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One criterion when selecting the number of principal components (PCs) to be considered

in a principal component analysis (PCA) is the fraction of overall variance that each PC

represents. When applying a PCA to kinematic marker data in postural control research,

this criterion relates to the amplitude of postural changes, recently often called “principal

(postural) positions” (PPs). However, in the assessment of postural control, important

aspects are also how fast posture changes and the acceleration of postural changes,

i.e., “principal accelerations” (PAs). The current study compared how much of the total

position variance each PP explained (PP_rVAR) and how much of the total acceleration

variance each PA explained (PA_rVAR). Furthermore, the frequency content of PP and PA

signals were evaluated. Postural movements of 26 participants standing on stable ground

or balancing on amultiaxial balance boardwere analyzed by applying a PCA on 90marker

coordinates. For each PC, PP_rVAR, PA_rVAR, and the Fourier transformations of the

PP and PA time series were calculated. The PP_rVAR and the PA_rVAR-distributions

differed substantially. The PP-frequency domain was observed well below 5Hz, the

PA-frequency domain up to 5Hz for stable standing and up to 10Hz on the balance

board. These results confirm that small-amplitude but fast movement components can

have a higher impact on postural accelerations—and thus on the forces active in the

system—than large-amplitude but slow lower-order movement components. Thus, PA

variance and its dependence on filter frequencies should be considered in dimensionality

reduction decisions.

Keywords: movement strategy, neuromuscular control, filtering, frequency analysis, principal component analysis

PCA, principal acceleration

INTRODUCTION

Principal component analysis (PCA) is an unsupervised data analysis procedure often used as a
preprocessing step, e.g., to improve performance or for dimensionality reduction, before more
complex machine learning procedures are applied. If applied in the analysis of human motion,
a PCA can by itself reveal interesting information about the coordinative structure of complex
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whole-body movements. Accordingly, applying a PCA on
kinematic data has received increasing attention in research on
several kinds of human movements, such as reaching (Longo
et al., 2019), karate kicking (Zago et al., 2017a), juggling (Zago
et al., 2017b), skiing (Federolf et al., 2014; Gløersen et al., 2018;
Pellegrini et al., 2018), or walking (Troje, 2002; Daffertshofer
et al., 2004; Verrel et al., 2009; Zago et al., 2017c).

One of the main purposes for performing a PCA on kinematic
data—or in fact on any dataset—is the idea that the entire
variance in the data can often be approximated to high accuracy
with only a limited number of principal components (PCs). One
of the most common criteria for choosing the number of PCs is
the eigenvalue spectrum, which represents the variance explained
by each PC and which can be expressed in relative values, i.e., as
a percentage of the entire variance in the data.

A research area where PCA has been particularly frequently
applied on kinematic human movement data is research on
postural control (Federolf et al., 2013; Federolf, 2016; Haid and
Federolf, 2018; Haid et al., 2018, 2019; Promsri et al., 2018,
2019, 2020a,b; Wachholz et al., 2019a,b). In postural control
studies, when PCA is applied to kinematic data, it decomposes
the complex multi-segment whole-body movements into a set
of one-dimensional movement components, called “principal
movements” PMk, where k is the order of the movement
component (Federolf et al., 2013; Federolf, 2016). Previous
research has shown that the lower-order PMk represent in
close approximation the classical motor strategies (Horak and
Nashner, 1986; Winter, 1995), i.e., the ankle or hip strategies
(Federolf, 2013). If PCA is calculated on normalized data from
different volunteers, then a subject-specific relative explained
variance can be calculated in analogy to the eigenvalues, which
quantify the explained variance for the whole dataset and are
thus not subject-specific. The relative explained variance-spectra
provide one criterion for howmanymovement components PMk

one wants to consider in the analysis (Federolf, 2013; Haid et al.,
2019).

However, analyzing the different postures observed during
a measurement sequence may not be the only variable of
interest. How fast the posture changes and how much a postural
change is accelerated, also provide valuable information. We
have shown in previous papers, that Newton’s mechanics can
be applied to the PCA-based posture space by defining a
“principal (postural) position” (PPk) for each PM and their time
derivatives, principal velocity (PVk) and principal acceleration
(PAk) (Federolf, 2016; Longo et al., 2019). The PAk are of
interest, since they relate to forces acting in the system and
thus to the neuromuscular control of the postural movements
(Federolf, 2016; Haid et al., 2018; Promsri et al., 2018, 2019,
2020a,b; Haid and Federolf, 2019; Wachholz et al., 2019a,b,
2020). We want to emphasize here that the PAk obtained by
double-differentiation of the PPk time series (Federolf, 2016;
Longo et al., 2019) are different variables than when a PCA is
performed directly on acceleration data (Verheul et al., 2019):
The former can be seen as an expansion of the movement
strategy concept (Horak and Nashner, 1986; Winter, 1995),
since the PAk quantify the acceleration of the considered
movement components/movement strategies; the latter PCA

identifies correlated patterns directly in acceleration data, which
yields a different solution.

Differentiation is a non-linear operation and, consequently,
the relative variance spectra of the PPk differ from the PAk

relative variance spectra (Longo et al., 2019). Particularly in
postural control it is likely that large-amplitude, yet slow
movement components influence the PA-spectrum less than
small-amplitude, but fast movement components. The PA-
explained variance spectrum could be a second important
criterion for the decision on how many PMk should be
considered in an analysis (Longo et al., 2019). Unfortunately,
noise amplification in differentiation makes a filtering of the PPk
signals necessary before PVk and PAk are calculated (Winter
et al., 1974), and since the PAk variance spectra are speed-
dependent, they will change with the filter cut-off frequency used
before the differentiation.

In summary, when applying a PCA to investigate the
coordinative structure of postural control movements, both the
principal positions (PPk) and the principal accelerations (PAk)
are of interest since they provide relevant information on the
composition of the postural movements and on the control of the
movement components, respectively (Promsri et al., 2020a). Both
the PPk- and PAk-spectra should be considered when selecting
the number of movement components to be analyzed, however,
the PAk-spectra are speed- and thus filter frequency-dependent.
Thus, the purposes of the current Brief Research Report were (i)
to compare the PPk and PAk relative variance spectra for postural
control data; (ii) to evaluate the frequency content of the PPk and
PAk time series; and (iii) to assess how the PA relative variance
spectrum depends on the filtering cut-off frequency.

MATERIALS AND METHODS

Participants
Twenty-six physically active young adults (14/12 males/females,
age 25.3± 4.2 years, weight 70.7± 11.4 kg, height 175.0± 8.1 cm,
physical activity participation 8.4 ± 5.4 h/weeks [mean ± SD])
with no neuromuscular injuries/disorders and no specific balance
training participated in the current study. All volunteers provided
informed consent and the study protocol had been approved by
the Board of Ethical Questions in Science of the University of
Innsbruck, Austria (Certificate 16/2016).

Measurement Procedures
Participants were equipped with 39 reflective-markers according
to the “Plug-In Gait” marker setup (Vicon Motion Systems Ltd.,
Oxford, UK). Two 80-s barefooted-bipedal balancing trials, one
for each support surface, were completed in randomized order
on a firm surface (FS) and on a wobble board (WB; Powrx
Balance Board; POWRX GmbH., Germany). After completing
the first trial, participants could rest for up to 3min. For the
WB condition, volunteers had a 15-s familiarization trial with
no instruction or feedback. Postural movement trajectories were
captured by a standard 8-camera motion tracking system (Vicon
Bonita B10 cameras with Nexus 2.2.3 software; Vicon Motion
Systems Ltd., Oxford, UK) using a sampling rate of 250 Hz.
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To standardize the standing position
(Supplementary Figure 1), participants were asked to place
two marked points (base of each 2nd metatarsal bone) over a
horizontal line taped on the floor for FS or over a horizontal
diameter of the WB; to align the inside of the feet (the medial
borders of each distal end of the first metatarsal bone) with tapes
defining an individual inter-feet distance (15% of biacromial
diameter); to rest their hands on the hips; and to look straight
ahead at a 10-cm-diameter red-circle target on a wall at the
individual eye level ∼5m away. To standardize the position of
the wobble board, we placed the center of the wobble board over
the center of a reticle cross-line marked on the floor. During
testing, volunteers were asked to stand still for the FS or to
keep the board horizontal for the WB; to avoid any voluntary
movements; and to keep their eyes on the target.

Data Analysis
Kinematic Data Pre-processing
All data processing was conducted in Matlab (MathWorks Inc.,
Natrick, MA, USA). The pre-processing steps and the PCA
analysis were conducted based on earlier studies (Federolf, 2016;
Promsri et al., 2018, 2019, 2020a). Briefly, any gaps in marker
trajectories were filled by a PCA-based reconstruction technique
(Federolf, 2013; Gløersen and Federolf, 2016). Two PCAs were
performed, one for each balancing condition (Promsri et al.,
2020a). The middle 60 seconds of each balancing trial were
extracted and nine asymmetrical markers placed on the upper
arms, lower arms, right scapular, upper thighs, and the lower
thighs were omitted. In analogy to previous studies (Troje, 2002;
Daffertshofer et al., 2004; Verrel et al., 2009; Federolf, 2016), the
3D coordinates (x, y, z) of the remaining 30 markers of each
dataset at a given time t were interpreted as 90-dimensional
posture vectors:

−→
p(t)=

[

x1(t) , y1 (t) , z1 (t) ,. . .,x30 (t) , y30 (t) , z30 (t)] (1)

Three pre-processing steps were then conducted. First, the
posture vectors were centered by subtracting the subject’s mean
posture vector. For each subject, subj, a mean posture vector:

−−→

psubj=
[

x1 , y1,. . ., z30

]

(2)

where the bar over the variable indicates the mean over time,
x = meant(x (t) ), was subtracted from each posture vector:

−−→

p
′

(t) =
−−→
p (t) −

−−→

psubj (3)

This procedure is the first step toward removing anthropometric
differences (Federolf, 2016). The PCA was, therefore, conducted
on deviations from a subject’s mean posture, i.e., on postural
movements. Second, the centered posture vectors were

normalized to the mean Euclidean distance dsubj (Federolf, 2013,

2016). Thus, for each posture vector
−−→

p
′

(t) the Euclidean norm:

dsubj(t) = (

√

x1 (t)2 + y1 (t)2 + z1 (t)2 + . . . + z30 (t)2) (4)

was calculated and the
−−→

p
′

(t) were then divided by the mean of
these Euclidian distances:

−−→

p
′′

(t) =
1

dsubj

−−→

p
′

(t). (5)

Third, the normalized posture vectors were weighted using sex-
specific mass distributions (Gløersen et al., 2018). Specifically,
for each marker i a weight factor wi was calculated by dividing
the relative weight of the segment to which the marker was
attached, ms, by the number ns of markers on this segment.
For markers placed on joints, the masses of both segments were
added. For example, wi for the knee markers was calculated as
wi =

mthigh

nthigh
+

mshin
nshin

with nthigh = nshin = 3, mthigh = 14.16%,

andmshin = 4.33% formen (de Leva, 1996). Thus, the normalized
postural movement vectors had the form:

−−−→

p
′′′

(t) =
1

dsubj

[

w1

(

x1 (t) − x1subj
)

, w1

(

y1 (t) − y1subj
)

,
]

[

. . . ,w30

(

z30 (t) − z30subj
)]

(6)

TABLE 1 | The relative explained variance of principal position PP_rVAR (%) and a

qualitative description of the movement patterns represented by the first ten

principal movements (PM1−10).

PM PP_rVAR (%) Main movements

A: Firm surface

1 64.4 ± 16.3 Anteroposterior ankle strategy

2 19.9 ± 13.5 Mediolateral ankle strategy (lateral weight shift)

3 4.8 ± 3.8 Anteroposterior hip strategy

4 2.3 ± 1.9 Transverse rotation of pelvis and upper body

5 1.8 ± 1.8 Vertical breathing movement patterns

6 1.3 ± 0.8 Vertical breathing movement patterns

7 1.0 ± 1.4 Anteroposterior trunk flexion coupled with knee flexion

and extension

8 0.7 ± 1.0 Breathing; small chest movements

9 0.6 ± 0.7 Retraction and protraction of shoulders

10 0.4 ± 0.4 Upper body movement

B: Wobble board

1 29.9 ± 8.5 Mediolateral ankle strategy (lateral weight shift)

2 24.2 ± 8.3 Anteroposterior ankle strategy

3 17.9 ± 10.5 Transverse; twisting of the board coupled with the

whole-body rotation

4 11.7 ± 8.2 Anteroposterior hip strategy coupled with

anteroposterior ankle strategy

5 5.0 ± 3.0 Vertical hip, knee, and ankle flexion/extension

6 3.7 ± 1.3 Mediolateral hip strategy coupled with mediolateral ankle

strategy

7 1.6 ± 0.8 Diagonal lateral weight shift

8 1.1 ± 0.6 Anteroposterior ankle plantarflexion/dorsiflexion

9 1.1 ± 1.9 Twisting of the board coupled with the whole-body

rotation

10 0.5 ± 0.3 Lateral weight shift and with small rotation

Together, PM1−10 explained 97.2 and 96.7% of the overall postural variance when

balancing on (A) firm surface, and (B) wobble board, respectively.
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Then, the normalized posture vectors
−−−→

p
′′′

(t) from all volunteers
were concatenated to form a 390,000 × 90-PCA input-matrix
(250 [sampling rate] ∗ 60 [trial duration] ∗ 26 [number of
subjects]× 90 [marker coordinates]).

Principal Component Analysis
The PCA was calculated by a singular-value decomposition
of the input matrix’s covariance matrix and produced

a set of PC-eigenvectors,
−−→
PCk, which form a new basis

for the vector space of marker positions (Haid et al.,
2019). All PC-eigenvectors are linear combinations of
the original marker coordinates. Animated stick figures
can be created from the mean postures and from each
eigenvector to characterize the principal movements PMk

(Federolf et al., 2013; Federolf, 2016). The time evolution
of each PMk, i.e., the PPk(t), were obtained by a coordinate
transformation of the normalized posture vectors onto

FIGURE 1 | Illustration of the first ten principal movements (PM1−10) of bipedal standing on (A) the firm surface and bipedal balancing on (B) the wobble board. Gray

and black lines/dots show the extreme posture in opposite directions. Movement amplitudes are amplified using the indicated factor for a better visualization (Firm

surface: amplification 10× for PM1−5, and 20× for PM6−10; Wobble board: amplification 1× for PM1−5, and 2× for PM6−10). Movements are clearer and can be more

easily characterized when viewed in animated stick figure videos: Supplementary Videos S1, S2 for balancing on the firm and soft surfaces, respectively.
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the PCA-eigenvectors.

PPk(t) =
−−−→

p
′′′

(t) ·
−→
PCk

The PPk(t) represent positions in posture space, i.e., how much
the posture at time t deviates in the direction of the PCk-
eigenvector from the mean posture (Federolf, 2016). In other
words, the PPk(t) represent the amplitude of each movement
component PMk. The variance of each PPk(t), divided by
the sum of the variances of all PPk(t), results in a variable
relative explained variance of principal position PP_rVARk that
quantifies for each volunteer and each order k, how much the
specific PMk contributed to the whole postural movements of
the subject.

In analogy to Newton’s mechanics and differentiation rules,
the rate of postural change can be quantified by principal
velocities PVk(t), i.e., by the first time derivative of the PPk(t),
PVk=

d
dt PPk; and the acceleration of postural movements can

be quantified by principal accelerations PAk(t), i.e., by the second

time derivative of the PPk(t), PAk=
d2

dt2
PPk (Federolf, 2016). In

case of unperturbed human postural control, PAk(t) are either a

direct result of muscle activation, a result of the neuromuscular
system utilizing gravity to produce desired accelerations, or an
undesired result of gravity which the neuromuscular system
was not able to prevent e.g., loss of stability (Promsri et al.,
2020a). In this sense, the PAk(t) are the essential mechanical
variables that the sensorimotor system must control in order to
govern the body’s motion and maintain its stability. Thus, each
PAk(t) represents a variable that quantifies how the mechanical
system is controlled (Federolf, 2016; Promsri et al., 2020a).
In analogy to PP_rVARk, we calculated the variable relative
explained variance of principal acceleration PA_rVARk to assess
howmuch each movement component contributed to the overall
postural accelerations in the individual subjects.

Due to noise amplification in the differentiation processes
(Winter et al., 1974), filtering of the PPk(t) is needed before
computing PVk(t) and PAk(t). The current study examined the
effect of low-pass filtering using a 3rd-order, zero-phase, low-pass
Butterworth filter. The Butterworth filter was selected, since it is
free of ripples in the pass and stop band. The filter order (3rd)
was selected arbitrarily, however, preliminary tests suggested that
the filter order has a very small effect on the PA time series. Prior

FIGURE 2 | Box plots representing the data from all 26 participants of (A) the relative explained variance of principal postural positions (PP_rVARk ) and (B) the relative

explained variance of principal postural accelerations (PA_rVARk ) of standing on the firm surface (FS) and balancing on the wobble board (WB). The PA_rVARk were

determined after filtering the data with a 3rd-order 10Hz low-pass Butterworth filter.
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FIGURE 3 | Box plots of the relative explained variance of principal postural acceleration (PA_rVARk ) of standing on the firm surface (FS) and balancing on the wobble

board (WB) with different cut-off frequencies, including (A) 1Hz, (B) 2Hz, (C) 5Hz, (D) 10Hz, (E) 20Hz, and (F) no filtering, which were observed from 26 participants

(k displays order of principal components, PMs; k = 1 to 25). The letter, “A,” and its arrows point to lower-order PAs, PA_rVAR1, and PA_rVAR2, whose contribution to

the overall acceleration variance decrease with increasing cutoff frequencies. The letter “B” and its arrows highlight two medium-order PAs, PA_rVAR8, and

PA_rVAR10, whose contribution to the overall acceleration variance increase as cutoff frequencies are increased.
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to filtering, the frequency contents of the raw PPk(t) and PAk(t)
were evaluated using a Fourier transformation. Then, the effect of
cut-off frequency on PA_rVARk was evaluated for both balancing
situations, FS and WB, with cut-off frequencies of 1, 2, 5, 10, and
20Hz and with no filtering. Finally, explained variance spectra of
PP_rVARk and PA_rVARk (10Hz) were compared.

RESULTS

The first 10 principal movements (PM1−10) of standing
on a firm surface (FS) and balancing on a wobble board
(WB) are described and shown in (Table 1, Figure 1), and
in (Supplementary Videos 1, 2). Higher-order movement
components were not included for the visualization and
description, since their small movement amplitudes make them
difficult to characterize, however, higher-order components were
considered in the evaluation of the variance spectra. The spectra
of explained variance, PP_rVARk and PA_rVARk (for a cut-off
frequency of 10Hz) are shown in (Figure 2). As expected, several
movement components that contributed little to the postural
variance did have an over-proportional contribution to the
acceleration variance. Specifically, for standing on the FS, PM3,
PM8, and PM10 which predominantly represented hip strategy
and upper body movements, and for balancing on the WB PM8

which predominantly quantified ankle plantar/dorsiflexion, were
of particular interest.

Fourier transformations of the raw PP and PA time
series of one arbitrarily selected, representative volunteer
are shown in (Supplementary Figure 2) for FS and in
(Supplementary Figure 3) for WB. The PP-frequency domain
of both FS and WB conditions was observed well below 5Hz. In
contrast, in the PA-spectra, despite the strong and blue-shifted
noise, signals are visible in the ranges 0–5Hz for FS and in the
range up to ∼10Hz for WB. In addition, (Figure 3) illustrates
how the spectrum of explained variance PA_rVARk changes with
increasing filter cut-off frequency.

DISCUSSION

Our analysis demonstrates that PAk and PAk-based variables,
here PA_rVARk, depend on the filter cut-off applied in
the PA calculation. Low cut-off frequencies (<5Hz) lead to
over-pronunciation of slow movement components. As filter
frequency is increased (5–20Hz) a new pattern emerges, in line
with the expectation that some of the higher-order movement
components contribute more than other movement components
to the accelerations. The Fourier analysis of the underlying
signals suggests that the pattern emerging with increasing filter
cut-offs is not (not only) a consequence of noise increasingly
affecting the signal: while the PPk(t) live in a very low frequency
range (<3Hz), several of the PAk(t) show a relevant frequency
content up to∼5Hz in FS and up to 10Hz in theWB conditions.
These observations suggest that filter cut-off frequencies of 5–
7Hz for FS and around 10Hz for WB would be appropriate.

The current findings underpin that (i) when focusing only
on the classical movement strategies (lower-order PMs), one

might overlookmovement components that are small in posture-
amplitude, but that can be accelerated fast and thus provide
an important contribution to postural control. Spectra of
PA-explained variance should be considered when deciding
on how many PC-components are included in an analysis.
(ii) When interested in neuromuscular control and thus in
the accelerations and forces controlling postural movements,
then filter frequencies should not be selected below 5Hz
for stable situations and not below 10Hz for more dynamic
balancing trials. The current findings corroborate the findings
of Longo et al. (2019), who assessed PA-relative variance in a
cyclic upper-body motion. Moreover, Longo et al. (2019) also
mathematically validated that all PAk together (i.e., the sum
of all PAk) represent the entire marker accelerations present
in the dataset. The current results also agree with previous
studies in which the dependence of PAk variables on filter cut-
off frequencies was assessed, and which reported consistent
results for cut-off frequencies in the range 5 to 12Hz (Haid
et al., 2018; Promsri et al., 2018, 2019, 2020a). Furthermore,
recent studies on muscle synergies and on coherence between
electromyographic signals from different muscles also reported
spectra peaking around 9Hz and posture-related coherence in
frequency bands 5–20Hz (Boonstra et al., 2008, 2015), which
supports the assumption that the PAk signals in this frequency
range are of physiological origin and probably not an artifact or
noise phenomenon.

The role of movement analysis in monitoring and diagnosing
neurodegenerative conditions is increasingly recognized,
particularly when combined with machine/deep learning
approaches (Buckley et al., 2019). However, how successful such
approaches can become depends largely on the information
contained in the input data to these algorithms. Disregarding
information at an early stage, e.g., due to dimensionality
reduction or through filtering, is a form of investigator bias that
likely affects even the performance of so-called unsupervised
methods. Driven by biomechanical considerations, the current
study evaluated what information might be contained in the
often disregarded higher-order PC-components. The question,
which specific PCk components are relevant, depends on the
specific movement, the specific boundary conditions that are
present, and the research question that is studied. However,
as general advise the current study suggest that PA_rVARk-
spectra should be analyzed when deciding on how many PC
components are to be considered; and the frequency content
and suitable filters should be carefully assessed in the calculation
of PAs.
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