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An Attention Dual Transformer with Adaptive Temporal Convolutional (ADT-ATC) model is proposed in 
this research work for enhanced detection of Diabetic Retinopathy (DR) from retinal fundus images. 
Unlike traditional methods which evolved so far in DR analysis, the proposed model specifically 
processes the multi-scale spatial features through dual spatial transformer network and captures 
the temporal dependencies through adaptive temporal convolutional unit. The fine patterns 
like microaneurysms, and larger anatomical regions, including hemorrhages are focused on dual 
spatial transformer block which provides comprehensive and detailed analysis of spatial features. 
Additionally, a hierarchical cross attention module is included to fuse the spatial and temporal features 
which is essential to identify the DR. Experimentation of the proposed model using DRIVE and Diabetic 
Retinopathy datasets demonstrates the better performance of proposed ADTATC model with an 
accuracy of 98.2% on DRIVE and 97.7% on Diabetic Retinopathy datasets compared to conventional 
deep learning models.
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Diabetic retinopathy (DR) represents a severe complication of diabetes and remains one of the leading causes 
of blindness among adults worldwide. Early detection of DR is essential to prevent vision loss, and timely 
interventions mitigate progression and reduce severity. As the number of diabetes patients increases globally it 
parallelly increases the number of individuals affected by DR1. This indicates the necessity of developing better 
screening tools for early-stage diagnosis and monitoring of disease progression. Due to the advancements in 
digital imaging techniques in recent years the ability to capture detailed visual information from the retina 
is improved. This provides a strong foundation for automated DR detection systems and the development 
of Artificial intelligence methodologies are additionally supports and increases the chances to develop DR 
detection modules with improved diagnostic accuracy, and increased accessibility. This reduces the dependence 
on specialized ophthalmologic expertise and provides enhanced patient outcomes in early diagnosis particularly 
in areas with limited healthcare resources.

Though technological progress and numerous methods for DR detection it faces several limitations2. Since the 
traditional diagnostic techniques mainly involve manual evaluation of retinal images by trained specialists which 
is time-consuming, expensive, and susceptible to subjective interpretation. The dependence on expert results 
limits scalability and makes the screening procedure challenging in regions with limited access to specialized 
care. Additionally, retinal imaging equipment, such as optical coherence tomography (OCT) is effective but 
costly and introduce discomfort for patients. Thus, it reduces the feasibility of regular screenings. The variability 
in retinal image quality due to differences in imaging equipment, lighting conditions, and patient cooperation 
further complicates the diagnosis. Due to this, the demand for automated, accessible, and efficient DR detection 
solutions evolved by highlighting the need for advanced methodologies which are capable of processing large 
volumes of retinal images with high accuracy and consistency.

Machine learning and deep learning methods have demonstrated considerable performances in various 
fields and particularly in medical imaging analysis3,4. DL models are efficient in extracting spatial features from 
retinal images which are then used to identify the pathological structures like microaneurysms, hemorrhages, 
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and exudates5. Recent research works which combine different learning algorithms as hybrid models have 
explored the chances of analyzing temporal information in addition to sequential data to capture disease 
progression. Advanced architectures, including DenseNet, VGG16, InceptionV36 have also been adapted for DR 
detection and provide better detection performance on benchmark datasets7,8. In a few cases, ensemble learning 
approaches are developed by combining multiple models to improve the detection performance. Techniques 
like transfer learning in addition have further enhanced detection accuracy making these models a better tool 
for automated DR analysis. Though the developed models have potential merits it faces several challenges which 
provide variability in detection performance across DR stages9.

ML and DL models for DR detection exhibit limitations which reduces their adaptability in clinical settings10. 
Though the existing models are accurate they are constrained by their inability to consistently capture both 
fine-grained spatial features and long-term temporal dependencies in retinal images. This results in suboptimal 
sensitivity particularly in detecting early-stage DR. Additionally, DL model ability to adapt to the hierarchical and 
multi-scale nature of retinal images is different for each model which produces different results while analyzing 
the critical information at both micro and macro scales11. The hybrid models in DR detection are beneficial for 
temporal analysis but face computational challenges with sequence modeling, specially processing an extended 
temporal data sequence. Also, the black-box nature of deep learning models reduces the interpretability and 
makes it difficult for clinicians to understand and validate model decisions12. Addressing these limitations 
requires models that can dynamically integrate spatial and temporal data and offer better performance across 
varying DR stages.

Addressing the limitations observed in current DR detection methodologies is the motivation of this 
research. Existing methodologies lacks sensitivity in early-stage disease diagnosis due to their limited ability in 
processing spatial–temporal dependencies. Also, the existing approaches struggle to generalize the model across 
diverse datasets. Based on this the research objective is defined as to develop a novel model for improved DR 
detection accuracy and enhance the adaptability across different stages of disease. The proposed work captures 
the complex spatial and temporal patterns in retinal images associated with DR progression. The proposed 
model Attention Dual Transformer with Adaptive Temporal Convolutional (ADTATC) introduces several novel 
elements to overcome the challenges in traditional DL models. The proposed ADTATC model combines dual 
spatial transformers with an adaptive temporal convolutional memory structure to analyze complex spatial 
dependencies and long-term temporal changes relevant to DR. Also, the proposed model includes a dual spatial 
transformer which is optimized for capturing multi-scale retinal features and provides more precise detection of 
early-stage DR. The adaptive temporal convolutional units provide enhanced memory retention across extended 
image sequences which is helpful in diagnosing individual disease progression rates without computational 
constraints. The hierarchical cross-attention mechanism further fuses spatial and temporal features so that 
key factors on DR are processed to enhance the interpretability and diagnostic performance. The primary 
contributions of this research are presented as follows.

•	 Presented a novel dual spatial transformer model to process both small and large-scale patterns in retinal 
images to attain enhanced spatial sensitivity to DR analysis. Also, adaptive temporal convolutional memory 
units are proposed for effective temporal analysis of DR progression.

•	 Presented a hierarchical cross-attention module to fuse spatial and temporal data at multiple stages which 
highlights the critical DR features and minimizing background noise in DR analysis. Also, an attention mech-
anism is included within spatial and temporal processing modules to provide a clear insight into model de-
cisions.

•	 Presented a detailed experimental analysis using benchmark DRIVE and Diabetic Retinopathy datasets 
demonstrates the better performance of proposed ADTATC model in comparison with existing deep learning 
models like CNN, RNN, VGG19, Inception V3, Long Short-Term Memory (LSTM) networks and temporal 
aware hybrid deep learning model (TAHDL).

The remaining discussions in the article are presented as follows. Section "Related works" presents the related 
works, section "Proposed work" presents the proposed work mathematical model, Section "Results and 
discussion" presents the results and discussion, and conclusion is presented in section "Conclusion".

Related works
This section presents a brief literature review of existing research on diabetic retinopathy detection. Machine 
learning and deep learning models for DR detection are considered for analysis and the observations are 
presented. Various ML models are used over time for DR detection. ML learning classifiers like logistic regression, 
K-nearest neighbors (KNN), support vector machine (SVM), bagged tree, and boosted tree are comparatively 
analyzed in13 for predicting DR from health records. The comparative analysis finds that it boosted tree classifier 
superior performance over other ML algorithms. The hybrid ML based DR detection model presented in14 
includes multi-stage methodology such as pre-processing, segmentation, feature extraction, and classification 
to process and colored retinal fundus images. During pre-processing, images are normalized for brightness 
and contrast enhancement. Segmentation is performed through encoding–decoding layers which isolate blood 
vessels and retinal regions which are critical for accurate DR detection. Feature extraction utilizes multiple 
instances learning which capture disease-relevant details from segmented images to enhance classification. 
Experimental evaluations using benchmark dataset highlights the presented model better performance over 
existing ML models.

The deep learning-based DR detection model presented in15 initially performs pre-processing steps such 
as scaling and adaptive contrast enhancement to enhance image quality. Then the preprocessed images are 
fed into CNN to extract complex retinal features and classify to detect different stage of DR. Experimental 
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analysis exhibits that the model achieves high performance in terms of accuracy, sensitivity, and specificity when 
compared with traditional machine learning classifiers like KNN and SVM. The DR detection model reported 
in16 incorporates pretrained VGG16 to classify lesions such as soft exudates, microaneurysms, hard exudates, 
and hemorrhages. By utilizing image preprocessing and feature extraction techniques the presented model 
enhances accuracy in DR stage classification. Experimental analysis demonstrated that the model achieved high 
accuracy and AUC compared to classifiers such as logistic regression (LR) and neural networks (NN). However, 
the presented model has limitations such as dependency on high-quality, labeled datasets and the need for 
significant computational power.

The deep neural network-based DR detection model presented in17 initially preprocess the fundus images 
and extracts the features using Grey-Level Co-occurrence Matrix (GLCM). Further the extracted features are 
classified using DNN and compared with SVM through intense experimental analysis. The findings highlight the 
better performance of DNN over SVM in DR detection with better accuracy and AUC. An optimized DNN based 
DR detection is presented in18. The presented model initially utilizes performance dimensionality reduction and 
is performed using PCA. Then Firefly algorithm is used for feature extraction which identifies the most relevant 
features. Followed by DNN is used as classifier to identify DR stages. Experimental evaluations on benchmark 
dataset highlight that the hybrid model has significant performance over traditional machine learning models. 
The hybrid DL model presented in19 for DR detection incorporates CNN and SVM for feature extraction and 
classification. The presented model initially preprocesses the fundus image and performs data augmentation to 
increase the number of samples. Then the increased samples are used to train and test the deep learning model, 
and the extracted features are finally classified using SVM model. The experimental results highlight the better 
accuracy and precision of presented hybrid model over traditional ML classifiers.

The DR detection model presented in20 includes multi-Inception-v4 as an ensemble approach to attain 
improved performance. The Inception-v4 architecture with enhanced pooling and convolution layers used in the 
presented model provides efficient computation and better feature representation. The performance of ensemble 
model is evaluated through benchmark datasets and highlights its better sensitivity and specificity. However, 
the presented model has limitations such as high computational demands, and its performance depends on 
the high-resolution images. The dual channel fundus image analysis procedure reported in21 for DR detection 
incorporates contrast-limited adaptive histogram equalization (CLAHE) and contrast-enhanced canny edge 
detection (CECED) fundus images. The preprocessed images are then processed through fine-tuned Inception 
V3 model and VGG-16 model. The outputs of both models are fused in a weighted approach to enhance the 
detection of critical DR features. Experimental results using benchmark data sets highlights the model better 
accuracy. However, the approach is limited by its computational requirements due to dual-channel processing.

The DR detection model presented in22 utilizes hybrid deep learning models for automatic feature extraction 
and processing. The presented model incorporated U-Net for optic disc and blood vessel segmentation and 
CNN architectures such as Inception-V3 and ResNet for DR classification. The hybrid model experimental 
results have demonstrated improved accuracy, sensitivity, and specificity in DR detection. However, the 
presented model limitation is its requirement of extensive computational resources. A similar U-Net based 
DR detection model presented in23 incorporates two U-Net models to segment the optic disc (OD) and blood 
vessels. Followed by segmentation, the presented model performs feature extraction using a hybrid model that 
combines CNN and SVD algorithms. Subsequently, an enhanced Inception-V3 model is incorporated through 
transfer learning to classify the severity of DR. Experimental evaluations highlight the model’s high sensitivity 
and specificity. However, the presented face limitations handling complex feature extraction due to imbalanced 
class distributions within datasets.

The hybrid model presented in24 includes deep learning with Harris Hawks Optimization (HHO) to attain 
improved detection performance in DR analysis. The presented model utilizes Principal Component Analysis 
(PCA) for dimensionality reduction in the first stage. In the second stage, the essential features are identified 
while discarding redundant information. In the third stage of the model, HHO is incorporated to optimize these 
selected features. The experimental analysis highlights the model’s improved performance however the high 
computational cost of the presented model limits its applicability in real time applications. The hybrid deep 
learning model presented in25 includes a simple CNN model with ResNet for DR detection. The combined model 
utilizes ResNet101 for feature extraction and classify the features using CNN model. The experimental results 
of the presented model highlight its better accuracy and specificity compared to conventional machine learning 
classifiers. The hybrid model presented in26 for DR detection incorporates Inception and DenseNet models. The 
presented model extracts different level features through InceptionV3 and DenseNet121 models and fuse them 
to attain improved detection performance in DR detection. The experimental results of the presented model 
highlight the superior detection accuracy of presented model over traditional classifiers. However, the presented 
limitations include its dependency on high-quality image datasets and potential challenges in processing images 
with low contrast or occlusions.

Research gap
From the analysis of existing research works given above, several research gaps in diabetic retinopathy (DR) 
detection approaches are identified, and it is summarized to highlight the need for adaptive methodologies. 
Existing methodologies largely focus on CNN, SVM, and ensemble methods which are effective but struggle 
with feature extraction and classification. The consistency across diverse retinal images and varying DR stages 
limits model performances. Many algorithms depend heavily on high-quality datasets and involve extensive 
preprocessing steps which lead to feature loss or dependency on resource-intensive image enhancement 
techniques. Additionally, few methodologies utilize transfer learning but the adaptation of pre-trained models to 
DR-specific features remains limited which leads to issues in providing better sensitivity and specificity. Existing 
models also face challenges with class imbalance and generalizability in DR analysis. The proposed approach 
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addresses these gaps by integrating advanced feature extraction with adaptive attention mechanisms to enhance 
spatial–temporal detail and by minimizing computational demands. Thereby offering a more robust solution for 
real-time DR detection, the proposed solution aims to enhance accuracy, reduce false positives, and improve 
diagnostic performance across diverse datasets and DR stages.

Proposed work
The proposed ADTATC model is designed to enhance the detection performance in diabetic retinopathy (DR) 
analysis by integrating advanced spatial and temporal feature extraction techniques. The proposed model is 
developed to address the limitations such as insufficient attention to spatial details and challenges with long-term 
temporal dependencies which are present in traditional DL architectures. By combining dual transformers for 
multi-scale spatial attention with adaptive temporal convolutional memory units, ADTATC effectively captures 
both the complex spatial features of retinal abnormalities. The Dual Spatial Transformer Block (DSTB) in the 
proposed model is used for spatial feature extraction. The DSTB includes two parallel transformer networks in 
which the first transformer focusses on fine-grained features and the other focus on larger relevant patterns.

The multi-headed self-attention mechanism within each transformer enables a more comprehensive 
representation by examining the image from different perspectives. The Adaptive Temporal Convolutional 
(ATC) Memory Units in the proposed model is used for temporal feature extraction. Unlike recurrent networks, 
which require sequential processing and face vanishing gradient issues over long-time intervals, ATC provides an 
efficient path to capture dependencies over short and extended time spans. Dilated temporal convolutions used 
in the ATC cover a wide range of temporal dependencies with enhanced computational efficiency. Additionally, 
the adaptive gating mechanism in ATC includes a memory component to retain temporal information based 
on feature importance. This ensures that complex temporal patterns are preserved across time even though the 
DR progression varies over time. Incorporating temporal convolutions with adaptive gating the model provides 
memory-enhanced temporal representation which are essential in the dynamic progression of DR.

The Hierarchical Cross-Attention Module (HCAM) in the proposed work integrates the extracted spatial 
and temporal features. By using a cross-attention mechanism, HCAM refines the fusion of spatial and temporal 
data which allows the model to focus on regions that strongly indicate the temporal progression patterns of 
DR. The hierarchical structure involves multiple cross-attention stages which enables progressive refinement 
of the fused representation and ensures the minimization of irrelevant information and highlighting of critical 
DR indicators. Thus, the multi-stage fusion process strengthens the proposed model ability in capturing 
complex spatial–temporal relationships and also improves interpretability as the model selectively highlights 
key regions and time points relevant to the diagnosis. The final step in the proposed model involves a fully 
connected classification layer that processes the fused spatial–temporal features and outputs class probabilities 
corresponding to various DR stages. Using a sequence of fully connected layers followed by a SoftMax function, 
the model converts the spatial–temporal features into actionable DR stage detection. The complete overview 
of the proposed model is presented in Fig. 1. The novelty of proposed ADTATC is present in its hybrid use of 
attention transformers and adaptive temporal memory as an integrated spatial–temporal diagnostic tool. The 
process flow from DSTB to ATC and HCAM, followed by classification and is designed to retain both spatial 
and temporal intricacies which effectively address the needs of a progressive disease like DR. Each module 
contributes to capturing different aspects specifically DSTB for spatial feature diversity, Adaptive Temporal 
Convolutional Memory Unit (ATCMU) for temporal continuity, and HCAM for selective fusion. Together, these 
combinations create a robust model that outperforms traditional methods and offers a better level of precision 
and reliability in automated DR analysis.

Dual spatial transformer block (DSTB) for spatial feature processing
The DSTB in the proposed ADTATC model is used to capture the small-scale and large-scale spatial features. 
Multi-scale spatial feature extraction is performed through two parallel transformer networks. Each transformer 
unit is incorporated specifically to recognize patterns at different scales within the retinal fundus images. This 
novel combination helps to detect various DR-related abnormalities which appear at different scales. The 
mathematical model considers the retinal image I ∈ R(H×W ×C)) as input in which H , W  indicates the 
image height, width and C  represents the color channels. The input image is first passed through a learnable 
embedding function f(·) before processing the image through transformer layers to transform the image into a 
lower-dimensional representation. The embed function is used as a series of convolutional layers which reduces 
the spatial dimensions and increases the channel depth. The embedded function is mathematically represented 
as E = f (I) ∈ R(N×D)). Here N  indicates the number of patches, and D indicates the embedding dimension. 
The image is then divided into a series of patches and each patch is encoded into a vector of dimension D.

In the proposed ADTATC model, the DSTB is designed to extract complementary spatial features by 
employing two parallel transformer networks that operate on different scales. The small-scale transformer 
processes high-resolution patches (e.g., 16 × 16) to capture fine-grained details such as microaneurysms and 
small hemorrhages. In contrast, the large-scale transformer processes coarser patches (e.g., 64 × 64) to capture 
broader anatomical context such as vascular structures.

To avoid confusion regarding parameter sharing, we explicitly differentiate the weight parameters used by 
each transformer. The small-scale transformer utilizes weight matrices denoted as WQsmall , WK small, Wvsmall

, while the large-scale transformer employs its own distinct parameters: WQlarge , WK large, Wvlarge. This 
separation ensures that each transformer path is optimally tuned to its respective patch scale, thereby enhancing 
the overall feature extraction process.

Once the embedded representation E is generated it is linearly projected into three separate spaces like query 
Q, key K , and value V . These projections are fundamental for the transformer attention mechanism and allow 
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it to selectively focus on specific regions within the image. The query, key, and value matrices are mathematically 
formulated as

	 Q = EWQ, K = EWK , V = EWV � (1)

where WQ = RD×dk , WK = RD×dk , and WV = RD×dV  are the learnable projection matrices. dk  and 
dv  indicates the dimensions of the query, key, and value vectors, respectively. These dimensions are selected 

Fig. 1.  Proposed model overview.
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to balance computational efficiency and feature representations. The query Q, key K , and value V  matrices 
represent transformations of the input data which captures the unique aspects present in retinal image. The 
DSTB includes a multi-head self-attention mechanism to simultaneously focus on various regions in the image. 
Figure 2 depicts an illustration of multi-head self-attention mechanism.

The self-attention scores which represent the relationship between each pair of patches are computed by 
performing dot product of Q and K  and scaling by 

√
dk  to maintain stability in the gradients. Mathematically 

it is represented as follows.

	
Attention (Q, K, V ) = softmax

(
QKT

√
dk

)
V � (2)

where softmax (·) normalizes the attention scores across the patches and ensures that the attention weights 
sum to one for each query. The scaling factor 

√
dk   is used to stabilize the dot product values and prevents 

excessively large values that could reduce the model learning process. This attention mechanism allows the 
DSTB to assign higher weights to patches that contain important DR indicators such as lesions or blood vessel 
abnormalities.

DSTB incorporates two separate transformer networks optimized for process different spatial scales. The first 
transformer path is configured to capture small-scale features that are essential for detecting fine-grained 
structures which appear as small, high-detail patterns. The second transformer path is used to detect larger-scale 
features which require broader contextual understanding. Each transformer path individually applies multi-
head self-attention and follows up with a position-wise feed-forward network. This dual-path structure ensures 
that the model recognizes patterns at both granular and extensive levels. For each transformer path the output 
from the multi-head attention layer is processed through a feed-forward network (FFN) which is mathematically 
formulated as

	 FFN (x) = ReLU (xW1 + b1) W2 + b2� (3)

where W1 ∈ Rdv×df  and W2 ∈ Rdf ×dv  indicates the learnable weight matrices, b1 and b2 indicates the bias 
terms, df  indicates the hidden layer dimension, and ReLU (·) is the activation function. The feed-forward 
network applies non-linearity and enables each path to refine its focus on specific scales. After processing 

Fig. 2.  Multi-Head Self attention module.

 

Scientific Reports |         (2025) 15:7694 6| https://doi.org/10.1038/s41598-025-92510-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the image through both transformer paths the outputs are concatenated to form a combined feature map Fs

. Mathematically it is formulated as

	 Fs = concat (Osmall, Olarge)� (4)

where Osmall and Olarge indicates the outputs of small-scale and large-scale transformer paths, respectively. 
By combining these outputs, the DSTB captures diverse spatial details which are essential for detecting DR. The 
complete overview of DSTB is presented in Fig. 3.

Adaptive temporal convolutional (ATC) memory unit for temporal feature processing
The Adaptive Temporal Convolutional (ATC) Memory Unit in the proposed model captures temporal 
dependencies. This helps to retain relevant information over varying time intervals in retinal image sequences. 
Unlike traditional recurrent networks, ATC utilizes dilated convolutions and adaptive gating to retain complex 
temporal features. ATC effectively handles short, long-term temporal patterns and processes the sequence of 
spatial feature maps {F(s,t)}T

(t=1). Here Fs,t ∈ RN×D  represents the spatial features extracted from the tth 
retinal image. N  indicates the number of spatial patches or regions, and D indicates the feature dimension for 
each patch. This sequence of spatial features allows the model to process changes over time. To capture temporal 
dependencies, ATC utilizes dilated convolutions along the time axis. Dilated convolution operation increases 
the receptive field without increasing the number of parameters. This enables the model to capture temporal 
dependencies in the feature sequence. The output of the dilated convolution at time t is formulated as

	
yt =

∑k−1

i=0
wi · Fs,t−d·i� (5)

where yt indicates the output, k indicates the convolutional kernel size, wi indicates the convolutional filter 
learnable weights, and d indicates the dilation rate. The dilation rate d controls the spacing between the temporal 
positions considered by the convolution. This allows the model to cover a larger range of time steps without 
increasing the computational complexity. By adjusting d, ATC adapts to various time scales and captures the 
rapid changes and long-term variations in DR progression. To dynamically control the retention of relevant 
temporal information a gating mechanism is used. The gating mechanism assigns a temporal importance score 

Fig. 3.  Dual Spatial Transformer.
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to each time step and allows the model to determine which information from that step should be retained. The 
gate at each time step t is mathematically formulated as

	 gt = σ (WgFs,t + bg)� (6)

where gt ∈ [0,1] indicates the gate value, Wg ∈ RD×1 indicates the learnable weight matrix, bg ∈ R indicates 
the bias term, and σ (·) indicates the sigmoid activation function. The sigmoid function ensures that the gate 
values remain between 0 and 1. The value close to 1 indicates the strong retention of temporal information at 
that step, and the value close to 0 suggests discarding the information. The gating mechanism enables ATC to 
selectively retain features that are important for DR progression and allows to focus on critical time intervals and 
minimize noise from irrelevant frames.

Figure 4 depicts the elements of the ATC module. Once the gated output is computed, ATC updates the temporal 
memory representation by combining the dilated convolution output yt and the gated input gt · Fs,t. This 
update is formulated as:

	 Mt = gt · Fs,t + (1 − gt) · yt� (7)

where Mt indicates the updated memory at time t. gt · Fs,t highlights the newly processed information based 
on the gate importance score, while (1 − gt) · yt retains past temporal information from the dilated convolution 
output.

This combination allows ATC to adaptively incorporate both present, past data, and provide a robust temporal 
representation that aligns with the nature of DR which progresses in severity over time. The memory sequence 
{Mt}T

t=1 summarizes both recent and long-term temporal dependencies. This temporal representation integrates 
the dynamic evolution of DR features across sequential images and allows the model to analyze progression and 
make accurate classifications.

Hierarchical cross-attention model (HCAM) for feature fusion
The Hierarchical Cross-Attention model (HCAM) in the proposed ADTATC fuses the spatial and temporal 
features to highlight the relevant diabetic retinopathy (DR). HCAM achieves this through a hierarchical cross-
attention mechanism that selectively integrates spatial features from retinal images with their corresponding 
temporal features across multiple stages. This creates a fused feature map that includes spatial and temporal 
dynamics which are essential for DR detection and progression analysis. The HCAM process two primary 
inputs, one is from the DSTM model which provides the spatial features Fs ∈ RN×Ds . The second input to 
HCAM is from the ATC model which provides the temporal features Ft ∈ RT ×Dt . Where Fs indicates the 
spatial feature map extracted from a retinal image, where N  indicates the number of spatial regions or patches in 
the image, and Ds indicates the dimensionality of the spatial feature vector for each patch. The temporal feature 
sequence indicated as Ft with temporal feature dimensionality of Dt. For cross-attention to function both spatial 
and temporal features are projected into three components as query Q, key K , and value V  matrices. These 
projections enable the cross-attention mechanism to identify relevant spatial regions in relation to temporal 
changes. The query, key, and value matrices for spatial and temporal features are mathematically formulated as

Fig. 4.  Adaptive Temporal Convolutional (ATC) Memory Unit.
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	 Qs = FsW s
Q� (8)

	 Kt = FtW
t
K � (9)

	 Vt = FtW
t
V � (10)

where Qs ∈ RN×d indicates the query matrix for spatial features, Kt ∈ RT ×d and Vt ∈ RT ×d indicates the 
key and value matrices for temporal features. W s

Q ∈ RDs×d, W t
K ∈ RDt×d, and W t

V ∈ RDt×d indicates the 
learnable weight matrices that transform spatial and temporal features into a common dimension d which 
enables attention alignment. Using the query, key, and value matrices, HCAM calculates the cross-attention 
scores between spatial and temporal features. These scores measure the relevance of each spatial region in 
relation to each temporal feature and allow the model to focus on spatial regions that are most aligned with DR 
progression. The mathematical formulation to compute the cross-attention scores are given as follows.

	
CrossAttention (Qs, Kt, Vt) = softmax

(
QsKT

t√
d

)
Vt� (11)

In the above, the softmax
(

QsKT
t√

d

)
 produces a normalized attention score matrix and ensures that the 

attention weights for each query sum to one. The scaling factor 
√

d stabilizes gradients and prevents large values 
that interrupt the learning process.

This cross-attention operation produces an output matrix where each spatial region’s representation is 
highlighted with relevant temporal context and combinedly creating a temporally aware spatial feature map. 
Figure 5 depicts the complete process of hierarchical cross attention model used in the proposed work.

The hierarchical aspect of HCAM is attained by applying multiple layers of cross-attention in which each 
focuses on progressively refined levels of spatial–temporal interaction. Each stage s in HCAM refines the 
fused spatial–temporal features by reapplying the cross-attention operation with updated spatial and temporal 
projections. For stage s, the spatial feature F (s)

s  is updated which is mathematically formulated as follows

	
F (s+1)

s = CrossAttention
(

Q(s)
s , K

(s)
t , V

(s)
t

)
� (12)

where Q(s)
s , K(s)

t , and V (s)
t  indicates the query, key, and value matrices for stage s obtained from the previously 

updated features. Each stage further refines the spatial–temporal alignment by recalculating attention scores 
and gradually enhances the focus on critical DR patterns and discards the irrelevant details. This hierarchical 
attention approach allows HCAM to refine the spatial and temporal integration progressively and leads to a 
fused representation that captures complex multi-level relationships in the data. After the final stage of cross-
attention, HCAM produces a fused feature map Fst, which integrates both the spatial layout and temporal 
progression of DR-related features. The aggregated features at each stage in HCAM provides a highly informative 
representation that captures the disease spatial characteristics in addition to temporal evolution.

Classification layer
The Final Classification Layer in the ADTATC model is responsible for classifying the fused spatial–temporal 
features generated by the HCAM to make accurate results on the stage of diabetic retinopathy (DR). Using a fully 
connected network the fused feature maps are processed and applied non-linear transformations to generate class 
probabilities corresponding to DR stages. The fused spatial–temporal feature map from HCAM is Fst ∈ RN×d 
in which N  indicates the number of spatial–temporal patches and d indicates the feature dimensionality. The 
fused features need to be transformed into a one-dimensional vector before passing it through the fully connected 
layers. Flattening the feature map into a single vector enables the fully connected layer to handle all the features 
as a single input, integrating information across all patches. Mathematically it is formulated as

	 x = flatten (Fst) ∈ RN×d� (13)

The flatten operation reshapes Fst into a vector x ∈ RN×d and ensures that each spatial–temporal feature is 
consolidated for the classification process. The flattened feature vector x is then passed through fully connected 
layers. Each layer applies a linear transformation followed by a non-linear activation function to capture complex 
patterns in the fused spatial–temporal data that correspond to different DR stages. The fully connected layer 
output hi is formulated as

	 hi = ReLU (hi−1Wi + bi)� (14)

where Wi ∈ Rhi−1×hi  and bi ∈ Rhi  are the weights and biases for layer i. ReLU (·) indicates the activation 
function Rectified Linear Unit which is defined as ReLU (z) = max (0, z). This activation function introduces 
non-linearity and helps the model learn complex mappings. These layers enhance the model ability in recognizing 
higher-order patterns and refine the feature representations. This makes it easier to classify DR stages accurately. 
The last fully connected layer reduces the output dimensionality to match the number of DR classes C . This 
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transformation is required to project the output into a space where each dimension represents the likelihood of 
a particular DR stage. The output z is mathematically formulated as

	 z = hLWfc + bfc� (15)

where hL indicates the output of the last hidden layer, Wfc ∈ RhL×C  indicates the weight matrix mapping 
the final hidden layer to the class space. bfc ∈ RC  indicates the bias vector for the final layer. This linear 
transformation z produces a score for each DR class which represents the unnormalized likelihood of each class. 
The output z is then passed through the softmax activation function to convert the scores into probabilities and 
ensures that each score is non-negative and the sum of probabilities across all classes equals one. The SoftMax 
function for class j is mathematically formulated as

	
P (j) = ezj

∑C

c=1ezc
� (16)

where zj  indicates the score for class j, and the denominator sums the exponentiated scores of all classes C . This 
transformation provides a probability distribution P (j) across all DR stages in which each probability reflects 
the model’s ability in classifying the input sequence into that specific DR stage. The model’s final prediction is 
obtained by selecting the class with the highest probability

Fig. 5.  Hierarchical Cross-Attention Model.
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Class = argmax

j
P (j)� (17)

where Class indicates the DR stage with the highest probability score, indicating the model’s decision on the 
stage of DR for the input sequence. This classification output provides an interpretable and clinically relevant 
decision helping to determine the progression level of DR based on the fused spatial–temporal features.

Algorithm: ADTATC model for diabetic retinopathy detection
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Results and discussion
The experimentation for the proposed ADTATC model evaluates its effectiveness in detecting diabetic 
retinopathy (DR) through simulation conducted using the Python programming environment with TensorFlow 
and Keras libraries for deep learning model implementation. This setup allows comprehensive integration of 
multi-module architecture, enabling efficient execution of dual transformers, temporal convolutions, and cross-
attention modules as a unified framework. The experimentations utilize benchmark datasets such as DRIVE27 
and Diabetic Retinopathy datasets28 as the primary sources of retinal fundus images which includes a wide range 
of DR stages from healthy to advanced. These datasets provide high-quality images and reliable ground truth 
labels which are essential for evaluating classification accuracy across varying stages of DR progression. The 
simulation hyperparameters of the proposed ADTATC model is presented in the Table. 1. The key parameters 
in the experimentation included the batch size which is set to 32 to balance memory usage and computational 
efficiency. The learning rate is initialized at 0.001 with a decay strategy to improve convergence over epochs. 
The Adam optimizer with Lookahead was selected for its stability and adaptive learning capabilities so that 
smooth gradient updates during training can be obtained. For model training, 80% of the data was allocated as 
the training set, 20% was used for testing to ensure that the model had sufficient data to learn from while also 
being evaluated for generalization on unseen images. Table 1 summarizes the simulation hyperparameters. The 
complete details about the dataset are presented in Table 2 and Table 3 for DRIVE and Diabetic Retinopathy 
Dataset, respectively.

The performance metrics utilized in the proposed model evaluation are accuracy, precision, recall, F1-
score, and specificity to verify the model’s capability across all severity levels. Cross-entropy loss with focal loss 
modification was employed to mitigate the class imbalance often observed in medical datasets, ensuring that 
the model did not overlook underrepresented DR stages. Training was conducted for 50 epochs, with early 
stopping to prevent overfitting. Throughout the experimentation, GPU acceleration was utilized to handle the 
computational demands of the model’s transformer-based architecture and large dataset sizes. The formulations 
for the performance evaluation metrics are presented as follows.

	
P recision = T P

T P + F P
� (18)

	
Recall = T P

T P + F N
� (19)

Class Total Training Testing

No DR 25,810 20,648 5,162

Mild 2,443 1,954 489

Moderate 5,292 4,233 1,059

Severe 873 698 175

Proliferative DR 708 566 142

Table 3.  Diabetic Retinopathy Dataset description.

 

Class Total Training Testing

DR 100 80 20

Non-DR 100 80 20

Table 2.  DRIVE Dataset description.

 

S.No Parameter Value

1 Image Resolution 512 × 512 pixels

2 Batch Size 32

3 Learning Rate 0.001 (with decay)

4 Optimizer Adam with Lookahead

5 Loss Function Cross-entropy with Focal Loss

6 Training—Testing Split 80–20%

7 Number of Epochs 100

8 Activation Functions ReLU, SoftMax

Table 1.  Simulation Hyperparameters.

 

Scientific Reports |         (2025) 15:7694 12| https://doi.org/10.1038/s41598-025-92510-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
F 1 − Score = 2 × P recision × Recall

P recision + Recall
� (20)

	
Specificity = T N

T N + F P
� (21)

	
Accuracy = T P + T N

T P + T N + F P + F N
� (22)

where the true positive is indicated as TP, the true negatives are indicated as TN, the false positives are indicated 
as FP and false negatives are indicated as FN. The proposed model performance in training and testing is 
depicted in Table 4 and 5 for DRIVE dataset and Diabetic retinopathy dataset, respectively.

From Tables 4 and 5 the better performance of proposed model can be observed in both training and testing 
process. The proposed model attained maximum accuracy of 98.64% in the training process and 98.26 in the test 
process for DRIVE dataset. Similarly, the proposed model exhibits 98.15% as accuracy during the training and 
97.44% as accuracy during the test process for diabetic retinopathy dataset.

The training and validation accuracy in Fig. 6 and the corresponding loss is depicted in Fig. 7 for the DRIVE 
dataset exhibit the proposed model learning progression in diabetic retinopathy (DR) detection. The accuracy 
graph exhibits a rapid increase within the initial epochs with training accuracy reaching over 96% around 
the 20th epoch. The validation accuracy closely follows the training which indicates the model generalization 
ability. The model performance stabilizes beyond the 30th epoch, achieving near-optimal accuracy around 98% 
demonstrating the proposed model effective learning of DR features.

The loss graph given in Fig. 7 shows a decrease in both training and validation loss, dropping below 0.1 by the 
20th epoch. This indicates the model’s efficiency in minimizing errors. The proposed ADTATC model utilizes 
dual transformers and adaptive temporal convolutional memory which allows to capture spatial patterns and 
progressive DR stages more effectively. The minimal gap between training and validation curves across both 
graphs highlights the model generalization ability and it further enhanced by adaptive gating mechanisms, cross-
attention modules that selectively focus on DR-relevant features, reduces the irrelevant noise and preventing 
overfitting.

The training and validation accuracy in Fig.  8 and the corresponding loss are depicted in Fig.  9 for the 
diabetic retinopathy dataset show the effectiveness of the proposed model in the DR detection process. The 
accuracy graph exhibits a rapid rise in both training and validation accuracy with the initial epochs and reaching 
over 95% by the 20th epoch. This high accuracy indicates that the model ability in learning complex DR features. 
Training accuracy stabilized close to 98% by the end and the validation accuracy closely follows at approximately 
97%. The loss graph shows in Fig. 9 exhibit rapid decline with both training and validation loss dropping below 
0.1 by the 15th epoch. This decrease in loss reflects the model’s efficiency in minimizing prediction errors. The 
low training and validation loss signify effective learning without significant overfitting. The proposed ADTATC 
model’s superior performance can be attributed by this minimal error and demonstrates the model robustness 
and reliability in DR detection.

The Precision-Recall analysis for the DRIVE dataset given in Fig. 10 and the diabetic retinopathy dataset 
given in Fig. 11 highlights the proposed ADTATC model superior performance in detecting diabetic retinopathy 
(DR). In Fig.  8, the PR curves for No DR and DR categories exhibit better AP values of 0.9948 and 0.9932 
respectively indicate their high precision and recall across both classes. The high AP values demonstrate the 

Metric Train Test

Accuracy 0.9815 0.9744

Precision 0.9912 0.9869

Recall 0.9918 0.9884

F1-Score 0.9915 0.9876

Specificity 0.9924 0.9868

Table 5.  Kaggle diabetic retinopathy dataset metrics.

 

Metric Train Test

Accuracy 0.9864 0.9826

Precision 0.9906 0.9822

Recall 0.9989 0.9986

F1-Score 0.9947 0.9903

Specificity 0.9846 0.9821

Table 4.  DRIVE dataset metrics.
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proposed model’s effectiveness in accurately identifying DR cases while minimizing false positives. For the 
diabetic retinopathy dataset PR curve exhibited in Fig.  9, the DR stages including No DR, Mild, Moderate, 
Severe, and Proliferative are tightly aligned with AP values close to 0.99 for each category. For Proliferative DR 
achieving an AP of 0.9958. The model ability to maintain high precision across stages reflects its robustness 
in handling varying severity levels which is essential for accurate DR staging. The slightly lower AP in earlier 
DR stages such as Mild (0.9941) is due to overlapping features with normal cases which is a challenge in DR 
detection.

Further evaluation of proposed model considered traditional DL models like CNN, RNN, VGG19, Inception 
V3, Long Short-Term Memory (LSTM) networks and temporal aware hybrid deep learning model (TAHDL) 
for comparative analysis. The TAHDL model is the early-stage experimentation of our research in diabetic 
retinopathy which combines CNN and RNN for temporal feature processing. Each DL model’s performance is 
evaluated individually and finally compared with the proposed model. For all the methods, batch size is selected 

Fig. 7.  Analysis of Training and validation Loss for DRIVE dataset.

 

Fig. 6.  Analysis of Training and validation accuracy for DRIVE dataset.
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as 32, epoch as 50 and loss function is categorical entropy loss. The dropout rate is selected as 0.5 for all models. 
The simulation hyperparameters for the existing DL models are presented in Table 6.

The precision comparative analysis graphs given in Fig. 12 for the DRIVE dataset and Fig. 13 for the diabetic 
retinopathy dataset highlight the better performance of the proposed ADTATC model over existing models 
across 50 epochs. In Fig. 12, the precision of the proposed ADTATC model exhibits its significant improvement 
starting from 0.90 and reaching over 0.98 by the final epoch. This demonstrates the superior performance 
compared to traditional models such as CNN, RNN, VGG19, and LSTM, which obtained precision in the range 
of 0.88 to 0.92 over time. The existing TAHDL model exhibits some better improvement, compared to others 
with a maximum of 0.94 by the 50th epoch but it is still lesser than the proposed ADTATC. Similarly, in Fig. 13 
for the diabetic retinopathy dataset, the precision of the proposed ADTATC model overcomes the other models 

Fig. 9.  Analysis of Training and validation loss for diabetic retinopathy dataset.

 

Fig. 8.  Analysis of Training and validation accuracy for diabetic retinopathy dataset.
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with clear increment in precision from 0.90 initially and reaches maximum 0.986 by 50th epoch. Conventional 
models like Inception and LSTM exhibit less precision and reach around 0.91. The proposed model’s superior 
performance can be attributed to its dual transformer architecture that captures complex spatial features and the 
adaptive temporal memory that enhances temporal feature retention.

The recall comparative analysis graphs given in Fig. 14 for the DRIVE dataset and Fig. 15 for the diabetic 
retinopathy dataset highlight the better performance of the proposed ADTATC model over existing models 
across 50 epochs. In Fig. 14, the recall of the proposed ADTATC model exhibits its significant improvement 
starting from 0.92 and reaching almost 1.0 by the 50th epoch. This increased performance of the proposed 

Fig. 11.  Precision Recall analysis for diabetic retinopathy dataset.

 

Fig. 10.  Precision Recall analysis for DRIVE dataset.
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Fig. 12.  Precision comparative analysis for DRIVE dataset.

 

S.No Model Hyperparameters Range/Type

1 CNN Conv Layer Filter 64

2 Conv Layer Filter Size 3 × 3

3 Conv Layer Activation ReLU

4 Pooling Layer Type Max Pooling

5 Pooling Layer Size 2 × 2

6 Pooling Layer Stride 2

7 Output Layer Activation SoftMax

8 Optimizer Adam

9 Learning Rate 0.001

10 RNN Layer Units 128

11 RNN RNN Layer Activation tanh

12 Optimizer Adam

13 Learning Rate 0.001

14 VGG19 Optimizer SGD

15 Learning Rate 0.0001

16 InceptionV3 Optimizer RMSprop

17 Learning Rate 0.0001

18 LSTM LSTM Layer Units 256

19 LSTM Layer Activation tanh

20 LSTM Layer Rec. Activation sigmoid

21 Optimizer Adam

22 Learning Rate 0.001

23 TAHDL Number of Epochs 50

24 Learning Rate 0.001

25 Batch Size 32

26 Optimizer Adam

27 Dropout Rate 0.5

28 Activation Function ReLU (for CNN), Tanh (for RNN)

29 Loss Function Categorical Cross-Entropy

30 Regularization L2 Regularization (λ = 0.01)

Table 6.  Simulation hyperparameters of deep learning algorithms.
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model highlights its ability to capture true positives in DR detection. The proposed model outperformed other 
models like CNN, RNN, and Inception, which fluctuated around the 0.90 to 0.94 range. The existing TAHDL 
model exhibits some better improvement, compared to others with a maximum of 0.97 by the 50th epoch but it 
is still lesser than the proposed ADTATC. Similarly, in Fig. 15 for the diabetic retinopathy dataset, the recall of 
the proposed ADTATC model overcomes the other models with clear increment in precision from 0.90 initially 
and reaches maximum 0.98 by 50th epoch. This superior recall performance of the ADTATC model is attributed 
due to its advanced architecture and its ability to identify subtle DR features across various stages ensures fewer 
false negatives yields better recall compared to existing methods.

Fig. 14.  Recall comparative analysis for DRIVE dataset.

 

Fig. 13.  Precision comparative analysis for Diabetic Retinopathy dataset.
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The F1-score comparative analysis given in Fig.  16 for the DRIVE dataset and Fig.  17 for the diabetic 
retinopathy dataset highlights the superior performance of the proposed ADTATC model compared to existing 
models across multiple epochs. In Fig. 16, the F1-score of the proposed ADTATC model is exhibited and it starts 
around 0.92 and reached maximum of 0.98 by the 50th epoch. This increased f1-score highlights the model’s 
ability to maintain a balanced precision and recall. Also, the increased performance ensures the model high 
reliability in DR detection. Traditional models like CNN, RNN, and LSTM show minimal improvement in F1-
scores in the range of 0.90 to 0.94, indicating their limitations in accurately handling complex DR patterns. The 
TAHDL model reaches up to 0.96 but it is lesser than proposed ADTATC model performance. In Fig. 17, The 
proposed ADTATC F1-score on the diabetic retinopathy dataset exhibits a similar increase which starts nearly 

Fig. 16.  F1-Score comparative analysis for DRIVE dataset.

 

Fig. 15.  Recall comparative analysis for Diabetic Retinopathy dataset.
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0.90 and reaches maximum of 0.987 by the end. The improvement in F1-score reflects the proposed ADTATC 
model ability in minimizing the false positives and false negatives across various DR stages. In contrast, other 
models like Inception and VGG19 exhibit lesser performance which reaches maximum in the range of 0.94 
exhibit their limited feature extraction capabilities in a complex medical imaging context. The higher F1-score of 
ADTATC compared to other existing methods demonstrates its robustness in detecting and classifying DR with 
a balanced precision-recall, but still, it is lesser than the proposed ADTATC model.

The specificity comparative analysis given in Fig.  18 for the DRIVE dataset and Fig.  19 for the diabetic 
retinopathy dataset presents the specificity attained by the proposed ADTATC model compared to other models 
across 50 epochs. In Fig. 18, the specificity of proposed ADTATC exhibits 0.91 in the beginning and reaches 

Fig. 18.  Specificity comparative analysis for DRIVE dataset.

 

Fig. 17.  F1-Score comparative analysis for Diabetic Retinopathy dataset.
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maximum of close to 0.98 by the final epoch. This performance is higher than that of traditional models like 
CNN, RNN, and LSTM, which exhibit specificity in the range of 0.90 to 0.93. The lesser performance of existing 
methods demonstrates their limitations in accurately differentiating true negatives. The existing TAHDL model 
performs better than these traditional models with 0.96 by epoch 50, but still, it is lesser than the proposed 
ADTATC specificity. In Fig. 19, the proposed ADTATC model specificity on the diabetic retinopathy dataset 
shows similar increased performance from beginning with 0.90 as specificity and reaches maximum of 0.986 
by the last epoch. This improvement in specificity highlights the model ability in minimizing false positives and 
ensuring that non-DR cases are correctly identified as non-DR. This is essential for clinical applications where an 
accurate exclusion of healthy cases is essential to reduce unnecessary follow-ups. The proposed ADTATC model 
enhanced specificity validates its precise classification whereas the traditional models lack this capability which 
results in less stable and lower specificity scores in DR detection.

The accuracy comparative analysis given in Fig.  20 for the DRIVE dataset and Fig.  21 for the diabetic 
retinopathy dataset highlight the superior performance of the proposed ADTATC model compared to existing 
models for 50 epochs. In Fig.  20, the accuracy of ADTATC starts around 0.91 and increases steadily till 
50th epoch and reaches maximum of 0.982 by the 50th epoch. This consistent increase in accuracy reflects 
the proposed model effective learning and ability to generalize over traditional models like CNN, RNN, and 
Inception which exhibits more fluctuating accuracy scores in the range of 0.92 to 0.94. The existing TAHDL 
model performs better than the traditional models with an accuracy close to 0.96 by the last epoch but it is lesser 
than the proposed ADTATC maximum accuracy. Similarly, in Fig. 21, the ADTATC model exhibits an increased 
accuracy on the diabetic retinopathy dataset which starts from 0.89 and reaches approximately 0.978 by 50th 
epoch. This improvement over time highlights the proposed ADTATC performance which was attained due to 
the combination of dual transformers for enhanced spatial representation and adaptive temporal memory units 
for effective tracking of temporal DR features. The advanced attention mechanisms enable ADTATC to focus on 
relevant DR patterns which improve accuracy significantly over other existing models.

The experimental results clearly demonstrate the superiority of the proposed ADTATC model over existing 
methods across performance metrics such as accuracy, precision, recall, F1-score, and specificity. The proposed 
ADTATC consistently achieved higher values reaching nearly 0.9826 as accuracy for DRIVE dataset and 0.9744 
as accuracy for diabetic retinopathy dataset. The proposed model performance is better and outperforms 
traditional models like CNN, RNN, and TAHDL for all the metrics. The proposed model architecture ensures 
better generalization, higher detection accuracy, and fewer false positives making it highly suitable for clinical 
applications. The proposed model has been compared with recent state-of-art hybrid models and the outcomes 
are projected in Table 7.

Table 8 presents the additional validation of proposed model done on DDR dataset. The DDR dataset27 is 
a large and diverse dataset specifically designed for diabetic retinopathy (DR) analysis, comprising a total of 
13,673 fundus images collected from 147 hospitals across 23 provinces in China. This diversity in geographical 
and clinical sources ensures a wide variety of image characteristics, including differences in quality, resolution, 
and disease representation, making the dataset particularly challenging and comprehensive. The dataset classifies 
images into five distinct categories based on the severity of DR: none, mild, moderate, severe, and proliferative 
DR. Additionally, a sixth category is included to label images of poor quality, which adds another layer of 

Fig. 19.  Specificity comparative analysis for Diabetic Retinopathy dataset.
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Model Accuracy (%) Precision (%) Recall (%)

Proposed ADTATC 98.2 98.1 99.8

DNN-PCA-Firefly28 (2020) 97 96 96

WFDLN29 (2022) 96.5 97.8 98.7

DNN-PCA-Harris Hawks30 (2023) 96.9 96.8 97.1

Table 7.  Outcomes with existing Hybrid Models.

 

Fig. 21.  Accuracy comparative analysis for Diabetic Retinopathy dataset.

 

Fig. 20.  Accuracy comparative analysis for DRIVE dataset.
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complexity as the model must not only classify DR severity but also identify and disregard suboptimal images. 
These features make the DDR dataset a robust benchmark for evaluating the adaptability and effectiveness of 
DR detection models.

The observed decrease in accuracy from 98% on the DRIVE and Diabetic Retinopathy datasets to 91.5% on 
the DDR dataset can be attributed to several factors. First, the large volume and diversity of the DDR dataset 
introduce significant variability in image quality, illumination conditions, and patient demographics, challenging 
the model’s ability to generalize. Unlike smaller datasets with controlled imaging environments, DDR contains 
images of varying resolutions and noise levels, including the category of poor-quality images, which makes 
classification more difficult. Second, the inclusion of five severity classes and an additional poor-quality category 
increases the complexity of the classification task. In particular, the overlapping features among early DR stages 
such as mild and moderate can lead to higher false positives or false negatives, affecting overall performance 
metrics.

Moreover, the DDR dataset’s class imbalance, where certain DR severity levels may be underrepresented 
compared to others, poses additional challenges. Despite the use of focal loss and adaptive temporal mechanisms 
in the proposed model to mitigate this issue, some degradation in accuracy is expected when dealing with 
real-world, imbalanced datasets. Finally, the higher variability and complexity inherent in the DDR dataset 
align closely with the challenges encountered in clinical settings, making it a more realistic but demanding 
benchmark. The proposed ADTATC model’s accuracy of 91.5% still represents a significant improvement over 
prior approaches and demonstrates its ability to handle challenging datasets effectively.

For the proposed ADTATC model, the kappa coefficient was calculated based on the classification results 
across the five DR severity levels (none, mild, moderate, severe, proliferative) and the poor-quality category. On 
the DDR dataset, the kappa value achieved by the ADTATC model is approximately 0.89, which reflects a strong 
level of agreement between the predicted and actual classifications. This result further substantiates the model’s 
robustness and reliability in handling diverse and complex retinal fundus images.

In comparison, the TAHDL and LSTM models achieved kappa values of 0.82 and 0.78, respectively. These lower 
values indicate that the proposed ADTATC model offers a significant improvement in multi-class classification 
consistency and agreement, validating its advanced spatial and temporal feature extraction capabilities.

To validate the effectiveness and applicability of the Dual Spatial Transformer Block (DSTB) in the proposed 
ADTATC model, an ablation study was conducted to analyze the impact of its components on experimental 
accuracy and performance. The study investigated three configurations: a single small-scale transformer, a 
single large-scale transformer, and the combination of both as proposed in the DSTB. Additionally, an extended 
configuration that incorporated a medium-scale transformer was evaluated to examine potential improvements.

The results as shown in Table 9 revealed that the small-scale transformer, which processes high-resolution 
patches (e.g., 16 × 16), performed well at detecting localized features such as microaneurysms and small 
hemorrhages, achieving an accuracy of 88.2%. However, it lacked the contextual understanding required for 
capturing broader patterns, limiting its effectiveness in detecting larger anatomical changes. Conversely, the 
large-scale transformer, which processes coarser patches (e.g., 64 × 64), demonstrated an improved accuracy of 
89.3%, as it captured broader contextual patterns such as vascular structures. However, it struggled with fine-
grained feature extraction, which is critical for detecting early-stage DR.

When both transformers were combined in the DSTB, the performance improved significantly, achieving an 
accuracy of 91.5%. This improvement highlights the complementary nature of the two transformers, with the 
small-scale transformer excelling at extracting fine-grained details and the large-scale transformer capturing 
global contextual features. The hierarchical integration of these outputs ensured a comprehensive spatial analysis, 
enhancing the model’s ability to detect and classify DR severity levels effectively.

Configuration Accuracy (%) Precision (%) Recall (%) Specificity (%)

Single Small-Scale Transformer 88.2 88.6 88.4 88.1

Single Large-Scale Transformer 89.3 89.7 89.5 89.2

Medium Scale 89 89.4 89.2 89

Small Scale + Medium Scale 91 91.5 91.2 90.2

Medium Scale + Large Scale 91.2 91.7 91.4 91

Dual-Scale Transformer (Proposed) 91.5 92.1 91.8 91.2

Dual + Medium-Scale Transformer 92.0 92.4 92.2 91.8

Table 9.  Outcome on Ablation Studies (DDR Dataset).

 

Model Accuracy (%) Precision (%) Recall (%)

Proposed ADTATC 91.5 92.1 91.8

TAHDL 87.2 86.4 87.1

LSTM 85.4 84.8 85

Table 8.  Validation on DDR Dataset.
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Furthermore, the addition of a medium-scale transformer, processing intermediate patches (e.g., 32 × 32), 
resulted in a marginal accuracy improvement to 92.0%. While this configuration demonstrated the potential 
benefits of capturing intermediate-scale features, the computational overhead introduced by a third transformer 
needs careful consideration. The incremental performance gain suggests that the proposed dual-scale 
configuration already achieves an optimal balance between feature extraction and computational efficiency.

In summary, the ablation study underscores the critical role of the dual transformer architecture in the 
proposed DSTB. The combination of small-scale and large-scale transformers provides a synergistic advantage 
in capturing diverse spatial features, making it highly effective for DR detection. The findings also indicate that 
while extending the architecture to include a medium-scale transformer offers some benefits, the trade-off 
between accuracy and computational cost must be evaluated for practical applications.

Conclusion
A novel Attention Dual Transformer with Adaptive Temporal Convolutional (ADTATC) model is proposed in 
this research work as an innovative approach for detection of diabetic retinopathy (DR) . The proposed ADTATC 
incorporates dual transformers for enhanced spatial attention with adaptive temporal convolutional memory 
units to capture disease progression. The proposed model effectively addresses the limitations of traditional 
CNN, RNN, and even advanced TAHDL models by providing a detailed spatial–temporal analysis in complex 
medical imaging process. Experimental analysis confirms the proposed model superiority with an accuracy of 
98.2% and 97.4% for DRIVE and diabetic retinopathy datasets. The proposed model precision of 96.6%, recall 
up to 99.8%, and specificity nearing 98.2% for the DRIVE datasets outperforms existing learning algorithms. 
Similarly, the proposed model precision of 98.6%, recall up to 98.8%, and specifically nearing 98.6% for the 
diabetic retinopathy dataset exhibit its superior performance over existing learning algorithms. Though the 
proposed model is highly efficient however it has certain limitations such as increased computational complexity 
due to the dual transformer and adaptive memory architecture. Additionally, the model performs exceptionally 
well on labeled datasets and further validation on real time clinical data would strengthen its robustness in DR 
detection. Future work could explore optimizing the model architecture for faster inference and possibilities in 
incorporating unsupervised learning algorithms to adapt the model to broader clinical settings.

Data availability
The datasets analyzed during the current study are available in the Kaggle repository, [​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​
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t​i​c​​-​r​e​t​i​n​​o​p​a​​t​h​​y​-​d​e​t​e​c​​t​i​o​n​/​d​a​t​a]
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