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Abstract
Introduction: Central nervous system factors are now understood to be important in the etiology of temporomandibular disorders
(TMD), but knowledge concerning objective markers of central pathophysiology in TMD is lacking. Multivariate analysis techniques like
support vectormachines (SVMs) could generate important discoveries regarding the expression of pain centralization in TMD. Support
vector machines can recognize patterns in “training” data and subsequently classify or predict new “test” data.
Objectives: We set out to detect the presence and location of experimental pressure pain and determine clinical status by applying
SVMs to pain-evoked brain activity.
Methods: Functional magnetic resonance imaging was used to record brain activity evoked by subjectively equated noxious
temporalis pressures in patients with TMD and controls. First, we trained an SVM to recognize when the evoked pain stimulus was
on or off based on each individual’s pain-evoked blood–oxygen–level–dependent (BOLD) signals. Next, an SVM was trained to
distinguish between the BOLD response to temporalis-evoked pain vs thumb-evoked pain. Finally, an SVM attempted to determine
clinical status based on temporalis-evoked BOLD.
Results: The on-versus-off accuracy in controls and patients was 83.3% and 85.1%, respectively, both significantly better than
chance (ie, 50%). Accurate determination of experimental pain location was possible in patients with TMD (75%), but not in healthy
subjects (55%). The determination of clinical status with temporalis-evoked BOLD (60%) failed to reach statistical significance.
Conclusion: The SVM accurately detected the presence of noxious temporalis pressure in patients with TMD despite the stimulus
being colocalizedwith their ongoing clinical pain. The SVM’s ability to determine the location of noxious pressure only in patients with
TMD reveals somatotopic-dependent differences in central pain processing that could reflect regional variations in pain valuation.

Keywords: Neuroscience/neurobiology, Orofacial pain/TMD, Artificial intelligence, Brain function, Magnetic resonance imaging,
Support vector machines

1. Introduction

Temporomandibular disorders (TMD), which involve persistent
pain in the cheek and jaw area of the face, have an estimated
prevalence of approximately 11% in community samples.34

Temporomandibular disorder pain is a considerable impediment

to quality of life as nearly 80% of TMD sufferers report regular
discomfort eating and more than 40% report difficulty performing
their jobs.3 The importance of central nervous system factors in
TMD etiology has been well established. Neuroimaging has
revealed structural,13,37,38,44,56 functional,27,39,53,56 and neuro-
chemical14 aberrations in TMD. Multivariate analysis techniques,
including support vector machines (SVMs), could help uncover
the central mechanisms underlying altered pain processing in
TMD, and determine whether these changes are related to
ongoing clinical pain.

Support vector machines are machine learning algorithms that
can first be trained to recognize patterns in data and can then be
used to classify a separate set of data. These multivariate
techniques have recently begun to be implemented to study pain
processing in healthy individuals.4,5,7,25,35,42,47,52 For example,
Wager et al.52 were able to determinewhen healthy subjects were
experiencing noxious heat vs innocuous warmth based on each
subject’s pain-evoked brain activity, with 93% accuracy. They
found that the brain regions driving this classification were some
of those that are more generally known to be important for central
pain processing, including the insula and anterior cingulate cortex
(ACC). To extend this type of finding into the clinical realm, we first
asked whether an SVM can accurately detect the presence of
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a noxious stimulus, based on its evoked brain response, when
that stimulus is applied to a region where a person is experiencing
ongoing clinical pain. In addition, we questioned whether an SVM
can distinguish the location of noxious pressure based on evoked
brain activity, which could give insight into location-specific
somatotopic changes in pain processing because of regionally
defined clinical pain. Multivariate analyses have also been used to
determine clinical status in research settings. Three studies have
used structural neuroimaging data (eg, gray matter volume) to
classify pain patients vs controls, in irritable bowel syndrome
(accuracy 5 70%), chronic pelvic pain (73%), and chronic low
back pain (76%),1,30,51 and there is already some evidence that
stimulus-evoked brain responses can also be used to reliably
determine clinical status in patients with chronic back pain (CBP)
and fibromyalgia.6,22

In this study, we first used an SVM to identify when a noxious
pressure was being applied to the temporalis muscle vs when it
was not based on each individual’s pain-evoked brain response.
We hypothesized that it might be more difficult to detect the
presence of experimentally evoked temporalis pain in patients
with TMD compared with controls because of the patients’
ongoing clinical pain. Next, we attempted to differentiate between
the temporalis-evoked stimulation and noxious stimulation to
a remote, asymptomatic area (ie, the thumb), using brain activity
evoked by the 2 stimuli. We hypothesized that this would be
possible in patients with TMD, but not in controls, because in the
latter group neither area was clinically painful. Finally, we
attempted to determine clinical status (ie, TMD vs control) based
on temporalis-evoked brain activity.

2. Methods

2.1. Subjects

Ten patients with myofascial-type TMD (9 female) and 10 age-,
sex-, and ethnicity-matched healthy control (HC) subjects were
enrolled in the study. Results from other neuroimaging modality
analyses have been reported elsewhere.13,14,27

All subjects with TMD were carefully examined by a dentist
(GEG) with orofacial pain experience applying the research
diagnostic criteria for the diagnosis of myofascial-type TMD
(group 1a, 1b),11 and by an MD for medical history evaluation.
Subjects fulfilling only the Group I myofascial pain criteria were
eligible. Inclusion and exclusion criteria consisted of (1)
presence of pain in the face, jaws, or temples greater than
13 per week; (2) presence of pain symptoms for greater than 3
months; (3) meeting the research diagnostic criteria criteria for
myofascial pain group 1a, 1b; (4) no comorbidities of other
chronic pain disorders (eg, fibromyalgia or irritable bowel
syndrome). For HC subjects, the primary inclusion criterion
was the absence of TMD pain, or facial pain less than 13 per
week. Exclusion criteria for all subjects included physical
impairment (eg, complete blindness, deafness, or paraplegia),
or coexisting physical injury, any outstanding history of
systemic or medical conditions, psychiatric illnesses, sub-
stance abuse within 2 years, and presence of head or neck pain
other than masticatory myalgia. Nonsteroidal antiinflammatory
drugs and other over-the-counter analgesics were allowed until
3 days before the pain and scanning visits. Medication overuse
had been ruled out in all patients. All subjects were right
handed. Because menstrual cycle phase can be coupled with
pain symptoms,31 all female subjects participated in pain and
imaging visits within 3 days of menstrual onset. All study
participants gave written informed consent. The study protocol

and informed consent documents were approved by the
University of Michigan Institutional Review Board.

2.2. Clinical pain and behavioral data

Clinical pain was assessed using the Short-Form McGill Pain
Questionnaire (SF-MPQ),36 which consists of a visual analog
scale anchored on the left with “No Pain” and on the right with
“Worst Possible Pain.” A second component of the SF-MPQ
consisted of 11 sensory and 4 affective descriptors that are rated
as either “none,” “mild,” “moderate,” or “severe,” by subjects.
Jaw function status was measured using the Jaw Functional
Limitation Scale,40 which asks subjects about their limitations
during the past month. Mood was evaluated using the State-Trait
Personality Inventory.48 The State-Trait Personality Inventory is
a self-report tool that measures anxiety and depression
separately on a 4-point intensity scale.

Categorical scores that occurred in some of the above
instruments were converted to numerical scores. For all instru-
ments, numerical scores of individual items or sums across items
were calculated and used in analyses.

2.3. Experimental pain data

Experimental pressure pain data were collected for all subjects.
Pressure pain testing was conducted on the left anterior
temporalis and the left thumbnail (as a control area with no
clinical pain in either group) using the multiple random staircase
method (MRS) as previously described.16,19,23,27 Pain ratings
were recorded using a 21-box numerical descriptor scale,41

which was constructed from previously determined verbal
descriptors.15,17,18 Pressure pain testing resulted in 2 MRS levels
each for the thumbnail and anterior temporalis: medium pain
(pressures that elicited ratings of 7–8 on the descriptor box scale),
and high pain (pressures that elicited ratings of 13–14 on the
descriptor box scale).

Clinical pain, experimental pain, and demographic data were
analyzed for significant differences between groups in SPSS,
version 21, using the Mann–Whitney U test because of the
relatively small sample size. Differences were deemed signif-
icant at P , 0.01 after a Bonferroni correction for multiple
comparisons.

2.4. Neuroimaging data acquisition, preprocessing,
and analysis

Magnetic resonance imaging was performed on a 3.0 Tesla GE
Signa scanner (LX [VH3] release, Neuro-optimized gradients).
Evoked pressure–pain data were acquired using a T2*-weighted
spiral sequence (repetition time 5 2.5 seconds, echo time 5 30
milliseconds, flip angle 5 90˚, matrix size 64 3 64 mm with 48
slices, field of view 5 22 cm, and 3.44 3 3.44 3 3 mm voxels),
using a birdcage transmit-receive radio frequency coil. A high
resolution structural image (repetition time 5 1400 milliseconds,
echo time 5 1.8 milliseconds, flip angle 5 15˚, field of view 5
2563 256, yielding 124 sagittal slices with a defined voxel size of
1 3 1 3 1.2 mm) was acquired using T1-weighted spoiled
gradient echo inversion recovery sequence for each subject.
Inspection of individual T1 images revealed no grossmorphologic
abnormalities for any subject. Each subject underwent 2
functional magnetic resonance imaging–evoked pressure pain
scans: during the first, pressure was applied to the left thumbnail
and in the second it was applied to the left anterior temporalis, as
previously described.19 We chose to conduct the thumb run first
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to minimize any carryover effects that might have occurred after
stimulation of a clinically painful area in patients with TMD. Pres-
sures eliciting high andmedium pain, previously determined in the
behavioral session of the MRS testing, were used to evoke painful
responses during scans for the thumbnail and anterior temporalis,
respectively, so as to measure Blood–oxygen–level–dependent
(BOLD) activations. Each scan lasted 10minutes. Pressures were
applied in a pseudo-random fashion and were interleaved with an
“off” conditionwhere no pressurewas applied. Both the thumbnail
and face runs each contained a total of 12 pain blocks (6 medium,
6 high; each block 25 seconds in duration) and 12 off blocks (each
block 25 seconds in duration).21,27

Functional magnetic resonance imaging data for the thumbnail
and face evoked scans were preprocessed and analyzed using
FSL (www.fmrib.ox.ac.us/fsl) and SPM (http://www.fil.ion.ucl.ac.
uk/spm/) software packages. SPM version 8 was run in MATLAB
7.5b (Mathworks, Sherborn, MA). Preprocessing steps included

slice-timing correction, motion correction, normalization to
Montreal Neurological Institute (MNI) space, and spatial smooth-
ing (8 mm FWHM Gaussian kernel). Subject head motion was
assessed by evaluating 3 translations and 3 rotations for each
scan. Translational thresholds were set to 62 mm, and rotation
thresholdswere set to61˚. A subject was to be excluded from the
analysis if head motion exceeded either of the thresholds in 1 of
the 6 dimensions, though none of the participants exceeded
them.

To rule out the potential that the SVM was detecting
differences in head motion between groups and/or conditions,
we assessed average stimulation-induced head movement for
the thumb and temporalis pain. Mean headmotion (6 parameters
total) was calculated for each participant. Separate analysis of
variances were conducted for translational and rotational
movement parameters.

2.5. Support vector machine analysis

An SVM analysis was performed using the LIBSVM toolbox,
withinMATLAB, version 3.18.8 A linear kernel with parameter C5
1 was implemented (no improvement was found doing a C
parameter line search).

For the first analysis, examining prediction of pain vs rest in the
functional runs, the input data were the BOLD images for the pain
runs, with each volume labeled as pain or rest (medium and high
pain were both labeled as pain). To minimize signal decay effects
from prolonged pain stimuli,26 the data from the first half of each
block (pain or rest) was used. Training was then performed on the
first half of the run, with testing performed on the second half.
Prediction accuracy was defined as the number of test volumes
correctly predicted.

For the second analysis looking at classification of thumb vs
face pain, the input data were the general linear model (GLM)
pain vs rest contrast maps for each run, with each map labeled
as thumb or face. Leave-one-run-out cross-validation was used
to calculate classification accuracies and predicted values. The
2 groups were analyzed separately.

Table 1

Demographics and behavioral data.

TMD (mean 6 SD) HC (mean 6 SD) P Effect size

Demographics, y
Age 24.9 6 1.2 26.9 6 4.4 0.345 0.21
Pain duration 2.3 6 2.0 0.0 6 0.0 <0.001 0.90

Clinical pain
SF-MPQ affective 0.5 6 0.8 0.0 6 0.0 0.068 0.41
SF-MPQ sensory 5.6 6 4.2 0.4 6 1.3 <0.001 0.80
SF-MPQ total 6.1 6 4.9 0.4 6 1.3 <0.001 0.80
VAS 2.2 6 1.5 0.3 6 0.6 0.002 0.68

Experimental pain, kg/cm2

MRS med thumb 2.1 6 1.0 2.8 6 1.8 0.535 0.14
MRS high thumb 3.4 6 1.1 3.7 6 1.3 0.605 0.12
MRS med face 1.4 6 0.8 1.6 6 0.9 0.682 0.09
MRS high face 3.8 6 2.3 2.9 6 2.2 0.289 0.24

Mood
STPI anxiety 17.4 6 5.7 12.6 6 2.7 0.043 0.45
STPI depression 16.2 6 6.0 11.0 6 1.9 0.016 0.54

Function
JFLS mastication 9.8 6 8.4 0.6 6 1.1 0.002 0.69
JFLS mobility 3.7 6 3.9 0.1 6 0.3 0.003 0.67
JFLS Verb/Emot 3.1 6 3.6 1.1 6 2.4 0.077 0.40

Bolded P values indicate statistically significant differences between groups after Bonferroni correction for multiple comparisons (ie, 5 categories; P , 0.01).

HC, healthy control; JFLS, Jaw Functional Limitation Scale; MRS, multiple random staircase; SF-MPQ, Short Form–McGill Pain Questionnaire; STPI, State Trait Personality Inventory; TMD, temporomandibular disorder; VAS,

visual analog scale; Verb/Emot, verbal and emotional.

Table 2

Individual prediction accuracies for temporalis pain vs off.

Subject Prediction accuracy

Healthy control TMD

1 56.14 52.63

2 64.91 68.42

3 73.68 77.19

4 80.7 87.72

5 82.46 91.23

6 84.21 92.98

7 96.49 92.98

8 96.49 92.98

9 98.25 96.49

10 100 98.25

Average (SD) 83.33 (15.01) 85.09 (14.64)

TMD, temporomandibular disorder.
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For the classification of subjects with TMD vs controls, the
input data were the GLM pain vs rest contrast maps for each
subject from the temporalis run, with eachmap labeled as TMDor
control. Leave-one-subject-out cross-validation was used to
calculate classification accuracies and predicted values.

For all analyses, SVM model weights were averaged across all
instances to investigate spatial distribution of the significant
weights driving the models. Permutation testing was performed
to generate significance levels for the model weights, by
permuting the treatment labels 100 times for each leave-one-
out instance, resulting in 2000 model weight instances for each
voxel location, allowing significance to be calculated by the
number of times a model weight occurred in the histogram.
Significant values were overlaid on reference anatomy, and the
contrast values of the most significant areas were plotted to
examine their relationship to the multivariate pattern.

3. Results

3.1. Demographics, clinical pain, and behavioral data

Complete behavioral results are presented in Table 1. Patients
with temporomandibular disorder were found to have significantly
more clinical pain than the HC group based on the SF-MPQ
sensory component, the total score, and the VAS. The Jaw
Functional Limitation Scale revealed significant functional limi-
tations in the mastication and mobility, but not verb/emot, of
patients with TMD. After Bonferroni correction, the 2 groups did
not differ significantly with respect to mood on any of the
measures tested. When comparing experimental pain between
the 2 groups, patients with TMD did not differ significantly from
controls in pressure pain sensitivity on the thumb or the face.

3.2. Head motion

Two 2 3 2 3 3 repeated-measures analysis of variances (site
[thumb vs temporalis] 3 group [HC vs TMD]3 dimension [x y z])
revealed no significantmain effects of site (F(1,18)5 0.43,P5 0.52
and F(1,18)5 0.38,P5 0.55) or group (F(1,18)5 0.66,P5 0.43 and
F(1,18) 5 0.02, P5 0.89) for translational or rotational movement,
respectively. Likewise, the interactions between group and
stimulation site were not significant for translational (F(1,18) 5
1.16, P5 0.30) or rotational (F(1,18)5 0.67, P5 0.42) movement.
Thus, head motion did not differ between groups, between
stimulation sites, or between sites differentially for the 2 groups.

3.3. Support vectormachine prediction of evoked temporalis
pain vs rest

By training on the first half and testing on the second half of each
run, and vice versa; the average prediction accuracy was
significantly better than chance in all cases (P , 0.0001), 84.2
(614)% for the 2 groups combined, 85.1 (614.6)% in subjects
with TMD, and 83.3 (615)% in controls (Table 2 for individual
prediction accuracies). Figure 1A shows the average prediction
results as a function of scan number.

The average weight vector maps, depicting the regions of the
brain that were most predictive in the SVM classifying pain vs off,
for all subjects combined are shown in Figure 1B. Significant
regions included some classical pain processing regions like
bilateral insula, ACC, and precuneus. A complete list of significant
clusters is provided in Table 3.

In the TMD group, there was a significant negative correlation
between clinical pain level (MPQ total) and percent correct,

meaning that the SVM was less effective in discriminating
between temporalis-evoked pain and rest in individuals with
higher ongoing clinical pain (Fig. 1C).

3.4. Support vectormachine prediction of face pain vs thumb
pain in patients with temporomandibular disorder
and controls

Using a leave-one-out classification on the GLM contrasts for
both the face pain run and thumb pain run in subjects with
TMD, prediction accuracy was 75%, which was significantly
better than chance (P 5 0.02) (Fig. 2A). In contrast, the SVM
was not able to differentiate the brain response to thumb pain
vs temporalis pain in HC subjects. Accuracy in this case was
55%, no better than chance performance (P 5 0.25). The
average weight vector maps, depicting the most predictive
regions, for patients with TMD are shown in Figure 2B. There

Figure 1. Classification of pain vs off. (A) The mean prediction plot for
temporalis-evoked pain vs rest for all subjects. Ideal prediction in blue, actual
prediction in red, and decision plane at 0 in green. (B) Mean weight vector
maps for face pain vs rest in all subjects. Pain. rest in orange, rest. pain in
blue. Brighter colors indicate higher predictive value. (C) Negative correlation
in patients with TMD between classification accuracy and SF-MPQ Total
Score. Confidence intervals of 95% are shown in blue. Two patients have
identical coordinates (x 5 92.98, y 5 3). SF-MPQ, Short form McGill Pain
Questionnaire; SVM, support vector machine; TMD, temporomandibular
disorder.
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was a significant positive correlation between operculum
BOLD response to thumb pain and MPQ score. The more
clinical pain a patient reported, the higher the opercular
activity was in response to thumb pain (Fig. 2C).

In addition, there was a trend toward a significant relation-
ship between TMD clinical pain level and the accuracy of
differentiating experimental pain location. Patients were
grouped based on whether the algorithm correctly identified
both runs, which it did for 6 patients. MeanMPQ total score for
them was 8.0 (65.6), whereas it was 3.3 (61.3) in the 4
patients for whom 0 or 1 location was correctly identified. A
Mann–Whitney U test showed that the difference in clinical
pain between these groups trended toward being statistically
significant (z 5 1.77; P 5 0.077; effect size 5 0.56), where
higher clinical pain was associated with better prediction
accuracy of pain location.

3.5. Support vector machine prediction of patients with
temporomandibular disorder vs controls

Using a leave-one-out classification on the temporalis pain run
GLM contrasts, the average prediction accuracy was 60%. This
only approached statistical significance (P 5 0.10).

4. Discussion

In this study, patients with TMD and HCs were subjected to
noxious pressure on the temporalis muscle, an area affected
with clinical pain in most patients with TMD, and on the thumb,
an unaffected remote area that was used as a control. The
BOLD response to noxious pressure applied to the temporalis
was analyzed using an SVM to make several classifications,
including (1) the presence (vs absence) of the noxious
stimulus, (2) noxious pressure applied to the temporalis vs
the thumb, and (3) clinical status as a patient or a control. The
results showed an excellent ability to determine when noxious
pressure was being applied to the temporalis, in both patients
and controls. The ability to distinguish between temporalis-
and thumb-evoked pain was significantly higher in patients
with TMD; the SVM was unable to distinguish between the
signals evoked from the 2 locations in control subjects.
Finally, we were unable to predict clinical status using

temporalis pain–evoked BOLD responses, though the accu-
racy approached significance.

4.1. Detection of pain and its location

Multivariate pattern analysis techniques have been used to study
pain processing in healthy subjects, using both functional
magnetic resonance imaging4,5,7,35,42,52 and electroencepha-
lography.25,47 These studies have all used either thermal- or laser-
evoked noxious stimulation, but their detection rates for those
types of pain (ranging from 61% to 93%) were similar to our
detection of pressure pain (84%). Previous multivariate studies
also found similar brain areas that drove the classification of pain,
such as the insula, somatosensory, and cingulate corti-
ces.4,5,35,52 The fact that the SVM was able to detect a signal
against the underlying backdrop of colocalized chronic pain in the
patients with TMD, and using regions similar to those detected in
healthy subjects, suggests that the induced neural signals were
strong enough to still enable accurate classification. However, the
correlation between clinical pain and SVM detection accuracy in
patients suggests that the results might differ within TMD. The
relative inability to detect experimental pain in those with high
clinical pain would be expected if the experimental pain had an
increased carry-over effect into the off blocks due to increased
aftersensations or sensitization,43 which would have introduced
additional noise to the BOLD contrast for evoked pain.

To our knowledge, this study is the first to attempt to determine
the location of a noxious stimulus using SVM, by inclusion of both
a temporalis- and a thumb-evoked pain. Physical stimulus
intensities were tailored to accommodate differences in exper-
imental pain sensitivity both within- (ie, location) and between-
individuals, which should have normalized the magnitude of
evoked cortical activity.10 The SVMwas able to accurately detect
the difference between evoked thumb and face pain in patients
with TMD, but not in controls, indicating differences in the way
experimental pain is processed when applied to a symptomatic
region of the body. These differences included decreased
responses to temporalis-evoked pain in the left orbitofrontal
cortex, ACC, and operculum. These regions have been shown to
be involved in the cognitive valuation of pain,29,55 which might be
expected to differ depending on whether experimental pain is
applied to a clinically painful region of the body. This result

Table 3

Brain regions from significant weight vector maps contributing to the performance of the SVM.

Brain region Direction Peak coordinates (MNI) Cluster size, number of voxels

x y z

All subjects: face pain vs rest
Left mid temporal gyrus Face . rest 257 225 11 751
Left anterior insular cortex Face . rest 248 20 22 751
Right anterior insular cortex Face . rest 54 14 4 256
Right mid temporal gyrus Face . rest 66 252 4 202
Right precuneus/posterior cingulate cortex Face . rest 3 258 34 200
Right postcentral gyrus (BA 6) Face . rest 51 210 28 151
Left dorsolateral prefrontal cortex Rest . face 260 20 22 654
Left superior temporal gyrus Rest . face 248 231 13 282
Left posterior cerebellum Rest . face 218 267 250 176
Right inferior parietal lobule Rest . face 51 228 19 144

TMD subjects: face pain vs thumb pain
Right superior frontal gyrus Face . thumb 26 48 16 369
Left orbitofrontal cortex Thumb . face 220 56 28 212
Left anterior cingulate cortex Thumb . face 22 26 24 136
Left operculum Thumb . face 254 14 14 92

MNI, Montreal Neurological Institute; SVM, support vector machine; TMD, temporomandibular disorder.
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indicates that the location of a stimulus can be assessed using
machine learning by its cognitive valuation, even when the mode
of stimulation (eg, noxious pressure) and its perceived intensity
are held constant.

Whereas higher clinical pain made detection of temporalis-
evoked pain less accurate in the TMD group, it trended toward
making differentiation of pain location more accurate. Although
speculative, it may be that clinical pain’s regional effect on the
valuation of experimental pain is proportional to its intensity.
Larger samples should permit a more rigorous analysis of how
SVMs can be used to identify differences in central pain
processing within groups of patients with TMD.

4.2. Detection of clinical status

There has also been some success of classifying patients with
chronic pain vs control subjects using structural and functional
MRI. Differences in regional gray matter volume have been used
to distinguish cohorts of chronic back and pelvic pain and irritable
bowel syndrome from controls at accuracies ranging from 70%
to 76%.1,30,51 Perhaps most similar to this study’s attempt
to classify clinically using functional data, Callan et al.6 were
able to differentiate patients with CBP from controls with 92%
accuracy, using a sparse logistic regression and data based on
BOLD responses to noxious electrical stimulation applied to the
back. It is unclear whether their superior classification accuracy
was due to the differences in methods (eg, electrical vs pressure
stimulation, sparse logistic regression vs SVM, high vs low
sample size, etc) or differences between TMD and CBP. More
research will be needed in this regard.

Finally, there is also a recent study demonstrating that patient
classification can also be achieved using nonnoxious stimulus-
evoked brain responses. Here, BOLD responses to a flashing
checkerboard (perceived to be unpleasant by many) were able to
differentiate patients from controls with 82% accuracy using
SVM.22 Furthermore, in a smaller subset of patients who
underwent a crossover pregabalin/placebo treatment, degree
of right insula activation by the visual stimulus was positively
correlated with responsiveness to pregabalin, and classified drug
vs placebo with 82% accuracy. Presumably, in centralized pain
like FM, generalized hypervigilance and hypersensitivity across
sensory modalities is reflected in functional brain differences that
reliably distinguish patients from controls. It remains to be seen
whether these findings are replicated in other conditions with
centralized pain.

Temporomandibular disorder is a highly heterogeneous group
of disorders involving the TMJ and surrounding structures, and
there is ample evidence that many patients have centralized
changes in pain processing,9,14,24,28,32,33,45 often marked by
widespread hyperalgesia. In this study, there were no significant
differences between the groups in pressure pain sensitivity or
pain-evoked BOLD response for a location remote from the TMJ
(the thumb), suggesting that pain centralization was not causing
widespread hyperalgesia in this sample of patients. This is likely
due to our exclusion of patients with TMD whose pain was not
well localized to the TMJ and surrounding muscles and
individuals with a variety of comorbid conditions, who would be
expected to have more pronounced pain centralization.2

4.3. Limitations

This study’s small sample size increases the possibility of model
overfit, poor generalizability, and type I and II errors, so the results
must be interpreted with caution. Only 2 of our patients with TMD
had high levels of clinical pain, and the reported relationships (eg,
Figs. 1C, 2C) within TMD are not significant with those subjects
removed. These relationships will need to be examined again in
larger samples, including patients with TMD who have higher
levels of clinical pain and more evidence of pain centralization.20

4.4. Future directions

However, despite its small sample size and a TMD cohort that
possessed relatively low levels of clinical pain, this study revealed
patient-specific differences in the brain response to noxious
temporalis pressure. The fact that SVMs were able to detect
differences between patients with HCs and TMD using noxious

Figure 2. Classification of evoked pain location in patients with TMD. (A)
Classification accuracy for temporalis vs thumb pain. Predictions for the thumb
are in red, predictions for the face are in blue, and the decision plane at 0 is in
green. (B) Mean weight vector maps for temporalis pain vs thumb pain.
Regions within the anterior cingulate cortex and operculum depict thumb .
face. Brighter colors indicate higher predictive value. (C) Correlation between
mean vector weights and SF-MPQ total scores. Confidence intervals of 95%
are shown in blue. L, left; R, right; SF-MPQ, Short Form McGill Pain
Questionnaire; SVM, support vector machine; TMD, temporomandibular
disorder.
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pressure stimuli that were tailored to produce equal perceived
pain intensity across the 2 groups and locations shows the
sensitivity of using SVM to assess and categorize pain-evoked
brain activity.

Because TMD serves as a label for where the pain is perceived
more than an explanation of its etiology, it is important to
understand interpatient variance in degree of pain centralization,
but this is rarely considered when choosing treatment course for
TMD. Many providers perform a peripherally focused treatment
such as an occlusal splint or physiotherapeutic techniques,54

whereas the central changes that are often apparent in TMD and
other chronic pain conditions are left untreated. To its credit,
however, the TMD Diagnostic Criteria46 do provide an axis on
which biopsychosocial variables can be assessed, and some
studies show improvement in prognosis for those who score high
on this axis when a centrally acting treatment (eg, cognitive
behavioral therapy) is implemented along with usual standard of
care.12,49,50 Further research is needed to determine whether
SVMs can help identify subtypes of patients who have been
diagnosed with TMD and whose pain might have a more
peripheral vs a central etiology, which could be clinically useful;
however, the gold standard of TMD diagnosis will continue to be
self-reported pain. Pain biomarkers, where found, should never
be used to replace or undermine the experience of the patient.
Nevertheless, even in the immediate future, many patients will feel
that their symptoms are vindicated by the presence of objective
central findings as reported in studies such as this one.

4.5. Conclusions

This study provides a first step toward applying machine learning
algorithms to TMD and shows that pain may be processed
differently, despite controlling for its intensity, depending on
whether it is applied to a clinically painful area.
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