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Background: RNA modification is one of the epigenetic mechanisms that

regulates post-transcriptional gene expression, and abnormal RNA

modifications have been reported to play important roles in tumorigenesis.

N7-methylguanosine (m7G) is an essential modification at the 5′ cap of human

mRNA. However, a systematic and pan-cancer analysis of the clinical relevance

of m7G related regulatory genes is still lacking.

Methods:We used univariate Coxmodel and Kaplan-Meier analysis to generate

the forest plot of OS, PFI, DSS and identified the correlation between the altered

expression of m7G regulators and patient survival in 33 cancer types from the

TCGA and GTEx databases. Then, the “estimate” R-package, ssGSEA and

CIBERSORT were used to depict the pan-cancer immune landscape.

Through Spearman’s correlation test, we analyzed the correlation between

m7G regulators and the tumor microenvironment (TME), immune subtype, and

drug sensitivity of the tumors, which was further validated in NSCLC. We also

assessed the changes in the expression of m7G related regulatory genes in

NSCLC with regards to the genetic and transcriptional aspects and evaluated

the correlation of METTL1 and WDR4 expression with TMB, MSI and

immunotherapy in pan-cancer.

Results: High expression of most of the m7G regulators was significantly

associated with worse prognosis. Correlation analyses revealed that the

expression of majority of the m7G regulators was correlated with tumor

immune infiltration and tumor stem cell scores. Drug sensitivity analysis

showed that the expression of CYFP1,2 was closely related to drug sensitivity

for various anticancer agents (p < 0.001). Analysis of the pan-cancer immune

subtype revealed significant differences in the expression of m7G regulators

between different immune subtypes (p < 0.001). Additionally, the types and

proportions of mutations in METTL1 and WDR4 and their relevance to

immunotherapy were further described.
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Conclusion: Our study is the first to evaluate the correlation between the

altered expression of m7G regulators and patient survival, the degree of

immune infiltration, TME and drug sensitivity in pan-cancer datasets.

KEYWORDS

pan-cancer analysis, m7G regulators, tumor microenevironment, survival, immune
score, drug sensitivity

Background

Similar to the epigenetic code formed by DNA and histone

modifications, post-transcriptional modifications in RNA

profoundly affect cellular functions and fate, often termed as

“RNA epigenetics” or “epitranscriptome,” and have attracted

wide attention in recent years (He, 2010). There are over

150 known RNA modifications, which include N6-

methyladenosine (m6A), N7-methylguanosine (m7G), 5-

methylcytidine (m5C), pseudouridine (Ψ), N6,2′-O-
dimethyladenosine (m6Am), N1-methyladenosine (m1A),

alternative polyadenylation (APA), 2′-O-methylated

nucleotides (Nm), N4-acetylcytidine (ac4C), adenosine-to-

inosine RNA editing (I), and cytidine-to-uridine RNA editing

(U), all of which contribute to normal development and

homeostasis and their dysregulation is known to cause various

diseases including cancer (Boccaletto et al., 2022; Zhao et al.,

2017b; Frye et al., 2018; Roundtree et al., 2017; Barbieri et al.,

2017; Barbieri and Kouzarides, 2020). Previous studies have

focused more on m6A, one of the most common modified

forms in eukaryotic cells, which have been demonstrated to

play a role in embryogenesis, neurogenesis, hematopoiesis,

and tumorigenesis in some studies (Zhao et al., 2017a; Zhang

et al., 2017; Barbieri et al., 2017; Xu et al., 2021a). However, in

recent years, modifications in non-m6A forms have also attracted

increasing attention. For example, Xu et al. (2021b) investigated

the potential relationship between regulators of non-m6a RNA

modification and the clinical characteristics, TME status and

GBM subtypes, and identified that three non-m6a RNA

modification patterns were associated with distinct biological

pathways and clinical characteristics.

m7G is widespread in numerous RNA cap structures as well

as in tRNA, rRNA, mRNA and miRNA, is known to affect all the

stages of RNA processing including splicing, export, decay, and

controls the mRNA translation (Galloway and Cowling, 2019;

Enroth et al., 2019; Zhang et al., 2019a; Malbec et al., 2019;

Pandolfini et al., 2019). m7G modification processes are

evolutionarily conserved, which are necessary for normal

development (Malbec et al., 2019). Recently, a growing

number of studies have implicated an important role of m7G-

related regulators in the onset and progression of a variety of

cancers, which were reported to be closely associated with patient

prognosis. For example, METTL1 mediates m7G modification

on tRNA, drives oncogene transformation and tumor formation

by upregulating the translation of specific mRNAs such as

growth-promoting proteins (Orellana et al., 2021). EIF3D is a

subunit of the EIF3 complex with Cap-binding activity (Lee et al.,

2016). EIF3D is elevated in gallbladder cancer (GBC) and

promotes the proliferation and migration of malignant tumor

cells (Zhang et al., 2021). Currently, lung cancer is one of the

most prevalent malignancies worldwide and the leading cause of

cancer-related death (Sung et al., 2021; Siegel et al., 2022). Recent

studies reporting the targeting of specific m7G-related regulators

have shown that m7G and lung cancer were closely related.

METTL1-WDR4 mediates tRNA modifications and tRNA-

decoded codon usage, which promotes mRNA translation

leading to the proliferation and invasion of lung cancer cells.

Furthermore, the WDR4/PML axis is also overactive in lung

cancer and promotes tumor progression in the

immunosuppressive and pre-metastatic microenvironment

(Ma et al., 2021; Wang et al., 2017). EIF4G1, a scaffolding

protein that anchors eIF4E, eIF4A1, the eIF3 complex, etc., is

selectively upregulated in tumors, which is associated with

enhanced Cap-independent initiation, especially in LUAD.

The dramatically elevated expression of EIF4G1 also positively

correlates with the expression of different cell cycle-related

proteins (Wu and Wagner, 2021).

In this study, we analyzed the m7G-related regulators in pan-

cancer datasets, and further evaluated the correlation of the

differentially expressed m7G-related regulators with patient

survival. Next, we specifically mapped the immune landscape

in each cancer and analyzed the correlation between the

differentially expressed m7G regulators and the TME across

different cancers and drug sensitivity. Our findings may

provide further direction for future studies exploring novel

mechanisms and therapeutic targets in cancer.

Methods

Data sources and pre-processing

The normal tissue samples from genotype tissue expression

(GTEx) and TCGA-GDC pan-cancer data including the

transcriptional data (FKPM values) from 33 cancer types,

immunophenotype data, stemness scores (calculated by DNA

methylation and RNA expression, respectively), clinical

variables, and genetic and transcriptional changes in the

m7G-related genes were downloaded from UCSC Xena

(https://xenabrowser.net/). The transcriptional data were
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recalculated with a unifying pipeline. Abbreviations for the

different types of cancer are listed in Supplementary Table S1.

Five m7G regulator gene sets were obtained from the GSEA’s

MSigDB Home database (http://www.gsea-msigdb.org/gsea/

index.jsp) as shown in Supplementary Table S2. The

transcriptional and clinical data from GSE78220 (Hugo et al.,

2016) based on the GPL11154 platform for pre-treated

melanoma patients was obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). The IMvigor210 trial is a

single-arm phase II study of atezolizumab in patients with

metastatic urothelial carcinoma (Mariathasan et al., 2018),

data from the IMvigor210 trial were obtained using the

IMvigor210CoreBiologies R package (http://research-pub.gene.

com/IMvigor210CoreBiologies/). We also used http://cis.hku.hk/

TISIDB/ (Ru et al., 2019) to analyze the correlation between the

expression of METTL1 and WDR4 and the expression of

immunoinhibitors across pan-cancer.

Gene expression and drug sensitivity
analysis

The gene symbol of transcriptional data was obtained from

Ensembl (https://asia.ensembl.org/index.html). Based on

previous studies, we selected 28 cancer types that had more

than five contiguous normal specimens (after merging with

GTEx) among the 33 cancer types in further comparative

analysis (Yu et al., 2020; Zhang et al., 2020a). The “corrplot”

R package was used to analyze the correlation between the m6A

regulators and m7G regulators. The R-package “limma,”

“ggplot2,” and “reshape2” were used to investigate the

correlation between the m7G regulators and the immune

subtypes. The immune score, stromal score, and estimate

score of pan-cancers were generated using the “estimate”

R-package. The gene expression and drug sensitivity data were

obtained from the CellMiner database (https://discover.nci.nih.

gov/cellminer/home.do) and were filtered by clinical trials or

FDA approved standards. p-value < 0.05 was considered as

statistically significant.

Survival analyses

The prognosis for overall survival (OS), progression-free

interval (PFI) and disease-specific survival (DSS) of pan-

cancer patients were compared with the expression level of

m7G-related genes. Kaplan–Meier curves were generated to

display the differences in the OS of patients. The univariate

Cox proportional hazards regression models’ analyses were

obtained for different samples from each type of cancer by

“survival” and “survminer” R package.

Correlation of ssGSEA score with the
proportions of immune cell subsets in
pan-cancer

We first quantified the level of enrichment of m7g-related

genes in each sample by scoring with single-sample gene-set

enrichment analysis (ssGSEA) (Shen et al., 2019). The

proportions of 22 human immune cell subsets were

calculated by CIBERSORT (Newman et al., 2015). The

ssGSEA score and immune cell proportions were used to

evaluate the correlation between the activity of m7g-related

genes and the immune cell infiltration level in pan-cancer

dataset, and the “limma” R-package was used to construct the

corresponding heatmap.

Mutation and microsatellite instability
analysis

The alteration in the expression of METTL1 and WDR4 in

the TCGA pan-cancer database was examined using the

cBioportal database (https://www.cbioportal.org/). The

“maftools” R package was employed to generate the pan-

cancer mutation annotation format for the data downloaded

from the UCSC Xena. The tumor mutation burden (TMB) score

for each patient within pan-cancer was calculated and analyzed

for its correlation with METTL1 and WDR4 expression,

respectively. Mutation and microsatellite instability analysis

(MSI) is characterized by a wide range of microsatellite

sequence polymorphisms due to mutations in DNA

polymerase, which is used as an indicator of genetic instability

for cancer detection (Li et al., 2020). The MSI score of METTL1

and WDR4 for each patient within pan-cancer was also

investigated in the same way as the TMB score.

Statistical analyses

The mixed-effects linear models were used to compare the

gene expression between the pan-cancer samples and their

adjacent normal samples. The heatmap was created to

visualize the differential gene expression between the tumor

and normal tissues across all cancer types, while box plots were

used to show the gene expression in each cancer type.

Spearman correlation was used to perform the correlation

analysis included in this study. Wilcox test or Kruskal-Wallis

test was used to compare the different groups depending on

the number of comparisons. All statistical analyses were

performed using the R version 4.1.3 and all the reported

p-values were two-tailed and p < 0.05 was considered as

statistically significant.
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FIGURE 1
Box plot and heat map of the differential expression of 41 m7G regulators in 18 cancer types. (A) Box plot showing the expression of 41 m7G
regulators in 18 TCGA cancer tissues. (B) Heat map showing the differential expression of 31 m7G regulators across 18 cancer types.
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Results

Acquisition of M7G-related regulatory
gene listing and expression in 33 TCGA
pan-cancers

We obtained 41 m7G-related regulatory genes by

searching GSEA’s MSigDB Home database and classified

them into three classes based on their molecular function

and biological process: N7 methylation (WDR4, BUD23,

METTL1, TRMT112, RAMAC, RNMT); CAP-dependent

translational initiation (Lin et al., 2007; Van Der Kelen

et al., 2009) (EIF4G1, NCK1, MIF4GD, SLBP, EIF3D); and

CAP formation genes (SNUPN, EIF4A1, EIF4E, NCBP2,

CYFIP1, LARP1, IFIT5, EIF4E1B, GEMIN5, CYFIP2, AGO2,

LSM1, DCPS, EIF4E3, NCBP2L, NCBP1, NCBP3, EIF3D,

EIF4G3, EIF4E2, DCP2, NUDT1, NUDT10, NUDT11,

NUDT16, NUDT16L1, NUDT3, NUDT4, NUDT4B, NUDT5,

NUDT7), respectively. After analyzing the differential

expression of 41 genes in 33 tumors and their matched

normal tissues, 10 genes (EIF4A1, EIF4E, EIF4E1B, EIF4E3,

NCBP2L, NUDT10, NUDT11, NUDT3, NUDT4B, NUDT7)

with no significant difference in their expression

(logFC absolute value <2) were eliminated. The remaining

31 genes were subjected to further pan-cancer analyses

(Figure 1A).

The m7G related gene expression levels in pan-caner and

normal samples were mapped in Figure 1B; Supplementary

Figure S1. Most of the m7G regulators had a significantly

higher expression in the tumor samples than the normal

tissues, especially the N7 methylation genes.

Correspondingly, there were some genes that were part of

the CAP formation genes, such as NCBP3, NUDT4, CYFIP2,

SNUPN, and EIF4E2, which were weakly expressed in most

tumor tissues and highly expressed in normal tissues

(Figure 1B; Supplementary Figure S1). Moreover, the

expression of most of the CAP-dependent translational

initiation genes was significantly increased in the tumor cells.

FIGURE 2
Forest map and survival analysis of m7G regulators in multiple cancers. (A) The forest map showing the overall survival risk ratio of 31 m6A-
related genes across 33 TCGA cancer types. (B) Analysis of the correlation of m7G-related regulators with OS across multiple cancer types. (C)
Analysis of the correlation of m7G-related regulators with PFI across multiple cancer types (*p < 0.05,**p < 0.01, and ***p < 0.001).
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Pan-cancer survival analysis of m7G-
related regulators

Previous studies have reported that m7G-related regulators, in

particular,METTL1 andWDR4, were associatedwith the prognosis of

cancer patients (Tian et al., 2019; Zeng et al., 2021). However, only a

few studies evaluated the influence of otherm7G regulators on patient

prognosis. For survival analysis, all 33 cancer types were tested with

univariate Cox proportional hazards regressionmodels, and p-value<
0.05 was considered as a statistically significant association. As shown

in Figure 2A,WDR4,NUDT1, BUD23were high-risk factors inKIRC,

LICH, GBM, and LGG patients. However, they were found to be low-

risk factors in BLCA and DLBC patients. Kaplan-Meier survival

curves showing the correlation between the 31 genes in the 33 cancers

and OS, PFI and DSS are presented in Supplementary Figure S3. The

results showed that the expression of the same gene in the same cancer

did not result in significant differences in their OS,DSS, and PFI. Each

m7G regulator was significantly associated with patient prognosis

across multiple cancer types, and overall survival as the best indicator

of endpoint could precisely differentiate the two risk groups. As

shown in Figure 2, a general pattern was observed, wherein the

elevated expression of amajority of them7G regulators was associated

with poorer survival and vice versa. For example,METTL1was highly

expressed in most tumor tissues (Supplementary Figure S1), and a

FIGURE 3
Correlation analysis between the expression of m7G-related regulators and the pan-cancer immunemicroenvironment with further analysis of
m6A. (A) Correlation between the expression of 31 m7G methylation regulators and the immune score. (B) Correlation between the expression of
31 m7Gmethylation regulators and the stromal cell score. (C)Correlation between the enrichment level of m7G regulators (m7G geneset score) and
tumor-associated immune cells in different cancers calculated by CIBERSORT. (D) Correlation between the expression of 31 m7G regulators
and RNAss. (E)Correlation between the expression of 31m7G regulators andDNAss. (F) The blue and red dots indicate that the expression of them7G
methylation regulators is positive and negative in relation to m6A methylation regulators, respectively. (G) The expression of m7G regulators within
different immune infiltrate subtypes across all cancer types. The expression of m7G regulators within different immune infiltrate subtypes across all
cancer types.
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univariate Cox analysis showed that the high expression ofMETTL1

was significantly associated with poor survival in cancer patients

(Figure 2). Kaplan-Meier analysis in KIRC,MESO, and LGG patients

clearly showed that increased expression ofMETTL1was significantly

associated with a shorter OS, PFI and DSS (Figures 2B,C). However,

the expression of CYFIP2, IFIT5, and NUDT4 were negatively

correlated with the prognosis of most cancer patients (Figure 2).

The low expression of CYFIP2 was associated with a significantly

worse prognosis in KIRC, PAAD, and THYM patients (p < 0.001)

(Figures 2B,C). The low expression of IFIT5 was significantly

associated with a poor prognosis in LGG, MESO, and SKCM

patients (p < 0.001) (Figures 2B,C). Finally, the low expression of

NUDT4 was significantly associated with a worse prognosis in ACC,

KIRC, and COAD patients (p < 0.001) (Figures 2B,C).

Mapping the correlation between m7G-
associated regulators and the tumor
immune landscape and analysis of the
tumor microenvironment in pan-cancer

As we can see from Figures 3A,B, the expression levels of

most of the m7G regulators were negatively correlated with the

immune score, stromal cell score and ESTIMATE score. For

example, the expression of AGO2 gene was significantly

negatively correlated with the immune score in SARC,

implying that increased expression of AGO2 resulted in

lower immune cell infiltration in SARC patients. However,

the expression of IFIT5 and NCK1 were positively correlated

with the immune score in most cancers. To explore the

relationship between changes in the overall levels of m7G

regulators and the tumor immune landscape, we used the

ssGSEA score to quantify the activity or enrichment levels of

the 31 m7g-related genes in the cancer samples

(Supplementary Table S3) and calculated the correlation

between ssGSEA score and the tumor immune infiltration.

As shown in Figure 3C, m7G-related genes were correlated to

tumor-associated immune cell infiltration in different cancers,

and had cancer species specificity. Among them, the Mast cells

resting, Macrophages M2, Dendritic cells resting, T cells

CD4 memory resting, T cells CD8, Plasma cells, and B cells

naïve drew our attention, which were negatively correlated

with the enrichment levels of m7G-related genes in most

cancer types. Additionally, we found that the expression of

most of the m7G regulators were positively correlated with

RNAss (RNA methylation based stemness score) and DNAss

(DNA methylation based stemness score) in 33 TCGA cancer

types (Figures 3D,E). Then we explored the two groups (m6A

and m7G) of regulators using deconvolution algorithm and

found a positive correlation between them as shown in

Figure 3F. The m6A regulators were associated with the

degree of immune cell infiltration in several cancer types

(Li et al., 2021). We also found that the expression of the

m7G methyltransferase WDR4, was positively correlated with

the expression of some of the m6A methyltransferases such as

METTL13, WTAP, RBM15, and RBM15B. But another m7G

methyltransferase regulator TRMT112, was negatively

correlated with the expression of all m6A

methyltransferases. The correlation of the individual m7G

regulators is also shown in Figure 3F, where many of them

were positively correlated with each other. We found that

WDR4 expression was positively correlated with the

expression of most of the regulators except NUDT16L1,

NUDT16, NUDT4, CYFIP2, and IFIT5, suggesting its

important role in the formation of m7G formation relative

to METTL1. In addition, as shown in Figure 3G, the expression

of m7G-related genes in pan-cancer was significantly different

in immune subtypes C1 (wound healing), C2 (IFN-γ
dominant), C3 (inflammatory), C4 (lymphocyte depletion),

C5 (immune quiet) and C6 (TGF-β dominant) (p < 0.001).

Correlation analysis between the
expression of m7G regulators and drug
sensitivity

We analyzed the relationship between 31 regulatory m7G

genes and drug sensitivity using the Cellminer database, and the

top 25 drugs with significant correlation to their associated gene

expression are presented in Figure 4. Of these, 16 drugs were

significantly associated with the CYFIP gene family. CYFIP1

expression was negatively correlated with drug sensitivity

towards bendamustine, XK-469, etoposide, teniposide,

valrubicin, epirubicin, carmustine, BN-2629, imexon,

pipobroman, melphalan, and mitoxantrone. And the

expression of CYFIP2 was significantly positively correlated

with the sensitivity towards nelarabine, XK-469, batracylin,

and chelerythrine. The expression of DCP2 and NCK1 was

positively correlated with drug sensitivity to nelarabine, while

NUDT16 expression was negatively correlated with sensitivity to

nelarabine. Higher expression of EIF3D and SLBP was correlated

with greater drug sensitivity to hydroxyurea and amonafide,

respectively. Higher expression of METTL1 and WDR4 were

correlated with greater drug sensitivity to 5-fluoro-deoxy-Uri

and cladribine, respectively.

Mutation patterns associated with m7G
regulators and their clinical features in
NSCLC

The pooled analysis of the incidence of somatic mutations in

the above 31 m7G regulators showed a relatively high mutation

frequency in both the LUAD and LUSC cohorts. Among the

561 LUAD samples, 97 samples (17.29%) had mutations in the

m7G regulators (Figure 5A). Of these, EIF4G3 had the highest
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mutation frequency (3%), followed by LARP1 (2%), while the

three N7 methylation genes, namely BUD23, RAMAC, and

TRMT112, were not mutated. Among 491 LUSC samples,

83 samples (16.9%) had mutations in the m7G regulators

(Figure 5B). EIF4G3 also showed the highest mutation

frequency (2%), followed by GEMIN5 (2%). Similarly, in

LUAD, three m7G methyltransferase genes, namely BUD23,

RAMAC, and METTL1, had no mutations.

We then examined the somatic copy number changes and

found predominant copy number changes in all the 31 m7G

regulators. In the LUAD samples, copy number variants

(CNV) were generally elevated in AGO2, METTL1,

MIF4GD, NCK1, RAMAC, while it was generally lower in

CYFIP2, EIF4E2, DCP2, NUDT4, NCBP3 as shown in

Figure 5C. While in the LUSC samples, CNV was generally

elevated in EIF4G1, NCBP2, AGO2, LSM1, MIF4GD, and

decreased in EIF4G3, IFIT5, EIF4E2 as shown in Figure 5E.

Figures 5D,F shows the CNV changes in m7G regulators and

their position on the chromosomes in LUAD and LUSC

samples, respectively. Figure 5G shows the expression of

most of the m7G regulators except EIF4G3, GEMIN5,

LARP1, NUDT4, and RNMT, in different immune types C1

(wound healing), C3 (inflammation), C2 (IFN-gamma

dominant), C4 (lymphocyte depletion), and C6 (TGF-beta

dominant) in LUAD samples. Furthermore, the clinical

subgroup analysis in Supplementary Figure S4A showed

significant differences in the expression of CYFIP2, EIF3D,

DCP2, NUDT16, SLBP, and RNMT in pathologic T-stage

LUAD. The expression of METTL1, WDR4, NCBP3, DCP2,

NUDT1, EIF4G1, BUD23, and RNMT in LUAD was

significantly different in the pathological stage N. The

expression of EIF3D in LUAD was significantly different in

the pathological stage M0/M1. Figure 5H shows the expression

of m7G regulators in residues in the immune types C1 (wound

healing), C3 (inflammation) LUSC, excluding the eight genes,

namely, DCPS, GEMIN5, LARP1, NCBP1, SNUPN, NUDT16L,

NUDT4, and MIF4GD. Furthermore, the clinical subgroup

analysis displayed in Supplementary Figure S4B showed that

the expression of AGO2, CYFIP2, NUDT1, NUDT16, and

NUDT4 in LUSC was significantly different in the

FIGURE 4
Scatterplots showing the association between the expression of m7G regulators and drug sensitivity (Z-score from CellMiner interface) using
NCI-60 cell line data.
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FIGURE 5
Correlation analysis between the expression of 31 m7G regulators and clinical features in LUAD and LUSC. (A)Mutation frequencies of 31 m7G
regulators in 97 and 83 patients with LUAD. (B)Mutation frequencies of 31m7G regulators in 97 and 83 patients with LUSC from the TCGA cohort. (C)
Frequencies of CNV gain, loss, and non-CNV among m7G regulators in LUAD patients. (D) Chromosomal locations of CNV changes in m7G
regulators in LUAD patients. (E) Frequencies of CNV gain, loss, and non-CNV among m7G regulators in LUSC. (F) Chromosomal locations of
CNV changes inm7G regulators in LUSC patients. (G)Differences in the expression ofm7G regulators across different immune subtypes of LUAD. (H)
Differences in the expression ofm7G regulators across different immune subtypes of LUSC.
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pathologic T phase. The expression of CYFIP1, GEMIN5,

LARP1, NVBP1, NCBP3, NUDT16L1, and BUD23 in LUSC

was significantly different in the pathological stage N.

The expression of GEMIN5, DCP2, and RNMT in

LUSC was significantly different in the pathological stage

M0/M1.

Supplementary Figure S5A shows patients with high

expression of WDR4, BUD23, METTL1, TRMT112,

RAMAC, RNMT, EIF4G1, NCK1, MIF4GD, SLBP, EIF3D,

SNUPN, NCBP2, LARP1, IFIT5, GEMIN5, AGO2, LSM1,

DCPS, and NCBP1, with the exception of four negatively

correlated genes (CYFIP1, CYFIP2, DCP2, NUDT16) and

five unrelated genes (EIF4G3, IFIT5, NCBP3, NUDT16L1,

NUDT4, MIF4GD). METTL1, AGO2, EIF4G3, NCBP2,

NCBP3, NUDT1, NUDT16, NUDT4, NUDT5, EIF4G1,

SLBP, BUD23, TRMT112, RAMAC, and RNMT were

positively correlated with DNAss (p < 0, 05) in LUAD,

while the expression of CYFIP1, CYFIP2, EIF4E2,

GEMIN5, and IFIT5 in LUAD patients was negatively

correlated with their DNAss score (p < 0.05). As shown in

Supplementary Figure S5B, the expression of AGO2, WDR4,

BUD23, METTL1, TRMT112, RAMAC, RNMT, SLBP,

MIF4GD, EIF4G1, NUDT1, NUDT16L1, NUDT5, DCPS,

EIF3D, GEMIN5, LARP1, LSM1, NCBP1, NCBP2, and

SNUPN in LUSC patients was significantly positively

associated with the RNAss score in LUSC (p < 0.05), with

the exception of four negatively correlated genes (CYFIP2,

EIF4G3, IFIT5, NUDT4) and six uncorrelated genes

(CYFIP1, EIF4E2, NCBP3, DCP2, NUDT16, NCK1).

Expression of WDR4, BUD23, METTL1, TRMT112,

RAMAC, RNMT, AGO2, EIF3D, LSM1, NCBP2, NCBP3,

SNUPN, NUDT1, NUDT16L1, EIF4G1, and MIF4GD were

positively correlated with DNAss scores (p < 0.05) in LUSC,

while the expression of CYFIP2, IFIT5, LARP1, and

DCP2 were negatively correlated with the DNAss score in

LUSC patients (p < 0.05). The expression of CYFIP1,

CYFIP2, IFIT5, DCP2, NUDT4, and NCK1 in LUAD

patients correlated positively with LUAD

microenvironment scores (p < 0.05). However, the

expression of BUD23, METTL1, TRMT112, RAMAC,

SLBP, WDR4, DCPS, EIF3D, LARP1, LSM1, NCBP2,

NCBP3, SNUPN, NUDT1, NUDT16L1, NUDT5, and

EIF4G1 were negatively correlated with the micro-

environmental assessment scores in LUAD patients (p <
0.05) (Figure 5A). Expression of WDR4, BUD23,

METTL1, TRMT112, RAMAC, RNMT, SLBP, MIF4GD,

EIF4G1, NUDT5, NUDT16L1, NUDT1, SNUPN, NCBP1,

NCBP2, NCBP3, LSM1, GEMIN5, EIF3D, and AGO2 were

negatively associated with the microenvironment score (p <
0.05) in LUSC, while the expression of CYFIP2, EIF4E2,

IFIT5, DCP2, and NUDT4 were positively associated with

the immune score, stromal score and estimation score in the

LUSC samples (p < 0.05) (Supplementary Figure S5B).

METTL1 and WDR4 play a vital role in
tumorigenesis of pan-cancer

Using the cBioportal database, we examined the pan-cancer

changes in METTL1 and WDR4 in the TCGA database. As

shown in Figure 6A, the results reflected that the highest

frequency of change in METTL1 was approximately 18% in

sarcoma, while 5.5% in LUAD and 1% in LUSC. Among the

different types of genetic alterations, amplification was the most

common. Figure 6B shows that the highest alteration frequency

in WDR4 was in endometrial carcinoma of the uterine body,

about 4.9%, while it was 1.8% in LUAD and 1.82% in LUSC. Gene

mutation was the most common type of alteration. The TMB

radar plot ofMETTL1 in Figure 6C shows the significant positive

correlation of METTL1 mutations with STAD, PRAD, LUSC,

LUAD, LIHC, LGG, KIRC, KICH, HNSC, and BRCA, while there

was a significant negative correlation with THCA. TheMETTL1-

MSI radar plot in Figure 6D shows the significant positive

correlation of MSI with STAD, THCA, PRAD, MESO, KIRP,

KICH, HNSC, and BRCA, while there was a negative correlation

with THCA. The TMB radar plot of WDR4 in Figure 6E shows

significant positive correlation of WDR4 mutation with STAD,

PRAD, LUSC, LUAD, LIHC, LGG, KIRC, KICH, HNSC, and

BRCA, while there was a significant negative correlation with

THCA. TheWDR4-MSI radar plot in Figure 6F shows significant

positive correlations of MSI with UVM, STAD, THCA, SARC,

READ PRAD, MESO, KIRP, KICH, HNSC, DLBC, and BRCA,

while there was negative correlation with READ and COAD.

To investigate the relationship between METTL1/

WDR4 expression and immunotherapy response in pan-

cancer, we first explored the correlation between the

expression of METTL1 and WDR4 with the expression of

immunoinhibitors in the TISIDB database (Figures 6E,F).

CD274 programmed death protein ligand 1 (PD-L1, CD274,

B7-H1) has been shown to play a role in the regulation of

immune responses and peripheral tolerance, and play a

critical role in the induction and maintenance of tolerance to

autoimmunity (Fabrizio et al., 2018; Huang et al., 2021). As

shown in Figures 6E,F, the expression levels ofMETTL1, WDR4,

and CD274 was inconsistent across different tumors. METTL1

showed a negative correlation while WDR4 was more positively

correlated overall. We next chose the IMvigor210 and

GSE78220 cohort to explore the association of METTL1 and

WDR4 levels with the outcome of different immunotherapy. In

GSE78220, the clinical outcomes were divided into CR

(Complete response), PR (Partial response), and PD

(Progressive disease), and the expression level of WDR4 was

statistically significant in the different groups. A lower expression

level of WDR4 was associated with a positive immunotherapy

response (p = 0.026) in Figure 6G. However, in the clinical groups

in Imvigor, which were divided into the following four groups:

CR, PD, PR, and SD (Stable disease), a higher expression level of

METTL1 was associated with a positive immunotherapy
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FIGURE 6
Mutational landscape of METTL1 and WDR4 in cancer. (A) METTL1 mutation frequency in multiple TCGA pan-cancer studies according to the
cBioPortal database. (B) WDR4 mutation frequency in several TCGA pan-cancer studies according to the cBioPortal database. (C) Radar plot
visualizing the relationship between METTL1 expression and TMB. Radar plot visualizing the relationship between WDR4 expression and TMB. (D)
Radar plot visualizing the relationship between METTL1 expression and MSI. Radar chart visualizing the relationship betweenWDR4 expression
and MSI. (E) The relationship between METTL1 expression and immunoinhibitors in pan-cancer. (F) The relationship between WDR4 expression and
immunoinhibitors in pan-cancer. (G) The expression levels of METTL1 were significantly different in four groups of IMvigor rather than GSE78220. (H)
The expression levels of WDR4 were significantly different in three groups of GSE78220 rather than IMvigor.
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response (p = 0.077) in Figure 6H. These results were consistent

with the above findings.

Discussion

Previously, m7G was thought to be a representative of the

CAP structure at the 5′ end of most mammalian mRNAs,

which kept it stable during genetic inheritance (Furuichi,

2015). Our study evaluated the differential expression of the

m7G regulators and their association with the immune

landscape, including the TME, immune subtypes, and stem

cell scores in 33 cancer types from the TCGA pan-cancer

dataset. Then, the findings were validated in NSCLC. The

expression of the m7G regulators in the tumor and normal

tissues were significantly different as shown in Supplementary

Figure S1, which suggest the potential role of these

differentially expressed genes in tumorigenesis. Many CAP-

dependent translational initiation genes were associated with

transcription initiation of mRNA, which reflects the high

transcription requirements of tumor tissues.

m6A, a widely studied form of RNA methylation

modification, is essential for regulating RNA transcription,

processing and translation, which in turn affects cellular

metabolic activities. Different m6A modification patterns are

known to interact with the immune phenotypes of tumors,

including immune rejection, immune activation, and immune

inertness, thus, estimating the m6A pattern of a tumor might

enable the characterization of TME infiltration and provide

guidance for improved immunotherapy strategies (Du et al.,

2021; Zhang et al., 2020b). In the present study, we analyzed

the correlation between m6A and m7G regulators using a

deconvolution algorithm and found that most of the genes in

the two groups showed a positive correlation with each other.

This suggests that some common factors between the two groups

may work together in one pathway. For example, the altered

expression of TRMT112 could affect the tumor suppressive role

of WBSCR22 in pancreatic cancer (PC), leading to tumor

evolution (Khan et al., 2022). van Tran et al. (2019) identified

METTL5 as the enzyme responsible for 18S rRNA m6A

modification and showed that it formed a heterodimeric

complex with the known methyltransferase activator

TRMT112, in order to be metabolically stable in cells.

Therefore, we hypothesized that identifying and blocking

some common regulators in both the methylation

modification pathways might be more effective than

individually blocking some of the key genes.

We next examined the expression of m7G regulators in

different immune-infiltrating subtypes of TME and their

correlation with different immune subtypes. Specifically,

METTL1, WDR4, CYFIP2, NUDT5, EIF4G1, NCK1, MIF4GD,

SLBP, IFIT5, and NUDT1 were found to be significantly

associated with the immune subtypes (p ≤ 0.01). METTL1,

WDR4, EIF3D, and NUDT1 were found to be associated with

the more aggressive immune subtypes C1 and C2. However,

CYFIP1 was significantly associated with the C6 subtype. We

speculated that the increased expression of CYFIP1, METTL1,

WDR4, EIF3D, and NUDT1 predicted poor prognosis, and

CYFIP1 had stronger correlation to the TGF-β immune

signature, and higher lymphocytic infiltration than the other

regulators, with an even distribution of type I and type II T cells.

Moreover, NCBP3 showed increased expression in the immune

subtype C3, which indicated a better prognosis and longer

survival, suggesting that it may have an inhibitory role in

cancers. However, CYFIP2, EIF4G3, IFIT15, NCBP2, NUDT16,

NUDT4, and MIF4GD showed the highest expression in the

immunologically quiescent C5 subtype, which was associated

with a better prognosis.

The interaction between tumor cells and stromal

components forms a functionally complex TME (Schaaf et al.,

2018; Hinshaw and Shevde, 2019). Cancer-associated fibroblasts

(CAFs) are mainly distributed around blood vessels or in the

fibrous interstitium around tumors, and secrete cytokines, ECM

components and related enzyme molecules. CAFs expressing the

fibroblast activation protein induces a pro-inflammatory and

pro-angiogenic microenvironment, promotes proliferation and

increases stemness characteristics in a variety of cancer cells

(Mao et al., 2021; Peltier et al., 2022). There are a variety of

immune infiltrating cells in the TME, among which CD8+ or

cytotoxic T lymphocytes (CTL) play a tumor-killing function.

Wu et al. (2022) demonstrated that NELFB in CD8+ T

lymphocytes played an important role in antitumor immunity

associated with TCF1, promoting TCF1-bound transcriptional

enhancers and promoter chromatin accessibility. Generally, M1-

type macrophages play pro-inflammatory and anti-tumor

functions, but tumor-associated macrophages (TAMs) in the

TME are M2-type. Xu et al. (2021a) elucidated the

mechanism by which hypoxia and glioma affected autophagy

and M2-like macrophage polarization through exosomes,

thereby promoting the formation of an immunosuppressive

microenvironment.

According to the immune estimation algorithm, m7G

regulators also correlated differentially with immune cell

infiltration in the TCGA 33 Pan-cancer atlas. We found that

the m7G-related genes were mainly negatively correlated with

the stroma scores (Supplementary Figure S3), of which CAFs

were the major players. Since the expression of most of the m7G

regulators were negatively associated with immune scores in the

TCGA 33 Pan Cancer Atlas, we next investigated the correlation

between the overall expression level and immune cells. After

calculating the ssGSEA score representing the activity of

31 m7G-regulated genes in the pan-cancer cohort, we found

that the ssGSEA score was negatively correlated with higher

infiltration of some immune cells especially Mast cells, T cells

CD4 memory resting, T cells CD8 and B cells, these cell types

have been shown by multiple studies to hinder tumor
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progression and promote a hyperimmune state of the tumor

microenvironment and affect patient outcomes (Lichterman and

Reddy, 2021; Lohr et al., 2013; Zhang et al., 2019b; Fu and Jiang,

2018; Wouters and Nelson, 2018). These results suggested that in

future studies, one must consider linking changes in individual

genes and changes in overall regulatory genes to analyze the

possible effects of m7G methylation, which may lead to more

realistic results.

In general, we found that the m7G-related gene expressions

were correlated with the levels of immune or stromal infiltration,

tumor purity, and prognosis. A previous study reported that in

T cell acute lymphoblastic leukemia, the epigenetic loss of

NUDT16 mediated the activation of C-MYC and promoted

tumor progression (Anadon et al., 2017). Notably, certain

genes that were positively associated with immune infiltration

were also involved in tumor progression. For example, IFIT5 was

shown to promote tumor cell invasion andmigration by inducing

EMT and downregulating miR-99a in bladder cancer (Huang

et al., 2019). Therefore, the selection of specific genes as immune-

related markers with specific molecular functions should be

carried out and tested in tumor signaling pathways in order

not to isolate oneself from reality.

Cancer stem cells (CSC) promote cancer progression due to

their ability to self-renew and to invade and mediate therapeutic

resistance (Schonberg et al., 2014). The expression of most genes

was positively associated with both DNAss and RNAss scores.

But IFIT5 and CYFIP2 were significantly negatively correlated

with DNAss in some tumors. Moreover, the dysregulated

expression of m7G regulators were generally significantly

associated with OS, DSS and PFI in patients from the TCGA

dataset in this study (Supplementary Figure S3). Obviously, the

prognosis of patients with the same tumor correlated with the

expression of multiple regulators. The Cellminer drug sensitivity

analysis confirmed the significant correlation of almost all m7G

regulators with sensitivity towards several of the currently used

anti-cancer agents. CYFIP1 is one of the components of the

CYFIP1-EIF4E-FMR1 complex, which enables its binding to the

mRNA cap, mediating translational repression (Santini et al.,

2017). Elevated CYFIP1 expression is known to suppress the

drug sensitivity to bendamustine, XK-469, etoposide, teniposide,

valrubicin, epirubicin, imexon, pipobroman, melphalan, and

mitoxantrone. However, CYFIP1 expression has been

negatively correlated with patient prognosis in several cancer

types (KIRC, KIRP, UCEC), suggesting the tumor repressive role

of CYFIP1. Oguro-Ando et al. (2015) showed that the

overexpression of CYFIP1 in mammals dysregulated the

mTOR signaling pathway. After treatment with rapamycin,

the morphological abnormalities of neurons arising due to

CYFIP1 overexpression were rescued in mice. Quantitative

studies have shown that patients with renal tumors

(ccRCC) benefitted from treatment with mTOR inhibitors

such as everolimus and temsirolimus (Voss et al., 2014; Dong

et al., 2019). CYFIP1 overexpression may play an important role

in cancers with a predominantly altered mTOR signaling

pathway.

Recent studies have mainly focused on the METTL1 and

WDR4 complex, which are known to play important role in the

modification of tRNAs (Dai et al., 2021). METTL1 has been

reported to be highly expressed in a variety of cancers and was

associated with tumor initiation, metastasis and chemo-

sensitivity. Moreover, some studies have shown that

METTL1 was associated with the immunosuppressive tumor

microenvironment and stemness indices, and that its expression

reflected the sensitivity of immune checkpoint blockade (ICB)

therapy (Ma et al., 2021; Tian et al., 2019; Dai et al., 2021; Liu

et al., 2019; Gao et al., 2022). WDR4 is also involved in a variety

of cellular functions, including signal transduction, cell cycle

promotion, and apoptotic cell death process (Lin et al., 2018;

Michaud et al., 2000). Some studies showed that the aberrant

expression of WDR4 was observed in various malignant cancers

and was significantly associated with the overall survival

outcomes. The expression level of WDR4 is also strongly

associated with tumor immunity, such as immune scores and

tumor-infiltrating immune cells (Zeng et al., 2021). In our study,

we found that the expression levels of METTL1 and WDR4 were

correlated with immunoinhibitors in pan-cancer datasets. Using

data sets from previous studies (IMvigor210 and

GSE78220 cohort), we further verified that the expression

levels of METTL1 and WDR4 were related to the efficacy of

immunotherapy. TMB is a valid predictive marker for tumor

immunotherapy, effectively identifies and distinguishes

individuals that could benefit from immunotherapy (Chan

et al., 2019). Our TMB and MSI analyses for METTL1 and

WDR4 reflected the mutation frequency and proportion at the

molecular level in different tumors and showed the correlation

between mutation load and tumor progression. METTL1 could

serve as a predictive biomarker for immunotherapy efficacy in

BRCA, STAD, PRAD, and LUSC, while WDR4 had similar role

in BRCA, THYM, STAD, and LGG. High mutation rates of

METTL1 and WDR4 showed significant correlations in certain

tumors, and the combination of the two biomarkers could be

used to construct a precise model for predicting tumor

progression and response to immunotherapy in BRCA, STAD,

and LGG.

By examining the m7G regulators in NSCLC, we observed

that the expression of these genes varied in different immune

subtypes within the same cancer. Thus, we hypothesized that the

tumor suppressive or promoting role of these genes were

subtype-specific and subsequently confirmed it in further

clinical subgroup analyses. In our study, high expression of

WDR4, EIF4G1 and SLBP were significantly associated with a

poor OS (p < 0.001) and increased tumor stem cell score in

LUAD. Meanwhile, they were associated with lower immune

scores, confirming the negative impact of their increased

expression on patient survival. Similarly, in LUSC, higher

expression of AGO2, EIF3D, and LSM1 were positively
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correlated with tumor stem cell score but negatively correlated

with immune infiltration degrees, indicating a poor prognosis.

TMB and CNV analysis were performed to investigate the

possible mechanisms underlying the altered expression of the

m7G regulators. We found that the TMB of m7G regulators was

low in both LUAD and LUSC patients, and the predominant

alteration was mutation followed by gene amplification.

However, in terms of CNV, LUAD, and LUSC had significant

different alterations. Through the combination of TMB and

clinical subgroup analysis, we concluded that CNV was not

the sole factor influencing the expression of m7G regulators

in both LUAD and in LUSC.

Conclusion

In summary, based on our systematic analyses of m7G

regulators, we demonstrated the correlation between the

differential expression of m7G regulators and patient survival,

cancer immune landscape and tumor microenvironment, and

concluded that the altered expression of WDR4, METTTL1,

NUDT1, IFIT5, and CYFIP2 were associated with poor

prognosis in cancer patients. Excluding NCBP3, NUDT4,

CYFIP2, SNUPN, EIF4E2, and BUD23, most m7G regulators

were upregulated in the primary tumors, all of which were

associated with at least two of the following traits: more

aggressive immune subtype; lower degree of immune

infiltration; and a poor survival. The increased expression of

WDR4, METTTL1, NUDT1, and CYFIP2 enhanced the

sensitivity of some anti-cancer drugs such as hydroxyurea,

L-asparaginase, 5-fluoro-deoxy-uridine 10mer, and

chelerythrine. Upregulated expression of the above genes was

often associated with a poor prognosis, their increased expression

seemed to improve the sensitivity of patients to specific drugs.

The expression levels ofMETTL1 andWDR4was associated with

immunotherapy and they could serve as potential prognostic

markers. Furthermore, an individual analysis of NSCLC patients

revealed that multiple genes (validatedMETTTL1 andWDR4, as

well as EIF4G1, SLBP, AGB2, EIF3D, and LSM1) might play

important roles in NSCLC progression, which could serve as

potential biomarkers for predicting patient prognosis and

response to immunotherapy. However, the oncogenic or

tumor suppressing role of the individual m7G regulators

depends on their specific molecular functions, thus it would

be necessary to investigate their individual functional role in

different types of cancer.
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SUPPLEMENTARY FIGURE S1
Boxplot of m7G regulators differential expression between cancer and
adjacent normal tissues. The blue boxplots indicate the normal tissues.
The red boxplots indicate the cancer tissues.

SUPPLEMENTARY FIGURE S2
The forest map of PFI and DSS in 31 m7G-related genes across 33 TCGA
cancer types. (A) The forest map of PFS hazard ratio of 31 m7G-related
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genes across 33 TCGA cancer types. (B) The forest map of DSS hazard
ratio of 31 m7G-related genes across 33 TCGA cancer types. (C) Survival
correlation analysis of m7G related regulators in DSS across multiple
cancer types. (D) The correlation relationship among the expression of
31 m7Gmethylation regulators and tumor purity. (E)Correlation between
the expression of 31 m7G methylation regulators and the stromal cell
score.

SUPPLEMENTARY FIGURE S3
Survival analysis of m7G related regulators across multiple cancer types.
The red line in the photos indicates high expression and the blue line in
the photos indicates low expression.

SUPPLEMENTARY FIGURE S4
Correlation analysis between 31 m7G regulators expression and clinical
characteristics in LUAD and LUSC, respectively.

SUPPLEMENTARY FIGURE S5
Correlation analysis of m7G regulators and LUAD, LUSC
microenvironment, and stem cell scores.(A) The correlation relationship
between m7G methylation regulators expression and immune score,
stromal cell score, stem cell score and immune microenvironment in
LUAD. (B) The correlation relationship between m7G methylation
regulators expression and immune score, stromal cell score, stem cell
score, and immune microenvironment in LUSC.
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