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The course of infection by SARS-CoV-2 frequently includes a long asympto-
matic period, followed in some individuals by an immune dysregulation
period that may lead to complications and immunopathology-induced
death. This course of disease suggests that the virus often evades detection
by the innate immune system. We suggest a novel therapeutic approach to
mitigate the infection’s severity, probability of complications and duration.
We propose that priming an individual’s innate immune system for viral
attack shortly before it is expected to occur may allow pre-activation of
the preferable trajectory of immune response, leading to early detection of
the virus. Priming can be carried out, for example, by administering a stan-
dard vaccine or another reagent that elicits a broad anti-viral innate immune
response. By the time that the expected SARS-CoV-2 infection occurs, acti-
vation cascades will have been put in motion and levels of immune
factors needed to combat the infection will have been elevated. The infection
would thus be cleared faster and with less complication than otherwise, alle-
viating adverse clinical outcomes at the individual level. Moreover, priming
may also mitigate population-level risk by reducing need for hospitaliz-
ations and decreasing the infectious period of individuals, thus slowing
the spread and reducing the impact of the epidemic. In view of the latter
consideration, our proposal may have a significant epidemiological impact
even if applied primarily to low-risk individuals, such as young adults,
who often show mild symptoms or none, by shortening the period during
which they unknowingly infect others. The proposed view is, at this time,
an unproven hypothesis. Although supported by robust bio-medical reason-
ing and multiple lines of evidence, carefully designed clinical trials are
necessary.
1. Introduction
Widespread vaccination capable of specifically neutralizing the SARS-CoV-2
virus is expected to provide the ultimate solution to the COVID-19 epidemic.
However, a vaccine is still unavailable, and preventative medication is currently
lacking [1,2]. We propose a novel therapeutic approach that to date has been
under-explored in the COVID-19 epidemic: we suggest that priming an individ-
ual’s immune system during active epidemic, by inducing a short-term anti-
viral systemic activation of the innate immune system, may reduce the infec-
tion’s severity, length and probability of complications.

Following viral infection, the innate immune system is activated when pat-
tern-recognition receptors (PRRs) are engaged by microbe-associated molecular
patterns (MAMPs) in viral proteins and nucleic acids [3,4]. Specifically, the
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endosomal toll-like receptors (TLRs) 3, 7 and 8, and the intra-
cellular cytosolic PRRs, such as MDA5 and RIG-I, have been
shown to respond to respiratory infection by RNA viruses
such as coronaviruses [5–7]. These sensors recognize viral
RNA, such as 50 triphosphate single-strand RNA and
double-stranded RNA, and trigger a downstream signalling
cascade to ultimately induce the secretion of types I and III
interferons (IFNs) and proinflammatory cytokines [4]. In
turn, the IFNs stimulate their cognate receptors and induce
the activation of thousands of interferon stimulated genes
(ISGs) that establish an anti-viral state in the infected cells
and in surrounding cells [8,9]. This state efficiently inhibits
further spread of the infection, while allowing time for the
activation of adaptive responses that in most cases will
clear the virus from the infected individual. These cascading
dynamics are also critical to guarantee sufficiently strong, but
not excessive, innate and inflammatory immune responses,
and a timely downregulation of these responses to protect
the individual from harmful immunopathology [7].

Evidence so far suggests that in the course of COVID-19,
the SARS-CoV-2 virus has an average incubation period of
approximately 5 days, and up to 14 days and longer
[10,11]. This long period, alongside recently published
direct evidence [12], suggests that SARS-CoV-2 initially man-
ages to evade the innate immune system during early stages
of infection. Studies of related coronaviruses SARS-CoV and
MERS-CoV have demonstrated that these viruses encode a
large number of factors that delay or suppress anti-viral inter-
feron responses and may be involved in the evasion of
immune detection [5,12]. At later stages of the disease,
uncontrolled viral replication triggers hyper-inflammatory
conditions in some individuals, which can lead to induction
of lung injury by a cytokine storm [12,13].

Therefore, we suggest that priming the anti-viral innate
immune response prior to SARS-CoV-2 infection may trigger
an enhanced anti-viral interferon response ahead of time,
thus preventing immune evasion by the virus. This may
direct the immune response towards the preferable route
for overcoming COVID-19 and prevent the immune pathol-
ogy seen in the more severe cases. We anticipate that the
ensuing infection would be attenuated relative to the infec-
tion of a naïve unprimed individual, as has been shown in
analogous murine model systems [14–18]. A primed infection
would still allow the adaptive immune system to develop
adaptive immunity to SARS-CoV-2. This adaptive immunity
is required at a population scale to halt the epidemic.

Our proposal does not intend to prevent a primed indi-
vidual from being infected, but—by readying the immune
system ahead of time—to lessen the severity of the infection
and risk of complications, and to shorten the duration of
infection. At the population level, the shortened duration of
infection could change the epidemic dynamics, helping to
‘flatten’ the epidemic curve and to reduce the maximal
number of infected and hospitalized individuals at any
time point [19,20]. To alter the population-level dynamics
in this way, the infection-shortening aspect of our proposal
may be important even in subclinical and asymptomatic indi-
viduals, as they are likely to be infectious and play a major
role in the spread of the epidemic [21].

The ‘gold standard’ of the immune response to a patho-
gen is often perceived solely as the presence (or absence) of
specific antibodies and T cells that allow the adaptive
immune system to identify and neutralize the pathogens,
and, for viruses, to kill infected cells. This traditional focus
creates a misleading impression regarding the immune sys-
tem’s ‘bread and butter’ function: alongside components of
the adaptive immune system that provide a response which
is specific to a particular pathogen, there are thousands of
genes that are involved in anti-viral defence and that are
not pathogen-specific [22–25]. This is reflected in the exten-
sive overlap between the sets of proteins whose production
is upregulated in response to different viral infections
[24,26–32].

Defence priming—upregulation of immune function in
response to environmental cues, social cues or physiological
cues emitted by conspecifics—is well known in plants and
invertebrates [33–40]. For example, termites increase their
production of immune-related proteins following interaction
with nest mates that had been exposed to a pathogen [40].
Defence priming has also been shown in vertebrates, in par-
ticular via activation of components of the innate immune
system [35,37,41–49]. Specifically, it has been demonstrated
experimentally that activation of the mammalian immune
system by various triggers, from social cues to exposure to
microbes or microbially derived compounds, provides pro-
tection upon exposure to an unrelated pathogen [14–18,50–
57]. For example, mice that were administered aerosolized
bacterial lysate exhibited an innate immune response—
increased cytokine levels—and survived an otherwise lethal
exposure to Influenza A [17]. Priming of the immune
system by exposure to agents other than the pathogen itself
is common: priming and upregulation of the immune
system by the mammal’s commensal bacteria have been fre-
quently suggested and its importance has been repeatedly
demonstrated [58–62].

Most encouraging are recent experiments on priming the
immune system for intermediate time scales in humans: Arts
et al. [63] have recently shown that BCG vaccination against
tuberculosis activates factors of the innate immune system
for extended periods of time, on the order of weeks, and
increases resistance to an experimental infection by an attenu-
ated yellow fever virus. This phenomenon, dubbed ‘trained
immunity’ or ‘innate immune memory’ [44,64–66], relates to
the longer-lasting effects of priming the immune system,
but supports the feasibility of the short-term priming that
we propose here. Similarly, a decreased rate of non-targeted
infections has been reported in children in the period follow-
ing vaccination for measles, mumps and rubella, as well as
following vaccination with live-attenuated polio virus [67–
70]. A number of studies are currently exploring the potential
attenuation or prevention of COVID-19 via vaccination with
BCG or MMR vaccines [71–74].

Different triggers may serve to prime the immune system,
readying it for attack by stimulating it to mount a short-term
broad anti-viral response. Priming with bacteria and bac-
terially derived factors, particularly administered nasally,
has been shown experimentally to significantly alleviate the
severity of viral challenges that attack the respiratory
system [14–18,50–52,56,57]. An even more promising cat-
egory of priming agents are attenuated viruses used in
vaccines, various virus-derived elements, virus-like particles
and other components [63,64,71,75–80]. Such agents have
been studied and tested extensively, and candidates have
been highlighted specifically for their ability to trigger a
broad anti-viral immune response, acting as adjuvants in
anti-viral vaccines. The systemic priming can be carried out
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Figure 1. Effect of priming on epidemic dynamics. (a) Fraction of infected (blue) and hospitalized (red) individuals in the population over time without priming
(solid lines) or with priming (dashed) if priming were administered on 5 May (day 72) to the entire population (fraction of primed individuals α = 1), assuming the
effect of priming ρ lasts for one week and that it reduces the infectious period and chance of hospitalization by ρ = 1.5 (i.e. by 33%). (b) Reduction in maximum
daily hospitalizations due to priming for various fractions of priming α (on the x-axis) and effects of priming ρ (on the y-axis). Dynamics are based on an SEIR
model where infected individuals are primed with probability α and otherwise not primed. Model parameters estimated by Pei & Shaman from US county-level
incidence data between 21 February and 13 March 2020 ([92], table 3): transmission rate β = 0.635 (weighted average of documented and undocumented cases);
expected latency period δ−1 = 3.59 days; expected infectious period r−1 = 3.56 days, or rρ if primed in the past week. An additional model compartment for
hospitalized individuals was added: infected individuals are hospitalized at rate h = 0.014 per day [93], or h/ρ if primed in the past week, for an expected duration
of γ−1 = 21 days [93]. See https://github.com/yoavram-lab/ImmunePriming for Python source code.

royalsocietypublishing.org/journal/rsob
Open

Biol.10:200138

3

using various therapeutic agents, including many off-the-
shelf products and common vaccines that are prescribed pro-
phylactically such as influenza, polio or varicella-zoster
vaccines [81–85]. Use of vaccines as triggers in such a context
would aim to capitalize on the broad innate immune
response that they trigger and which is transient, lasting for
a number of days to a few weeks and possibly longer after
administration [63,81–86]. The longer-lasting effect of gaining
adaptive immunity to the specific virus or viral strain that the
vaccine is designed for would be a potentially beneficial
unrelated side effect and would not be expected to play a
role in countering SARS-CoV-2.

Decreased incidence and rate of complications of COVID-
19 have been reported in children. In the light of our proposal,
this might be partially attributed to immune system priming,
caused by the frequent rate of vaccination during childhood
in many countries. Similarly, negative correlations have been
reported between COVID-19 prevalence and severity of out-
comes, and region-level prevalence of malaria, helminths
and schistosomiasis [87–90]. These infectious agents, whose
prevalence correlates positively with the prevalence of other
infectious diseases, may have an immunomodulatory effect
which primes the immune system for viral attack. This possi-
bility warrants careful exploration. Finally, it has recently been
suggested that there is a negative correlation between coverage
of influenza vaccination and deaths from COVID-19 in the
elderly [91], presenting another promising observation that
may support our proposed perspective.

To demonstrate the potential population-level impact of
our proposal, we have incorporated large-scale population
priming in an SEIR model that has been used to analyse
and forecast the COVID-19 epidemic trajectory in China
and the continental US [21,92], using parameters previously
estimated from US county-level data between 21 February
2020 and 13 March 2020 [92]. Figure 1a shows the fraction
of infected and hospitalized individuals with and without
priming. If priming reduces the infectious period and
chance of complications by 33%, the priming agent is admi-
nistered to the whole population slightly before infection
rates peak, and priming is effective for a week, the maximum
number of hospitalized individuals is reduced by 25%.
Figure 1b explores such reductions in hospitalizations for
different parameter combinations: the fraction of the popu-
lation receiving the priming agent, and the factor by which
priming reduces the infectious period and chance of compli-
cations that require hospitalization. Although this is a
simplified model (e.g. only a single population is examined
rather than a metapopulation as in [21,92]), it demonstrates
the potential population-level effect that priming might
have on the epidemic trajectory and its impact in a city,
region or state.

A number of caveats are associated with our proposal.
First, it is crucial that the priming does not evoke an auto-
immune response. In this respect, authorized therapeutic
agents such as broadly used vaccines are preferable as a
first set of candidates. Second, it is necessary to test and
choose priming agents that do not trigger an adverse effect
(i.e. to ensure that they do not burden the immune system
and make it less effective in countering the ensuing attack
by SARS-CoV-2). Finally, many of the cases of severe symp-
toms and mortality of COVID-19, especially in the elderly,
seem to involve a cytokine storm of hyper-inflammation, in
which much of the damage is caused by the immune
system itself [13,94,95]. It is important to ascertain whether
the proposed activation of the immune system prior to infec-
tion would reduce the likelihood of immune system
dysregulation and hyper-inflammation. Evidence from
murine models is encouraging: the viral challenges used
were characterized by a tendency to stimulate a hyper-
inflammatory condition often accountable for the major
damage to the host; the primed individuals in these exper-
iments suffered significantly less from such complications
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than the control groups [14,15,17,52,56,57]. A particular risk–
benefit exploration needs to be carried out for the elderly,
who are at the greatest risk for severe and lethal compli-
cations of COVID-19 [96–98]. The reduced efficacy of
immune functions involved with aging [99–101] raises the
concern that priming would burden their system further
and reduce its ability to respond to the SAR-CoV-2 infection.
However, for the same reason, early preparation of the
immune system to the expected attack may be crucial and
beneficial for the elderly. This may be specifically true with
respect to early activation of toll-like receptors such as
TLR7 that may detect SARS-COV-2 infection and trigger an
appropriate immune response [5–7]. Carefully designed clini-
cal trials will be necessary to determine the risks and
opportunities of the approach we propose for the elderly.

The COVID-19 epidemic is a rare case of a rapidly spread-
ing epidemic that can reach high infection levels in affected
populations. Although this poses a major challenge, it also
constitutes an Achilles’ heel that can be used to attenuate
the epidemic’s devastating effects: once the virus has
spread in a population (e.g. a specific town or city), the
timing of infection for many individuals is highly predictable.
Similarly, large-scale infection may be expected shortly fol-
lowing removal of a population lockdown, or specifically
among individuals that return to the work-force when a gen-
eral lockdown is gradually lifted. Our approach capitalizes
on the predictability of the infection and suggests a way to
prepare susceptible individuals to counter the expected
attack. Even vaccines that are often prescribed without par-
ticular medical indication, such as MMR, the polio vaccine
or the seasonal flu vaccine, might serve this purpose.

In light of the imminent threat posed by SARS-CoV-2 to
millions around the world and the current lack of preventative
therapeutic measures, our proposal could be highly beneficial.
It can potentially be implemented using extant authorized
therapeutic agents such as broadly used vaccines for viral dis-
eases, and thus may involve relatively low risk and can be
readily tested. Our proposal combines direct individual-level
effects—reducing complication rates, hospitalization events
and mortality—and effects that play out at the population
level—reduction of the infectious period, including of asymp-
tomatic yet infectious individuals, and reduction of peak
hospitalization load. Given the scale of the challenge that
humanity is facing, even a moderate attenuation of the dur-
ation, severity, and complication risk of COVID-19 infections
may, via these direct and indirect effects, would save many
lives.
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