tions from 92 radiologists [30]. In addition to achieving 
good agreement with radiologists’ interpretations (four-
class K = 0.67), this study explored the effects of differ-
ent FFDM image formats (12-bit monochrome 1, 12-Bit 
Monochrome 2 and 14-Bit Monochrome 1), model archi-
tectures (ResNet-50, DenseNet-121, Inception-V3, and 
VGG-16) and training approaches (transfer learning, 
ensemble training, training set size, and cost functions) 
on the DL model performance (Fig. 2a). Furthermore, the 
study illustrated the difference between random sampling 
and equal sampling across each of the four BI-RADS cat-
egories as well as the decrease in performance when the 
format of FFDM images in the training set differs from 
that of FFDM images in the evaluation set (Fig. 2b).

Most recently, in what could be an essential step 
towards AI-enabled BI-RADS breast density assessment, 
research has focused on leveraging domain adaptation 
approaches to create DL models that utilize 2D synthetic 

mammographic (SM) images reconstructed from DBT 
acquisitions. The feasibility of this approach was demon-
strated in large, racially diverse datasets from two clinical 
sites, where the adapted model achieved good agree-
ment with the BI-RADS density classification from SM 
images by radiologists (four-class K = 0.72–0.79) [26]. 
Additional novel directions in this field include exploring 
state-of-the-art DL architectures [27, 28], as well as using 
federated learning, where participating institutions share 
model weights amongst themselves instead of the actual 
images. The aim of the latter approach is to train and 
improve DL models with large multi-institution cohorts 
[35].

Despite the substantial progress made in automating 
BI-RADS density classification, merely striving for agree-
ment with radiologists’ BI-RADS density interpreta-
tions is rather limiting since the rigid BI-RADS density 
categories do not capture finer density variations that 
may be important when refining breast cancer risk [21]. 
Moreover, radiologists’ BI-RADS density assessments 
reflect both the risk of developing breast cancer and the 
risk of masking in a single density evaluation when these 
components are two different tasks. Therefore, a key task 
for AI is to provide quantitative continuous measure-
ments of breast density, to predict breast cancer risk, 
and to estimate the potential for masking of cancers due 
to areas of increased density [36–39] (Table  1). In one 
of the earliest AI studies in mammographic screening, 
Kallenberg et al. [36] introduced a DL method that first 
learned a feature hierarchy from unlabeled data and then 
used a classifier to estimate area percent density (APD) 
from raw FFDM images. The results of this study show-
cased high agreement between DL-based and manual 

Fig. 2  AI-based BI-RADS density classification. A A visual display of the range of BI-RADS density classifications for AI models trained with different 
architectures and training parameters for 50 patients in the testing set. The radiologist interpretation is displayed in the first row. The average breast 
density rating across all models and radiologist interpretations is displayed in the last row and was used to order the patients from least dense (left) 
to most dense (right). B The distribution of predicted breast density labels in the testing set differed for experiments with random class sampling 
(left) compared with equal class sampling (right) at each minibatch. ****P < .001. E. dense = extremely dense; H. dense = heterogeneously dense 
[30]. [Reprinted with permission from Elsevier (License Number: 5138920035119)]
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dense tissue segmentations (Dice score, DSC = 63%), 
while in a case–control evaluation setting, the DL-based 
PD scores yielded an AUC of 0.59, which is competitive 
with reported AUCs from the literature on similar popu-
lations. In another study, Li et al. [37] proposed a super-
vised CNN approach to calculate APD from raw FFDM 
images. The proposed model achieved a Dice score of 
DSC = 76% for dense tissue segmentation and outper-
formed a traditional radiomic AI approach (DSC = 62%). 
Recently, “Deep-LIBRA,” built from a racially diverse 
set of cohorts from two clinical sites, was proposed as 
an AI-enabled method for estimating APD from raw 
FFDM images [38]. Deep-LIBRA demonstrated a mean 
Dice score of DSC = 92.5% for breast segmentation and a 
mean APD difference of 4.6% with respect to “gold-stand-
ard” human-rated Cumulus APD values. Moreover, in an 
independent blinded case–control evaluation [38], Deep-
LIBRA yielded a higher case–control discrimination per-
formance (area under the ROC curve, AUC = 0.61) than 
four other widely-used research and commercial breast 
density assessment methods (AUCs = 0.53–0.60). Besides 
providing continuous quantitative breast density meas-
urements, the aforementioned AI methods also have 
the unique advantage of generating spatial density maps 
(Fig.  3). Such maps offer valuable insights about breast 
regions associated with limited mammographic sensitiv-
ity due to tumor masking.

As of now, breast density evaluation from 3D recon-
structed image volumes has only been explored via tra-
ditional radiomic AI techniques [40] and no DL models 
have been extended to 3D DBT images. Moreover, with 
a few exceptions [26, 30, 38], most DL models have 
been developed using racially homogeneous datasets of 

FFDM images from a single vendor acquired at a single 
site, which may limit their ability to generalize to diverse 
breast cancer screening populations.

AI developments in direct breast cancer risk assessment 
with mammographic images
Among the first to explore the potential of DL in breast 
cancer risk assessment, Kallenberg et  al. [36] imple-
mented a convolutional sparse autoencoder, which 
learned a hierarchy of increasingly abstract features from 
unlabeled data, as well as a simple classifier, which asso-
ciated the learned features with breast cancer. Trained 
and tested on contralateral mammographic images 
of patients with unilateral breast cancer and matched 
healthy controls from two different databases, their 
method demonstrated promising case–control classifica-
tion performance (AUC = 0.61 and AUC = 0.57, respec-
tively). Another methodology was presented by Li et  al. 
[41], where a pre-trained AlexNet model and feature 
extractor were applied to a set of FFDM images from two 
high-risk groups, i.e., BRCA1/2 gene-mutation carriers 
and unilateral cancer patients, as well as from healthy 
controls. Using a simple classifier, the authors showed 
that without any further fine tuning on mammographic 
images, the features from the first fully connected layer 
of the model could effectively discriminate healthy 
controls from both high-risk groups (AUC = 0.83 and 
AUC = 0.82 for BRCA1/2 gene-mutation carriers and 
unilateral breast cancer patients, respectively). Moreover, 
Gastounioti et al. [42] proposed a hybrid computational 
approach that employs CNNs to optimally fuse paren-
chymal complexity measurements generated by radiomic 
analysis into discriminative meta-features relevant for 
breast cancer risk prediction. Using a matched case–con-
trol dataset, Gastounioti et  al. showed that CNNs can 
capture sparse, subtle, and relevant interactions between 
localized breast parenchymal patterns present in radi-
omic feature maps derived from mammographic images, 
thereby improving the breast cancer risk prediction of 
conventional parenchymal pattern analysis (AUC = 0.90 
vs AUC = 0.79, P < 0.05).

Additional studies [43–47] have focused on training 
DL models using large cross-sectional screening cohorts 
that represent the general screening population, with 
normal mammographic images acquired at least one year 
prior to the diagnosis of breast cancer or to negative (i.e., 
BIRADS 1 or 2) follow-up (Table 2). These study designs 
better conceptually reflect the task of breast cancer risk 
assessment, in the sense that clinically, one aims to iden-
tify high-risk women before an actual cancer is diagnosed 
(Fig. 4). Moreover, in such a study design, it is important 
to use breast cancer cases and controls of the same age 
or report age-adjusted evaluation measures, otherwise 

Fig. 3  Example of AI-enabled density segmentation map from FFDM 
(estimated breast percent density, PD = 47%)
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inflated performance estimates of risk prediction may 
result. The presented models have demonstrated promis-
ing performances with AUCs ranging from 0.60 to 0.84, 
often outperforming state-of-the-art breast cancer risk 
models [43, 44]. For instance, Ha et al. [47] found that an 
FFDM-driven DL risk score had greater predictive poten-
tial than BI-RADS breast density (odds ratios of 4.4 ver-
sus 1.7, respectively). Dembrower et al. [43] reported that 
their FFDM-driven DL risk score outperformed auto-
mated breast density measurements (odds ratios of 1.6 
and 1.3, respectively). Last, Yala et al. [44] showed that a 
mammographic DL risk score outperformed the Tyrer-
Cuzick model, which is used in clinical practice (AUC of 
0.68 versus 0.62, respectively). Collectively, these studies 
provide preliminary evidence that FFDM-based DL mod-
els offer promise as more accurate predictors of breast 
cancer risk than density-based models and existing epi-
demiology-based models.

In parallel with studies on long-term risk assessment, 
research groups have also explored the potential of AI in 
identifying women who are likely to be diagnosed with a 

cancer that was missed, masked, or fast growing [48–51] 
(Table 2). Eriksson et al. [49] developed a risk model that 
incorporates age, automated breast density, mammo-
graphic features (i.e., suspicious microcalcifications and 
masses) and bilateral parenchymal pattern differences 
detected by a DL-based commercial software. Lotter 
et al. [48] followed an annotation-efficient DL approach 
to develop a breast cancer detection model that can be 
applied to FFDM images as well as to 2D maximum sus-
picion projection (MSP) images generated from DBT 
reconstructed slices. McKinney et  al. [50] designed an 
ensemble of three DL models, each operating on a differ-
ent level of analysis (individual lesions, individual breasts 
and patient level) to produce a cancer risk score. Trained 
on large sets of mammographic images acquired around 
the time of breast cancer diagnosis or between subse-
quent screening exams, all three AI systems demon-
strated promising predictive performance in short-term 
breast cancer risk assessment (AUC = 0.73–0.79).

Further research on decoupling inherent risk from 
early cancer signs and cancer masking [52], and assessing 

Table 2  Representative studies in AI-enabled direct breast risk assessment from mammographic images

The table describes the development image dataset used in each study, including format of mammographic images, time window from mammographic exam to 
breast cancer diagnosis, sample size, and vendors, as well as model architecture and performance in breast cancer risk assessment

FFDM full-field digital mammography, CNN convolutional neural network, AUC​ area under the ROC curve, Acc accuracy, OR odds ratio, HR hazard ratio

*Indicates publicly available AI model. **Indicates commercial model. N/R not explicitly reported in the paper

Study Image format Time from exam 
to breast cancer 
diagnosis

# images (# 
women)

Vendors (# sites) Model 
architecture

Model performance

Long-term risk assessment

Yala et al. [46] FFDM (processed) 1–5 years 295,002 images 
(91,520 women)

Hologic (3 sites) ResNet-18* AUC = 0.84, 1-year 
risk
AUC = 0.76, 5-year 
risk

Dembrower et al. 
[43]

FFDM (processed) 3.6 ± 2.2 years 150,502 images 
(1188 cases; 10,563 
controls)

Hologic (N/R) Inception-ResNet* OR = 1.55
ORadj = 1.56
AUC = 0.65

Arefan et al. [45] FFDM (processed) 1–4 years 452 images (113 
cases; 113 controls)

Hologic (1 site) GoogleLeNet AUC = 0.68, CC
AUC = 0.60, MLO

Yala et al. [44] FFDM (processed) 1–5 years 88,994 images 
(1821 cases; 38,284 
controls)

Hologic (1 site) ResNet-18* AUC = 0.68 for image 
only DL
AUC = 0.70 for hybrid 
DL + risk factors

Ha et al. [47] FFDM (processed) 2–5.3 years N/R (210 cases; 527 
controls)

GE (1 site) CNN OR = 4.42
Acc = 72%

Short-term risk assessment

Lotter et al. [48] FFDM (processed)
DBT (MSP)

1–2 years N/R (> 1000 cases; 
62 K controls)

GE, Hologic (7 
databases/sites)

RetinaNet* AUC = 0.75–0.76

Eriksson et al. [49] FFDM (processed) 3 months–2 years N/R (974 cases, 
9376 controls)

GE, Philips, Sectra, 
Hologic, Siemens 
(4 sites)

CNN** HR = 7.9
AUC = 0.73

McKinney et al. [50] FFDM (processed) 0 months–3.25 years N/R (> 105 k 
women)

Hologic, GE, Sie-
mens (4 sites)

RetinaNet
MobileNetV2
ResNet-v2-50
ResNet-v1-50

AUC = 0.76–0.89
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risk at various time points [46] is warranted, while also 
considering differences in screening intervals across dif-
ferent countries. Moreover, considering that a woman’s 
breast tissue changes over time and with various inter-
ventions (i.e., menopause, hormone replacement therapy, 
risk reduction surgery), developing methods that incor-
porate such sequential imaging data may further refine 
assessment of a woman’s individual risk over her lifetime 
of screening. Moreover, thus far, no DL models have been 
expanded for volumetric risk evaluation with DBT, which 
may yield further performance improvements.

Technical challenges unique to mammographic imaging
Despite its vast potential in breast cancer risk assess-
ment, AI is not a magic bullet and mammographic 
images present multiple technical challenges that go 
beyond fine-tuning the weights of a model. Most efforts 
to-date have focused on applying existing DL mod-
els to mammographic images rather than proposing 
new architectures specifically suited to this domain. 

However, developing a DL model for FFDM and DBT 
images requires more effort than just picking an “off-the-
shelf” model that has been developed for natural images 
and training it on a large dataset. First, mammographic 
images are of much higher dimensionality than are typi-
cal natural images. To attempt to overcome this limita-
tion, many research teams have heavily downscaled the 
original high-resolution mammographic image, e.g., from 
2600 × 2000 pixels to 224 × 224 or 512 × 512 pixels. This 
is a common, effective approach in DL models for natu-
ral images where the object of interest usually occupies 
a large fraction of the image and what matters most is its 
macro-structure, comprising features such as shape and 
color. However, downscaling a high-resolution mammo-
graphic image may considerably impact the performance 
of a DL model, particularly in breast cancer risk assess-
ment where subtle parenchymal patterns or microcalci-
fications associated with breast cancer risk may be lost 
[53]. Furthermore, mammographic imaging consists of 
two views for each breast: the CC view and the MLO 
view. In practice, radiologists usually consider a pattern 
more plausible if it is visible in both views. However, little 
attention has been devoted to this view-to-view correla-
tion in DL approaches to breast cancer risk assessment 
[50, 53].

Additionally, DL models must be robust to the vari-
ation in mammographic images obtained by different 
technicians, vendors, and units. Normalizing mammo-
graphic images from different vendors is challenging 
because each vendor has its own proprietary post-pro-
cessing software to make the FFDM images ready for 
presentation as well as in methods of reconstructing the 
individual DBT slices, especially since raw image data is 
not routinely stored. Considering that vendor-specific 
software is updated frequently, and image acquisition 
settings can change, the robustness of a DL model faces 
significant challenges. Consequently, harmonization and 
quality assurance of mammographic images are critical 
tasks that could potentially also be solved with AI tech-
niques [54].

Despite the similarities between FFDM and DBT in 
terms of image acquisition [2], DBT poses more techni-
cal challenges compared to FFDM, particularly when 
it comes to simultaneously processing the numerous 
reconstructed DBT slices via 3D DL models. Recon-
structed DBT volumes face two additional challenges, 
namely anisotropic voxels and a non-fixed number of 
slices that depend on compressed breast thickness (e.g., 
45–90 slices with 0.09 × 0.09 × 1 mm resolution for Hol-
ogic DBT exams) and even overlap. Directly applying 
3D convolutions to such images is challenging since it is 
hard for isotropic kernels to learn useful features from 
the anisotropic voxels and the capability of 3D networks 

Fig. 4  Use of the four standard mammographic views in long-term 
risk assessment via artificial intelligence [46]. [Reprinted with 
permission from The American Association for the Advancement of 
Science (License Number: 5138920821187)]
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is bounded by the GPU memory. Furthermore, due to 
a lack of large 3D image datasets, 3D DL models usu-
ally need to be trained from scratch, which can lead to 
unstable convergence and poor generalization issues. 
Therefore, extensive work is needed to develop DL archi-
tectures which are suitable for DBT, as well as to deter-
mine whether the knowledge, training data, and models 
developed for FFDM can be applied to DBT [26].

Will AI tip the balance in breast cancer risk assessment?
This research field continues to rapidly evolve, and more 
mammography-based AI studies are being performed in 
breast cancer risk assessment. Such studies encompass 
different image data formats, DL model architectures, 
dataset sizes, and screening population characteristics; 
most interestingly, they have reported varying degrees of 
performance (Tables 1, 2). This large variability may raise 
concerns about the clinical applicability of AI-generated 
breast cancer risk scores and challenge our trust in them, 
especially when DL models lack the ability to explain 
the cause of their decisions [55]. However, when proper 
methodology has been employed, AI has demonstrated 
promising results and great potential to generalize across 
different datasets, rivaling and often improving on the 
performance of radiologists. Moving forward, we identify 
(a) reproducibility, (b) interpretability and (c) generaliz-
ability as three key priorities for AI in breast cancer risk 
assessment, with the goal of accelerating the translation 
of individualized AI-assisted risk stratification into rou-
tine breast cancer screening strategies.

Benchmarking efforts allowing the evaluation of the 
relative performance of different AI implementations 
for breast cancer risk assessment on the same datasets 
are essential to develop more robust and reproducible 
mammographic phenotypes of breast cancer risk. Cur-
rently, there are various publicly available FFDM data-
bases for breast cancer detection (e.g., MIAS, DDSM 
and INbreast). Moreover, the “Digital Mammography 
DREAM Challenge” [56] and the “DBTex Challenge” [57] 
are important initiatives focusing on AI developments 
for breast cancer detection with FFDM and DBT images, 
respectively, with participation from several research 
teams around the world. These resources can also be use-
ful in breast cancer risk assessment since using contralat-
eral mammograms of patients with breast cancer is a 
common first-step in developing various mammographic 
phenotypes of breast cancer risk. This approach is based 
on the premise that a woman’s breasts—both affected 
and contralateral—share inherent breast tissue properties 
that predispose the woman to a certain risk of developing 
breast cancer [7]. However, public databases and bench-
marking efforts with diverse FFDM and DBT data sets 
including imaging from years prior to a cancer diagnosis 

are needed [58, 59]. Moreover, numerous platforms are 
currently available to support comparative studies in AI 
research, including sharing code for training and evalu-
ating a DL model (e.g., Bitbucket, GitHub and GitLab) 
as well as sharing DL models themselves, i.e. DL imple-
mentation along with learned weights (e.g., TensorFlow 
Hub and ModelHub.ai). In addition to improving repro-
ducibility, such initiatives can significantly enhance the 
transparency and therefore, the trust, in AI algorithms, 
accelerating their transition into clinical implementation.

Interpretability is also key to advance AI applications 
in breast cancer risk assessment. DL models can only be 
debugged, audited, and verified when they can be inter-
preted. As such, interpretability is key to understanding 
the cause of an erroneous error or ensuring that causal 
relationships are picked up in a correct decision. A DL 
model that can sufficiently explain its decisions will not 
only gain users’ trust but will also identify data that is 
mislabeled or contains inconsistencies across institu-
tions. This transparency and interpretability will facilitate 
improvements in quality control over training data. Inter-
pretability methods may even serve as valuable discov-
ery tools that identify new patterns and interactions in 
data. While so far, AI interpretability has focused mostly 
on image regions that drive the model’s decisions (com-
monly referred to as saliency maps), the set of available 
interpretability approaches is rapidly growing, offering 
unique opportunities for AI applications in mammo-
graphic images [60]. Even so, given the technical chal-
lenges of FFDM and DBT, adaptation of these methods 
to mammographic images will be methodologically chal-
lenging and will likely evolve into a whole new research 
field.

Another challenging step in establishing the role of 
AI in breast cancer risk assessment is validating that DL 
models generalize well to heterogeneous datasets [61, 
62]. Therefore, large retrospective studies that include 
racially diverse breast cancer screening populations, dif-
ferent mammographic imaging machines, and various 
image acquisition settings are essential. Furthermore, 
while evaluation on retrospective datasets provides a 
“snapshot” of possible performance, the nuances of medi-
cal pathways cannot be underestimated. Therefore, in 
addition to large retrospective studies, prospective vali-
dation studies in real-time are essential to fully appreci-
ate the performance of stand-alone AI applications, the 
influence of AI on radiologists’ performance, and the 
complex interaction between the two.

Finally, practical considerations related to clinical 
adoption of AI (e.g., IT infrastructure, upskilling of 
healthcare workforce, technical integration into clinical 
workflow, and radiologists’ engagement with AI), cost-
effectiveness, and various ethical and legal dilemmas 
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must be addressed before AI becomes common place 
in breast cancer risk assessment [13, 63]. In particu-
lar, the potential of AI to increase racial disparities in 
breast cancer screening must be carefully considered. 
Because it relies on retrospective screening data that 
often underrepresents certain minority groups and 
may contain biases, AI can could potentially exagger-
ate existing disparities for racial groups that already 
bear a high disease burden. Simultaneously, AI mod-
els may be less accessible to underrepresented groups, 
due to high cost, lack of insurance coverage, or limited 
availability (for example, in community sites versus 
academic tertiary care facilities). However, by carefully 
selecting underlying data and strategically deploying AI 
models within appropriate regulatory frameworks, AI 
risk models have the potential to help mitigate some 
racial disparities by offering equally accurate person-
alized breast cancer screening recommendations for 
all women and by reducing the number of cancers that 
are diagnosed at a later stage in some underrepresented 
groups.

Conclusion
The rise and dissemination of AI in breast cancer screen-
ing is poised to improve breast cancer risk assessment 
and enable personalized screening recommendations. 
However, many technical challenges related to inher-
ent properties of mammographic imaging are yet to be 
addressed, especially as AI developments transition to 
digital breast tomosynthesis. Furthermore, to accelerate 
the validation of AI breast cancer risk models and their 
transition into clinical implementation, it is paramount 
to enhance their reproducibility, interpretability, and 
robustness using large, heterogeneous datasets. With 
creative AI solutions to improve accuracy, validate per-
formance, and cultivate trust in decision-making, AI will 
transform how breast cancer screening is performed.
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