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A B S T R A C T

Erythrocytes are often used for the development of cell membrane camouflaged nanoparticles (NPs) due to their
wide range of sources. However, whether the difference between autologous and allogeneic sources for the
erythrocyte membranes have an influence on the performance of camouflaged NPs, which is still inconclusive. To
this end, we developed two aggregation-induced emission (AIE) photosensitizers camouflaged with erythrocyte
membranes (E-M), named E-Mauto@P and E-Mallo@P, which were prepared using autologous- and allogeneic-
derived erythrocytes, respectively. In vivo, E-M@P-mediated photodynamic therapy (PDT) effectively inhibited
tumor growth, and this therapeutic effect did not differ between E-Mauto@P and E-Mallo@P. Importantly, there
were no differences between E-Mauto@P and E-Mallo@P treated mice in terms of general condition, organ function
or immune system. Both E-Mauto@P and E-Mallo@P have been shown not to cross the placental barrier and do not
affect the development of the embryo, which could be a good platform for the treatment of pregnancy-related
disorders. These findings provided more detailed evidences for erythrocyte membrane camouflaged NPs as a
promising therapeutic platform, since there is no difference in efficacy or biosafety of either autologous or
allogeneic erythrocyte-derived NPs.
1. Introduction

Obtaining good therapeutic effect is the goal that biomaterials should
pursue, but we often ignore the preconditions for their application in
vivo, that is, their biocompatibility and biosafety [1,2]. The exogenous
nature makes synthetic biomaterials prone to trigger passive immune
clearance mechanisms and increase reticuloendothelial system clearance
effects, leading to their low bioavailability [3,4]. At the same time, these
synthetic biomaterials may also have serious toxic side effects that
severely limit its application in vivo [5–7]. In contrast, natural bio-
materials are less likely to trigger an immune response in the body and
have a higher biosafety profile [8–10]. Recently, a cell membrane
cloaking technique has been reported as a novel interfacing approach,
and proved useful for improving the performance of synthetic bio-
materials [11–14]. The use of cell membrane camouflaged nanoparticles
(NPs) has resulted in the acquisition of natural physicochemical prop-
erties on the cell membrane, including proteins, lipids, glycoproteins
et al., thus allowing the NPs to inherit their unique biological functions
[15–17]. The derived biological properties and functions, such as
immunosuppressive ability, long circulation capacity and target
).

rm 22 April 2022; Accepted 2 M

vier Ltd. This is an open access ar
recognition, could enhance their potential for medical applications.
With the development of cell membrane cloaking technology, more

and more types of cells are being developed, such as erythrocytes
[18–21], platelets [22,23], macrophages [24,25], tumor cells [26–30]
and stem cells [31,32]. Among them, erythrocytes, also known as red
blood cells, are a natural biomaterial with a wide range of sources. The
earliest development of cell membrane cloaking technology was the
construction of cell membrane camouflaged NPs by co-extrusion using
erythrocyte membrane as the outer membrane and polymer as the
nanocore [33]. This erythrocyte membrane camouflaged NPs have su-
perior circulation ability in vivo than traditional synthetic materials such
as polyethylene glycol (PEG). Since then, there has been an increasing
number of cell membrane cloaking technology developments based on
erythrocyte membranes, with applications in a variety of fields [34–40].
Zhang's group used erythrocyte membranes to construct a detoxifiable
nanosponge that effectively avoids hemolysis mediated by pore-forming
toxins [41]. Further, Green and co-workers obtained better in vivo cir-
culation properties of erythrocyte membrane camouflaged NPs by
altering the nanocore traits to achieve more efficient toxins detoxifica-
tion [42]. In addition to detoxification, erythrocyte membrane
ay 2022
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camouflaged NPs have potential in the field of tumor diagnosis and
treatment [43–45]. The spleen is the site of removal of damaged or se-
nescent red blood cells, called the homing effect [46]. Using this feature,
immune adjuvants loaded in erythrocyte membrane camouflage NPs can
be actively delivered to the spleen to activate the body's anti-tumor im-
munity [47]. Moreover, the erythrocyte membrane camouflaged NPs
have good ERP effect and can effectively target the delivery of drugs or
therapeutic components to tumors [48,49]. Erythrocyte
membrane-based camouflage technology has also been addressed in the
fields of antimicrobial [50]. Despite the exciting advancements, the
research of biosafety for erythrocyte membrane camouflaged NPs is still
in a nascent stage. The research on how to choose and utilize the
erythrocyte membrane with wide resources is significant, since the
working environment for camouflaged NPs is unknown and complex.

To explore the differences in the effectiveness and safety of erythro-
cyte membrane camouflaged NPs, we constructed two NPs, E-Mauto@P
and E-Mallo@P. E-Mauto@P used autologous-derived erythrocytes for the
preparation of erythrocyte membrane camouflage NPs, while E-Mallo@P
used allogeneic-derived erythrocytes, both of which have aggregation-
induced emission luminogens (AIEgens) and poly lactic-co-glycolic acid
(PLGA) complex in their nanocore (Scheme 1). Due to the good fluo-
rescence properties and photosensitivity of AIEgens (PF3-PPh3), it en-
ables tracing of erythrocyte membrane camouflaged NPs and
photodynamic therapy (PDT) of tumors. In vitro and in vivo, we
confirmed that both E-Mauto@P and E-Mallo@P effectively inhibit tumor
growth, and there was no difference in efficiency between them. More
importantly, we also found that both E-Mauto@P and E-Mallo@P have
good biocompatibility and do not trigger immune responses in the body.
Also, E-Mauto@P and E-Mallo@P have good safety profile in pregnant
mice. These findings suggested that either autologous or allogeneic
erythrocyte are ideal materials for preparing erythrocyte membrane
camouflage NPs.
Scheme 1. (A) Preparation process of E-M@P NPs. (B) Schematic diagram of the use
Comparison of treatment efficiency and safety of E-Mauto@P and E-Mallo@P.
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2. Results and discussion

The construction of cell membrane camouflaged NPs usually requires
a stable nanocore that is generally composed of functional molecules and
scaffold components [51–55]. Here, we used the AIEgen (PF3-PPh3) as a
functional molecule (Figure S1-S2), since they not only possess high
fluorescence quantum yields and resistance to photobleaching, but also
have photodynamic therapy effect [47,56–58]. To construct a stable
nanocore, PLGA was used as a scaffold to mix with PF3-PPh3. Then, by
co-extruding erythrocyte membrane (E-M) and PLGA/PF3-PPh3 (P)
nanocore, erythrocyte membrane camouflaged NPs (E-M@P) were ob-
tained. Dynamic light scattering (DLS) and transmission electron mi-
croscopy (TEM) showed that the particle size of E-M@P was around 200
nm (Fig. 1A). An envelope about 10 nm thick could be observed at the
outer layer of NPs, proving the successful coating of erythrocyte mem-
brane [41]. No significant change in the size of the E-M@P in PBS and
20% serum solutions were found within 12 days, indicating its good
stability (Figure S3A). Moreover, E-M@P displayed the similar ultra-
violet–visible (UV–vis) absorption spectra with PF3-PPh3 (Figure S3B).
The fluorescence intensity of E-M@P was higher than that of PF3-PPh3 at
the same concentration of PF3-PPh3 (Fig. 1B), demonstrating that the
membrane encapsulation enabled a tighter aggregation state [47]. The
encapsulation of PF3-PPh3 with cell membranes also offers additional
advantages. Firstly, the anti-photobleaching performance of PF3-PPh3
was improved, as reflected by the fact that the fluorescence intensity of
PF3-PPh3 was only 57.4% of the original one after 20 min of light
exposure, while E-M@P was still 80.7% (Figure S3C) [59–62]. Secondly,
the photosensitivity of PF3-PPh3 was substantially enhanced after it was
prepared as cell membrane camouflaged NPs by using 9,10-Anthracene-
diyl-bis(methylene)dimalonic Acid (ABDA) as an indicator of reactive
oxygen species (ROS) (Fig. 1C) [63–65]. These results fully indicated that
E-M@P was successfully prepared and after coating, the stability,
of (A) E-Mauto@P or (B) E-Mallo@P for the treatment of tumor-bearing mice. (C)



Fig. 1. Characterization of erythrocyte membrane camouflage NPs and evaluation of photodynamic therapeutic effects in vitro, as well as circulation kinetics and bio-
distribution of E-M@P. (A) Hydrodynamic size distribution and TEM image of E-M@P. Scale bar ¼ 100 nm. (B) Fluorescence spectra of PF3-PPh3 and E-M@P. The
concentration of PF3-PPh3 is 10 μg/mL. (C) Photosensitivity of PF3-PPh3 and E-M@P. The concentration of PF3-PPh3 is 25 μg/mL. The concentration of ABDA is 50
μM. Light intensity is 100 mW cm�2. (D) DCFH-DA detects the level of intracellular ROS. Light intensity: 100 mW cm �2. Irradiation time: 3 min. DCFH-DA: Ex ¼ 488
nm; Em ¼ 540 nm. Hoechset 33,258: Ex ¼ 350 nm, Em ¼ 460 nm. (E) PI and CMFDA co-staining assays detect the viability of 4T1 cells after receiving PDT. Light
intensity: 100 mW cm�2. Irradiation time: 5 min. PI: Ex ¼ 633 nm; Em ¼ 660 nm. CMFDA: Ex ¼ 488 nm; Em ¼ 540 nm. The data were reported as mean � SD and
analyzed by two-sided Student's t-test. *p < 0.05, **p < 0.01, ***p < 0.001, n. s. not significant. (F) Circulation kinetics of E-M@P in mice. (G) Bio-distribution of E-
M@P in a tumor-bearing mouse model. E-M@P: Ex ¼ 500 nm, Em ¼ 660 nm. (H) Quantitative analysis of E-M@P in tumor, liver, heart, spleen, lung and kidney.
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photostability as well as photosensitivity were enhanced.
Then, the cell behaviors of E-M@P in vitro were in investigated. From

the confocal laser scanning microscopy (CLSM) images (Figure S4), it
could be clarified that E-M@P can be taken up by 4T1 cells (a mouse
mammary cancer cell line) and the internalization amounts of E-M@P
were positively correlated with its concentration (Figure S5). To compare
the uptake of E-M@P in different cells, 4T1, HLF (lung fibroblasts), 293 T
(human renal epithelial cells) and hESC (human endometrial mesen-
chymal cells) cell lines were used as test subjects. Quantitative fluores-
cence analysis showed that tumor cells 4T1 took up significantly more E-
M@P than other normal cells, including HLF, 293 T and hESC cells
(Figure S6-S7), demonstrating that it is promising in minimizing the toxic
effects in vivo. The obvious uptake difference may be because normal
cells have lower metabolic activity and therefore need to take up less
external nutrients. Cell Counting Kit-8 (CCK-8) results showed that E-
M@P were biocompatible with both tumor cells (4T1) and normal cells
(293 T) in the absence of light, reflecting that NPs had no significant
effect on cell viability in a certain concentration range (PF3-PPh3 0–20
μg/mL) (Figure S8). Meanwhile, we further examined the effect of E-
M@P on the viability of 4T1 and 293 T cells using live/dead cell double
fluorescence staining (Figure S9). However, in the presence of light, E-
M@P becomes a potent cell-killing agent due to the high-efficient ROS
generation ability of AIEgen, which was also confirmed by the intracel-
lular ROS indicator 20-70dichlorofluorescin diacetate (DCFH-DA)
(Fig. 2D). Next, the propidium iodide (PI) and 5-chloromethylfluorescein
diacetate (CMFDA) co-staining results also proved that tumor cells were
killed only when both E-M@P and light irradiation conditions were
present (Fig. 2E and Figure S10-S11). These results suggest that E-M@P
has low dark toxicity and high phototoxicity towards tumor cells.

For biomaterials, whether it can be injected in vivo or not, it's he-
molytic property should be tested first. Generally, it is considered safe if
the hemolysis is less than 5% and can be used for intravenous injection
[66]. Using water as a positive control group (hemolysis rate 100%), it
was found that PF3-PPh3 displayed a high hemolysis rate of 12.37%.
While, after coating with erythrocyte membranes, the hemolysis rate
decreased significantly to 2.53%, indicating that E-M@P can be used for
intravenous injection (Figure S12). Next, the circulatory kinetics of
E-M@P in vivo were investigated. As shown in Fig. 2F, E-M@P circulates
in the body for more than 24 h, allowing it to passively target tumors
through enhanced permeability and retention (EPR) effect [67]. In a
mouse tumor model, E-M@P was injected into the mice through the tail
vein and the tumor and organs were separated after 24 h. The distribu-
tion of E-M@P in tumors and organs was examined by In Vivo Imaging
Systems (IVIS), and it was found that the tissues with the highest accu-
mulation of NPs were liver and tumors, followed by spleen, lung, kidney
and liver (Fig. 3G/H). The results demonstrated that E-M@P had long
circulation kinetics and good passive tumor targeting ability for drug
delivery to tumors.

To investigate the in vivo anti-tumour effects of nanoparticles con-
structed from erythrocyte membrane sources, two types of erythrocyte
membrane camouflaged NPs, E-Mauto@P (autologous erythrocytes) and
E-Mallo@P (allogeneic erythrocytes), were constructed. The therapeutic
protocol of autologous erythrocyte membrane camouflaged NPs was
shown in Fig. 2A, where NPs prepared from blood collected from “mouse
A00 were used for tumor treatment of “mouse A”. While, when blood was
collected from “mouse A00, and then “mouse B00 was treated. This was
regarded as allogeneic erythrocyte membrane camouflaged NPs therapy
(Fig. 2B). 4T1 tumor cells were inoculated into the right axilla of female
Balb/c mice, and the tumors were randomly divided into the following
three groups PBS, E-Mauto@P and E-Mallo@P when the tumors grew to
about 80 mm3. All mice were treated with light. At the end of the
treatment, the tumors were removed from the mice and presented in
Fig. 2C. The growth kinetic curves of these tumors in mice were shown in
4

Fig. 2D. From the above results, it was found that either E-Mauto@P or E-
Mallo@P -mediated PDT significantly inhibited tumor growth, and there
was no difference in the inhibition efficiency between them both. There
was also no significant difference in body weight change between PBS, E-
Mauto@P and E-Mallo@P during treatment, implying good biocompati-
bility for both E-Mauto@P and E-Mallo@P (Fig. 2E). The mechanisms of E-
Mauto@P and E-Mallo@P -mediated PDT inhibition of tumors were further
investigated at the tissue and molecular levels. Hematoxylin-eosin (H&E)
staining suggested that either E-Mauto@P and E-Mallo@P -mediated PDT
caused necrosis of tumor tissues, as reflected by sparse arrangement of
tumor tissues, disruption of cell morphology and coagulation or disap-
pearance of nuclei in the E-Mauto@P and E-Mallo@P groups (Fig. 2F). At
the molecular level, it was also confirmed by TdT-mediated dUTP nick
end labeling (TUNEL) staining that tumors in the E-Mauto@P and E-Mal-

lo@P groups showed a large number of apoptotic tumor cells (Fig. 2G).
Ki-67 is a protein that reflects the state of cell proliferation. The
expression of Ki-67 in tumors was detected by immunofluorescence
staining. It was found that the proportion of tumor cells with positive
expression of Ki-67 in PBS group was higher than that in E-Mauto@P and
E-Mallo@P groups, which means that the proliferation of tumors in E-
Mauto@P and E-Mallo@P groups was slower (Fig. 2H). These tests
responding to the killing performance of PDT, including H&E, TUNEL
and Ki-67 staining were not significantly different between E-Mauto@P
and E-Mallo@P. In addition to direct killing of tumor cells, PDT has the
role of assisting in enhancing immunotherapy and destroying blood
vessels [68–71]. Here, PDT mediated by E-Mauto@P or E-Mallo@P is also
able to promote CD4þ and CD8þ T cell chemotaxis and infiltration to-
wards the tumor (Fig. 4I). Also, E-Mauto@P or E-Mallo@P -mediated PDT
are able to destroy microvessels within the tumor (Fig. 2J). These results
imply a potential application of E-M@P -mediated PDT in assisting the
enhancement of antitumor immunotherapy and anti-vascular therapy. In
this section, we illustrated that erythrocyte membrane camouflage NPs
have similar antitumor effects and mechanisms whether they are derived
from autologous or allogeneic erythrocytes.

To further confirm the biosafety of E-M@P, a set of animal experi-
ments parallel to the tumor treatment was used. Healthy 8-week-old
Balb/c mice were used for in vivo safety assessment by tail vein injec-
tion of PBS, E-Mauto@P and E-Mallo@P. As shown in Fig. 3A, the NPs
prepared from blood obtained from “mouse A00 are reinfused back into
“mouse A00, which is called autologous reinfusion. On the contrary, the
NPs prepared from the blood obtained from “mouse A00 are reinfused
back into “mouse B00, which is called allogeneic reinfusion. All mice
showed no significant difference in diet and water intake during NPs
injection, and no abnormal activities including tearing, screaming,
scratching, and depression (Fig. 3B). Body weight changes of mice in all
groups were also not significantly different during NPs infusion (Fig. 3C).
Blood tests in mice suggested no difference in the number of erythro-
cytes, leukocytes and platelets after E-Mauto@P and E-Mallo@P injections,
respectively (Fig. 3D). Next, the relative organ weights (Fig. 5E), histo-
logical (Fig. 3F) and biochemical markers (Fig. 3G) of the organs of the
mice that received the different treatments were analyzed. First, the
relative weights of the organs were analyzed and, as shown in Fig. 3E,
were not different from both E-Mauto@P and E-Mallo@P compared to the
PBS-injected group, and were not significantly different between E-Mau-

to@P and E-Mallo@P. Then, the morphological changes of the organs were
analyzed by H&E staining. As shown in Fig. 3F, there was no significant
difference in the morphology of all organs between the PBS, E-Mauto@P
and E-Mallo@P groups. Finally, a series of biochemical parameters were
tested to assess organ function. Albumin (ALB), glutathione amino-
transferase (ALT) and glutathione aminotransferase (AST), a group of
indicators of liver function, were not significantly different between PBS,
E-Mauto@P and E-Mallo@P groups. Blood glucose (GLU) concentration
responded to the function of the pancreas, and it did not differ between



Fig. 2. E-M@P -mediated PDT against tumor growth. (A/B) Schematic diagram of the use of (A) E-Mauto@P or (B) E-Mallo@P for the treatment of tumor-bearing mice.
(C) Image of tumors in tumor-bearing mice after receiving E-Mauto@P or E-Mallo@P -mediated PDT. (D) Growth kinetic curves of tumors in tumor-bearing mice after
receiving E-Mauto@P or E-Mallo@P -mediated PDT (n ¼ 5). The data were reported as mean � SD and analyzed by unpaired t-test. *p < 0.05. (E) Relative body weight
changes of tumor-bearing mice during the treatment period (n ¼ 5). (F) HE staining, (G) TUNEL staining and (H) Ki-67 staining after the tumors received PDT. The
blue channel is DAPI (Ex ¼ 350 nm, Em ¼ 450 nm), which is used for labeling of the nucleus. (I) Immunofluorescence staining was performed to detect the number and
distribution of CD4þ and CD8þ cells within the tumors treated with PDT. CD4þ cells are shown as green fluorescence and CD8þ as red fluorescence. (J) Immuno-
histochemical staining to detect the number and distribution of microvessels in tumors treated with PDT.
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Fig. 3. Biosafety of E-M@P NPs in vivo. (A) Schematic diagram of the biosafety analysis of E-Mauto@P and E-Mallo@P in mice. (B) Changes in diet, water intake and
behavior of mice after receiving different treatments (n ¼ 3). √ indicates that the mice are eating, drinking and behaving normally. (C) Body weight changes in mice
during PBS, E-Mauto@P and E-Mallo@P injections (n ¼ 3). (D) The relative numbers of erythrocytes, leukocytes and platelets in the blood of mice treated with PBS, E-
Mauto@P and E-Mallo@P, respectively (n ¼ 3). (E) Relative weight and (F) histomorphological changes of heart, liver, spleen, kidney, lung of mice treated with PBS, E-
Mauto@P and E-Mallo@P, respectively (n ¼ 3). (G) Quantification of ALB, AST, ALT, GLU, uric acid and CREA in the blood of mice treated with PBS, E-Mauto@P and E-
Mallo@P, respectively (n ¼ 3). The data were reported as mean � SD and analyzed by two-sided Student's t-test. *p < 0.05, **p < 0.01, ***p < 0.001, n. s.
not significant.
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PBS, E-Mauto@P and E-Mallo@P groups. Both uric acid and creatinine
(CREA) were indicators of kidney function and they did not differ be-
tween PBS, E-Mauto@P and E-Mallo@P groups. In conclusion, this series of
evaluations confirmed the biosafety of E-M@P at the overall, tissue, and
molecular levels. This biosafety was not significantly different whether
the NPs were prepared from autologous or allogeneic source
erythrocytes.
6

Immune response has been an obstacle to the application of nano-
medicines in vivo, not only in terms of clearance of nanomedicines by the
immune system, but also in terms of causing systemic toxicities in the
organism. In order to elaborate whether the erythrocyte membrane
camouflaged NPs cause side effects such as immune rejection in the or-
ganism, we administered E-Mauto@P and E-Mallo@P to mice. As shown in
Fig. 4A, the erythrocytes obtained from “mouse A00 were prepared into



Fig. 4. Transcriptome sequencing reveals immune activation of erythrocyte membrane camouflage NPs. (A) PBMCs were isolated after auto-infusion and allogeneic
infusion of erythrocyte membrane camouflaged NPs and transcriptome sequencing was performed. 4 mice in the PBS group, 4 mice in the E-Mallo@P group and 3 mice
in the E-Mauto@P group. (B) Principal component analysis. (C–E) Number of significantly different genes between (C) PBS and E-Mauto@P, (D) PBS and E-Mallo@P, (E)
E-Mauto@P and E-Mallo@P. (F) Heatmap of differential genes between PBS, E-Mauto@P and E-Mallo@P groups. (G) Differential analysis of IL1-a, IL-1b, TNF-α and IFN-γ
between PBS, E-Mauto@P and E-Mallo@P groups.
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nanoparticles and then injected back into “mouse A00, or the disguised
nanoparticles of red blood cell membrane derived from “mouse A00 were
injected back into “mouse B00, and finally the peripheral blood monocytes
(PBMCs) in mice were isolated for transcriptome sequencing. A large
amount of genetic information was obtained by transcriptome
7

sequencing of PBMCs, aiming to analyze the changes in the state of im-
mune cells after treatment with different NPs in mice. Principal compo-
nent analysis (PCA) is a linear dimensionality reduction algorithm that is
used to measure differences in data and to represent high-dimensional
data with large differences by projecting them into a low-dimensional



Fig. 5. Schematic diagram for assessing the safety of (A) E-Mauto@P and (B) E-Mauto@P on embryos during pregnancy. (C) IVIS assay of NPs bio-distribution after E-
M@P injection into pregnant mice via tail vein. E-M@P: Ex ¼ 500 nm, Em ¼ 660 nm. (D/E) The litter rate of pregnant mice was observed after the injection of PBS (n
¼ 8), E-Mauto@P (n ¼ 5) and E-Mallo@P (n ¼ 5) via tail vein respectively. (F) The survival rate of newborn mice was observed one week after delivery.
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space. As shown in Fig. 4B, the PCA results showed no significant dif-
ferences between them for either PBS, E-Mauto@P or E-Mallo@P. This
means that probably neither PBS, E-Mauto@P nor E-Mallo@P had a sig-
nificant activating effect on PBMCs; in short, neither E-Mauto@P nor E-
Mallo@P activated the immune system. The correlation analysis showed
that the correlations between the 11 samples sent for testing (4 in PBS
group, 3 in E-Mauto@P group, 4 in E-Mallo@P group) were all greater than
0.85, which means that there was no significant difference between these
samples (Figure S13). Further analysis revealed that 35 genes were
significantly up- or down-regulated between the PBS and E-Mauto@P
groups (Fig. 4C), and only 80 genes were significantly up- or down-
regulated between the PBS and E-Mallo@P groups (Fig. 4D). Although
120 genes changed significantly between E-Mauto@P and E-Mallo@P, also
less than 1% of the genes changed at the transcriptome level (>12,000
genes were tested) and this change can be considered small (Fig. 4E).
Heatmap of the above apparently up- or down-regulated genes are shown
in Fig. 4F, which showed no significant enrichment of differential genes
between PBS, E-Mauto@P and E-Mallo@P groups, and the classification
was not significant. In addition, individual differences between mice
have to be taken into account, and even without any treatment, there will
be small differences in transcriptome sequencing between them. Some
important immune factors such as Interleukin 1 a (IL1-a), Interleukin 1 b
(IL-1b), Tumor necrosis factor α (TNF-α) and Interferon γ (IFN-γ) were
8

not significantly different between PBS, E-Mauto@P and E-Mallo@P
groups (Fig. 4G). In conclusion, from the above sequencing results we
found no significant differences in immune activation-related genes such
as proliferation, activation, chemotaxis, migration, and immune factor
secretion in PBMCs by either E-Mauto@P or E-Mallo@P. Therefore, it can
be tentatively concluded that neither E-Mauto@P nor E-Mallo@P caused
significant immune activation. However, this conclusion is only a rela-
tively crude elaboration of the effect of erythrocyte membrane camou-
flaged NPs in the immune response, and further analysis of immune cell
subpopulations using single cell sequencing may provide new insights.

For the safety assessment of drugs, certain special periods are also
essential, such as the effects of drugs on the embryo during pregnancy. To
evaluate the effect of erythrocyte membrane camouflaged NPs on em-
bryos, healthy Balb/c mice were used to construct a pregnancy model
(Fig. 5A/B). First, we investigated whether E-M@P could pass the
placental barrier. Pregnant mice of approximately 14 days received NPs
injections, and 24 h later the mice were dissected to isolate maternal
organs, placenta, and embryonic mice. As shown in Fig. 5C, E-M@P NPs
were concentrated in maternal organs, such as the liver, spleen and lungs,
while the placenta and embryonic mice have almost no presence of NPs.
This means that E-M@P is not able to cross the placental barrier, so it
cannot reach the embryo and thus cannot directly affect it. For additional
support, mice were administered E-M@P through the tail vein every 3
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days from day 10 of pregnancy until delivery. In terms of litter rate, both
PBS, E-Mauto@P and E-Mallo@P are similar, at about 7 per litter (Fig. 5D/
E). One week after delivery, the number of surviving mice was recorded,
and the live birth rates were 90.9%, 91.1%, and 94.1% for PBS, E-Mau-

to@P and E-Mallo@P injections, respectively (Fig. 5F). From these results,
it can be inferred that the effects of erythrocyte membrane camouflaged
NPs on the embryo are minimal and their application during pregnancy is
promising, without caring whether the source of the erythrocyte mem-
brane is autologous or allogeneic.

3. Conclusion

Nanomaterials, including synthetic materials and natural bio-
materials, have a wide range of potential applications in medicine
[72–77]. Natural biomaterials have attracted much attention in recent
years due to their unique safety profile [78–80]. As one of the most
widely sourced classes of natural materials, erythrocyte membranes have
great promise for medical applications. Investigating the biosafety of
erythrocyte membranes in vivo is a further step forward in the clinical
application of cell membrane coating technology. To systemic compare
whether there are differences between autologous and allogeneic
erythrocyte-derived NPs in medical applications, we constructed two
types of erythrocyte membrane camouflage NPs E-Mauto@P and E-Mal-

lo@P using autologous-derived erythrocytes and allogeneic-derived
erythrocytes. The erythrocyte membrane camouflaged NPs constructed
by co-extrusion using AIE photosensitizer and PLGA complex as the core,
which have good dispersion and stability in vitro. There was no signifi-
cant difference between E-Mauto@P and E-Mallo@P in terms of tumor
treatment effect assessment, they both significantly inhibited the growth
of tumors. More importantly, the biosafety of erythrocyte membrane
camouflage NPs was evaluated in terms of organ function, immune sys-
tem, and pregnancy status. There were no differences in the functional
effects on organs and minimal alterations in the immune system for
either E-Mauto@P or E-Mallo@P, as well as no toxic effects on the embryo.
In conclusion, it was revealed in this study that erythrocyte membrane
camouflaged NPs are safe when applied in vivo, regardless of whether the
NPs are prepared from autologous or allogeneic source erythrocytes.
Nevertheless, this study was conducted using mice, whose blood group
classification and immune system differ significantly from those of
humans. Therefore, in the future, it is necessary to investigate the
biosafety of erythrocyte membrane camouflage nanoparticles or autolo-
gous/allogeneic erythrocyte membrane camouflage nanoparticles for
different blood groups.
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