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Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor
deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to
self-repair, lifelong disability is common. New molecular and cellular insights have begun
to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is
primarily comprised of axons and Schwann cells, the supporting glial cells that produce
myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required
for successful nerve regeneration; they partially “de-differentiate” in response to injury,
re-initiating the expression of developmental genes that support nerve repair. However,
Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging,
limits their capacity to support endogenous repair, worsening patient outcomes. Cell
replacement-based therapeutic approaches using exogenous Schwann cells could be
curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to
promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two
cell replacement strategies are being championed for peripheral nerve repair: prospective
isolation of “repair” Schwann cells for autologous cell transplants, which is hampered
by supply challenges, and directed differentiation of pluripotent stem cells or lineage
conversion of accessible somatic cells to induced Schwann cells, with the potential
of “unlimited” supply. All approaches require a solid understanding of the molecular
mechanisms guiding Schwann cell development and the repair phenotype, which we
review herein. Together these studies provide essential context for current efforts to
design glial cell-based therapies for peripheral nerve regeneration.

Keywords: repair Schwann cells, peripheral nerve injury, transcriptional regulators, directed reprogramming,
nerve repair
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PERIPHERAL NERVE INJURY AND THE
ROLE OF SCHWANN CELLS

Peripheral Nerve Injury and Current
Therapeutic Strategies
White matter tracts in the peripheral (PNS) and central
(CNS) nervous systems are comprised of nerve fibers (axons)
and myelin-producing glial support cells that insulate axons
to facilitate the rapid conduction of electrical impulses.
Glial support cells include Schwann cells in the PNS and
oligodendrocytes in the CNS (Nave, 2010). White matter
dysfunction disrupts the close contacts between these glial
cells and their neuronal counterparts and is a common
feature of several neurological conditions that impact the
PNS (e.g., peripheral neuropathy, peripheral nerve injury)
and CNS (e.g., traumatic spinal cord/brain injury, multiple
sclerosis, stroke; Sarbu et al., 2016). These white matter diseases
frequently impose chronic lifelong disabilities, with palliative
and rehabilitative care as the only available options. Efforts to
design curative therapies have centered on glial cell replacement
strategies, an approach with wide applicability to several
neurological diseases. Here, we focus on current developments
in the use of Schwann cells for white matter repair in the PNS.

A common misconception is that because PNS axons
can regrow (Huebner and Strittmatter, 2009), neuronal
regeneration occurs in the PNS and repair-strategies are
not required. The reality is that peripheral nerve injury
(PNI) resulting from trauma or peripheral neuropathies
frequently results in lifelong disability. Nearly 360,000 people
in North America alone suffer from upper extremity PNI
annually, resulting in 8,648,000 restricted activity days
and 4,916,000 bed/disability days per year (Kelsey et al.,
1997). Recovery from PNI is often suboptimal and life-long
functional impairment and neuropathic pain are common
(Menorca et al., 2013). Autologous nerve grafting, which
aims to fill the gap between the proximal and distal nerve,
is the standard-of-care treatment for severed nerve injuries
(Dellon and Mackinnon, 1988). However, autologous nerve
grafting requires the harvesting of a healthy nerve, which
can lead to donor-site morbidity, including chronic and
debilitating neuropathic pain (Hilton et al., 2007). Moreover,
nerve graft repair yields relatively poor results; only 25% of
patients recover full motor function and only 3% regain full
sensory function after median nerve repair (Kelsey et al.,
1997). Much of the failure is due to poor engraftment
between donor and recipient nerves and delayed surgical
intervention, resulting in distal muscle atrophy and fibrosis
(Kelsey et al., 1997).

Given the inability of the peripheral nerve to self-heal and the
lack of effective interventions to aid repair, there is a growing
need to develop new therapeutic approaches. One alternative is
the use of nerve conduits, also called axon guidance channels,
which facilitate axon growth within the lumen of a tube to bridge
the nerve ends (Kemp et al., 2008, 2009). Nerve conduits aid
axonal regrowth and are made of self-degrading biocompatible
materials that elicit no or a negligible inflammatory response

(Ichihara et al., 2008). However, there are only a few reports
of successful nerve repair using these conduits, with repair in
humans typically limited to small digit nerves and outcomes
similar to nerve autografts (Schlosshauer et al., 2006). Nerve
conduits also compare poorly to autografts for the repair of
‘‘critical length’’ defects, in part due to the lack of cellular support
within the conduit (Berrocal et al., 2013b). Nerve conduits may
thus be better suited as a platform for the delivery of growth-
enhancing substrates, such as nerve and glial growth factors,
small segments of peripheral nerve, and/or purified Schwann
cells (Berrocal et al., 2013a; Shakhbazau et al., 2014; Kornfeld
et al., 2016). Indeed, conduits containing autologous nerve-
derived Schwann cells promote fast and more efficient nerve
regeneration than nerve conduits alone (Hood et al., 2009). The
major challenge, however, is finding an appropriate source of
human Schwann cells for therapeutic applications. The role of
Schwann cells in the repair process, and efforts to generate
Schwann cells for PNI repair are reviewed herein.

A Primer on Schwann Cells and Their
Response to Peripheral Nerve Injury
In myelinated nerves, myelin, which is comprised of layers of
tightly compacted cell membranes, is laid down in internodal
segments, which are interspersed with myelin-sparse regions
known as nodes of Ranvier (Figure 1; Rasband and Peles, 2015).
Schwann cells enwrap both myelinated and non-myelinated
axons (Figure 1; Jessen, 2004). During development, Schwann
cells that associate with axons greater than 1 µm in diameter
differentiate into myelinating Schwann cells (Snaidero and
Simons, 2014; Salzer and Zalc, 2016), while those associated
with smaller diameter axons (<1 µm; e.g., C-fiber nociceptors)
become non-myelinating Schwann cells, also termed ‘‘Remak’’
cells (Griffin and Thompson, 2008; Harty and Monk, 2017).
Remak cells ensheathe numerous axons together (Griffin and
Thompson, 2008; Harty and Monk, 2017), whereas myelinating
Schwann cells typically myelinate only a single axon segment,
with a single axon myelinated by hundreds to thousands of
Schwann cells depending on the total internodal length (Snaidero
and Simons, 2014; Salzer and Zalc, 2016). Schwann cells also have
additional developmental and physiological functions, including
clustering of ion channels at the nodes of Ranvier (Poliak and
Peles, 2003), promotion of neuronal survival (Davies, 1998), and
regulation of axonal diameter (Cole et al., 1994). Here, we focus
on the role that Schwann cells play in axonal repair post-PNI.

Under pathological conditions, Schwann cells are required
to promote peripheral nerve regeneration and restoration
of function (Jessen and Mirsky, 2019b; Nocera and Jacob,
2020; Stassart and Woodhoo, 2020). To understand the role
of Schwann cells in repair, it is important to understand
the injury response. PNI leads to sterile inflammation at
the site of injury, and axonal degeneration occurs distal to
the site through a process termed Wallerian degeneration,
observed both in crush and transection injuries (Figure 2A;
Gaudet et al., 2011). Post-injury, severed peripheral nerves
remain intact for several days, even distal to the injury, but
ultimately degenerate in both rodents (Miledi and Slater,
1970; Lubi ńska, 1982; Beirowski et al., 2005) and on a slightly
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FIGURE 1 | Cellular transition steps during Schwann cell development and post peripheral nerve injury. Schwann cell development is marked by three transitory
stages: (i) migratory NCCs (E10.5) fated towards a glial lineage generate Schwann cell precursors (SCPs) at E12.5, which associate with axons. (ii) SCPs give rise to
immature Schwann cells (E14.5); and (iii) immature Schwann cells give rise to pro-myelinating Schwann cells (E18.5), which differentiate into mature myelinating or
non-myelinating Schwann cells postnatally. Key transcription factors (TFs) and regulators of Schwann cell development that are expressed during the distinct stages
are noted (in blue). The bottom inset presents a magnified view of a myelinating Schwann cell, with a myelin sheath deposited along the length of the axon. Nodes of
Ranvier are observed at the meeting point of adjacent internodes. Peripheral nerve injury (PNI) leads to axonal degeneration resulting in axonal and myelin debris
distal to the injury site. Schwann cells post-injury transition to a repair-like state and successfully repair and remyelinate the regenerated axon.

longer time course in humans (Chaudhry and Cornblath,
1992) and in non-human primates (Gilliatt and Hjorth,
1972). Axon degeneration occurs through calcium-mediated
activation of calpains (Wang et al., 2004; Nikolaeva et al., 2005;
Touma et al., 2007) and the proteasome (Zhai et al., 2003).
As early as 2 days post-PNI, the site distal to the injury is
riddled with neuronal and myelin ovoids (Figure 2A; Brosius
Lutz et al., 2017). The injury site is also rapidly invaded by
fibroblasts (Parrinello et al., 2010), inflammatory immune
cells, including neutrophils, which are present transiently
(Perkins and Tracey, 2000; Kennedy and DeLeo, 2009), and
macrophages, the recruitment of which is stimulated by Schwann
cell-secreted trophic factors, cytokines, and interleukins
(Roberts et al., 2017).

Soon after PNI, due to loss of axonal contact, Schwann
cells ‘‘de-differentiate’’ from a mature myelinating or
non-myelinating state to a proliferating, precursor-like
‘‘repair’’ state (Figures 2A,B; Mirsky et al., 2008; Jessen and
Mirsky, 2019a,b). While repair Schwann cells do not fully
resemble a specific developmental stage at the molecular
level, several developmental genes are re-expressed in repair
Schwann cells post-injury, including transcription factors
(TFs) that are critical regulators of development (e.g., Sox2,
Oct6, and Jun; Balakrishnan et al., 2016). The idea that repair
Schwann cells partially ‘‘de-differentiate’’ is also supported
by the re-appearance of developmental phenotypes, including
the re-initiation of proliferation and loss of myelination
capacity. Indeed, Schwann cells downregulate myelin genes to
inhibit myelin production distal to the injury site during the
repair period (Arthur-Farraj et al., 2012; Jessen and Mirsky,
2016; Stratton et al., 2018). Moreover, repair Schwann cells
participate actively in the removal of myelin fragments via

autophagy/myelinophagy (Gomez-Sanchez et al., 2015), which
is mediated by the phagocytic receptors Axl and Mertk (Brosius
Lutz et al., 2017), and assisted by macrophage-mediated
phagocytosis (Hirata and Kawabuchi, 2002; Jang et al., 2016;
Brosius Lutz et al., 2017). Removal of myelin debris is essential
as myelin creates a non-permissive environment for axons to
re-grow (Hirata and Kawabuchi, 2002; Gomez-Sanchez et al.,
2015; Brosius Lutz et al., 2017; Stratton et al., 2018).

Once myelin debris is cleared, the stage is set for axonal
regrowth (Figure 2B). Together, Schwann cells and infiltrating
macrophages secrete trophic factors and cytokines that promote
axonal repair and regeneration (Chen et al., 2010; Fregnan
et al., 2012; Shakhbazau et al., 2014; Johnston et al., 2016;
Ko et al., 2018; Walsh et al., 2009). Macrophages also secrete
VEGF-A to promote vascularization in the injury site, which
aids the regeneration process (Cattin et al., 2015). Axonal
sprouts from the proximal nerve stump emerge and slowly
grow towards end-target organs, with the support of axonal
guidance structures (or ‘‘regeneration tracks’’) consisting of basal
lamina scaffolds, called Büngner bands (Figure 2B; Arthur-Farraj
et al., 2012; Gomez-Sanchez et al., 2017; Chen et al., 2019).
These bands are populated by proliferating repair Schwann
cells that migrate in from both the proximal and distal nerve
stump. Following axonal regeneration, repair Schwann cells each
remyelinate a single axon, recapitulating the 1:1 association seen
during development (Figure 2C; Gomez-Sanchez et al., 2017;
Chen et al., 2019). Fbxw7, an E3 ubiquitin ligase expressed in
Schwann cells, is an essential ‘‘gatekeeper’’ of re-myelination
events post-injury, preventing the myelination of multiple axons
(Harty et al., 2019). Notably, the hyper-myelinating phenotype
of Fbxw7 mutant Schwann cells has led to speculation that
knockdown of this gene could be used therapeutically in PNS
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FIGURE 2 | Schwann cells in peripheral nerve repair. (A) PNI leads to axonal degeneration distal to the injury site through a process termed Wallerian degeneration.
Axonal and myelin debris is observed in the distal stump. Repair Schwann cells proliferate, and an influx of macrophages and fibroblasts commences, leading to
myelinophagy and macrophage-mediated phagocytosis of myelin debris. (B) Repair Schwann cells populate the distal stump and promote axonal regeneration and
distal target tissue reinnervation. Trophic factors and cytokines secreted by repair Schwann cells and macrophages further promote axonal repair and regeneration.
Basal lamina scaffolds deposited by repair Schwann cells form an axonal guidance structure called Büngner bands to support axonal regrowth and help direct
correct target organ innervation. (C) Repair Schwann cells successfully myelinate the regenerated axon.

diseases, such as Charcot-Marie-Tooth disease, a demyelinating
hereditary neuropathy (Murakami and Sunada, 2019), but
the therapeutic potential of such an approach remains to
be tested.

Schwann Cell Potential for Glial Support
Cell Therapy
As time progresses post-injury, the repair-ability of Schwann
cells declines, in part due to a loss of axonal communication as
nerve fibers degenerate, halting any further functional recovery
(Kelsey et al., 1997; Arthur-Farraj et al., 2012; Saheb-Al-Zamani
et al., 2013; Kumar et al., 2016; Poppler et al., 2016; Hoben
et al., 2018; Kornfeld et al., 2019; Wilcox et al., 2020). Schwann
cells thus have a limited remyelination capacity in chronically
denervated distal nerves. Moreover, given the long distances
required for peripheral nerve regeneration in humans, and the
relatively slow rate of axonal regrowth (∼1 mm/day; Sunderland,
1947), PNIs often result in chronic denervation due to Schwann
cell dysfunction, thus limiting functional outcomes for patients.

Advanced age also greatly diminishes nerve regenerative
capacity (Painter et al., 2014; Scheib and Hoke, 2016; Buttner
et al., 2018). Nerve grafts isolated from younger mice more
potently promote nerve regeneration than nerve grafts from
older mice (Painter et al., 2014; Scheib and Hoke, 2016;
Buttner et al., 2018). Specifically, there is increased macrophage
infiltration and Schwann cell phagocytosis in younger nerve
grafts, while a hyperinflammatory response is observed in
older nerve grafts post-injury (Painter et al., 2014; Scheib and
Hoke, 2016; Buttner et al., 2018). A delay in expression of
key regulators of a repair phenotype (e.g., Jun), as described
further below, is also observed in aged Schwann cells (Chen
et al., 2017). Additionally, Schwann cell survival, proliferation,
differentiation, and myelination potential, all decline with age

(Liu et al., 2018). PNI repair may also be sexually dimorphic,
with some reports demonstrating that females exhibit faster
regeneration and remyelination post-injury (Kovacic et al., 2004;
Magnaghi et al., 2006; Tong et al., 2015), whereas another study
revealed more pronounced axonal outgrowth in males (Stenberg
and Dahlin, 2014). Further research is thus required to elucidate
the nature of any sex-based differences.

Given their role in the normal repair response, transplanted
Schwann cells can support nerve repair. Indeed, enhanced
functional recovery is observed when Schwann cells are
transplanted in injured nerves in mice, rats, and nonhuman
primates (Levi et al., 1994; Rodríguez et al., 2000; Berrocal et al.,
2013a; Wakao et al., 2010). The first clinical use of autologous
Schwann cells to supplement sciatic nerve autograft repair was
reported in 2017 and strong motor function of the tibial nerve
and partial restoration of sensation was observed in one patient
(Gersey et al., 2017). However, Schwann cell transplants suffer
from similar limitations as nerve grafting: the requirement for
a nerve biopsy to isolate Schwann cells, as well as extended
expansion time required to generate sufficient cell numbers
for transplantation (Hood et al., 2009). Moreover, autologous
Schwann cell transplantation strategies are further hampered by
the limited proliferative capacity of adult nerve-derived Schwann
cells in vitro, which senesce when grown ex vivo, and the greatly
diminished regenerative capacity of Schwann cells derived from
patients of advanced age (Painter et al., 2014; Weiss et al., 2016;
Monje et al., 2018). Alternative sources of Schwann cells are
thus being actively explored as a solution for transplant purposes
(Woodhoo et al., 2007; Agudo et al., 2008).

Future Perspectives
Given the role of repair Schwann cells in remyelination post-
PNI, these cells are an ideal therapeutic target for future
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clinical strategies. However, more information is required if
we are to fully exploit the power of glial cell replacement
therapies, either by devising new strategies for the prospective
isolation of endogenous ‘‘repair’’ Schwann cells or by engineering
an exogenous source of these cells using lineage conversion
strategies, as described later. Another important consideration
is that Schwann cells derived from the skin, adult nerve, and
embryo all differ in their proliferative, myelination, and repair
capacity (Krause et al., 2014; Kumar et al., 2016), but whether
these differences lie in population heterogeneity (i.e., different
frequencies of Schwann cells with reparative potential within
each population), or inherent differences in their myelinating
and repair potential, is not known (Arthur-Farraj et al., 2012,
2017; Jessen and Mirsky, 2019b; Toma et al., 2020). If there are
subsets of Schwann cells that carry inherent proliferative and/or
survival advantages, they may be selected for post-transplant
in vivo. The development of newer technologies to examine
clonal behavior could be exploited to examine this possibility.
For example, the clonal response of Schwann cells to injury could
be monitored using a Cre reporter strategy [e.g., Brainbow mice
(Baggiolini et al., 2015)] or with lentiviral libraries designed for
cellular barcoding (Verovskaya et al., 2013). Indeed, the power
of cellular barcoding has revealed differences in clonal selection
between young and aged animals following hematopoietic stem
cell transplant (Verovskaya et al., 2013) and could be applied to
other transplant scenarios.

Another important line of future investigation would be the
identification of biomarkers to prospectively isolate Schwann
cells with a repair phenotype. Critical insights could be
gleaned from single-cell RNA-sequencing to stratify Schwann
cell populations, to identify genes encoding unique cell surface
markers in those populations with a repair Schwann cell
signature. Other possibilities include future analyses of Schwann
cell surface proteomes to identify novel markers that may be used
to identify and prospectively isolate repair Schwann cells.

SCHWANN CELLS: UNDERSTANDING
DEVELOPMENT TO ENGINEER REPAIR

A Synopsis of Embryonic Schwann Cell
Development
Schwann cells originate from migratory neural crest cells
(NCCs) that emerge at the intersection between the neural
and non-neural ectoderm and then undergo an epithelial-
to-mesenchymal transition before following distinct migratory
paths, with pathway selection influencing final cell fates (Le
Douarin and Dupin, 2003; Le Douarin et al., 2004; Sauka-
Spengler and Bronner-Fraser, 2008; Stuhlmiller and García-
Castro, 2012). NCCs that migrate through rostral somites
become Schwann cells and boundary cap cells through a series of
differentiation steps (Le Douarin and Kalcheim, 1999; Vermeren
et al., 2003; Vega-Lopez et al., 2017). Boundary cap cells occupy
the dorsal root entry zone andmotor exit points in the embryonic
spinal cord and give rise to Schwann cells occupying the spinal
roots (Wilkinson et al., 1989; Niederlander and Lumsden, 1996;
Vermeren et al., 2003; Maro et al., 2004; Coulpier et al., 2009).

Interestingly, boundary cap cells retain multipotency and can
also give rise to oligodendrocytes when transplanted into the
CNS (Zujovic et al., 2011).

Schwann cells that populate the spinal nerves are derived
from NCCs that first give rise to Schwann cell precursors
(SCPs), beginning at embryonic day (E) 12.5 in mouse (major
differentiation steps outlined in Figure 1; Blanchard et al., 1996;
Jessen and Mirsky, 2005, 2019a; Balakrishnan et al., 2016).
Morphologically, SCPs are distinguished from NCCs as they lack
a basal lamina and associate directly with growing axon bundles.
SCPs are located proximal to the growing nerve tip, promote
nerve compaction, and guide axons to their targets (Jessen and
Mirsky, 2005, 2019a). As development proceeds, SCPs give rise to
immature Schwann cells (iSCs) from E14.5 onwards, a cell type
that persists up until birth (Jessen and Mirsky, 2005). Just before
birth, individual iSCs contact a single axon, targeting only those
larger diameter axons that produce higher levels of neuregulin 1
(NRG1; described further below; Feltri et al., 2015). The process
by which iSCs select a single axon formyelination is called ‘‘radial
sorting’’ (Feltri et al., 2015) and results in the conversion of iSCs
to pro-myelinating Schwann cells, a transient population that
ultimately become myelinating Schwann cells. In contrast, iSCs
that pair with smaller diameter axon bundles, which release lower
levels of NRG1, become non-myelinating (Remak) Schwann cells
(Taveggia et al., 2005; Gomez-Sanchez et al., 2009).

Key Transcription Factors Involved in
Schwann Cell Development
Several signatory transcription factors (TFs) are expressed
during the transitory steps from NCC → SCP → iSC →
pro-myelinating Schwann cell → myelinating/non-myelinating
Schwann cell (summarized in Figure 1). As early as the NCC
stage, glial cell fate determinants are expressed, including Sox9,
Sox10, Tfap2a, Etv5, and Pax3 (Goulding et al., 1991; Kuhlbrodt
et al., 1998; Hagedorn et al., 2000; Stewart et al., 2001; Cheung
and Briscoe, 2003; Balakrishnan et al., 2016). When NCCs
transition to SCPs, Sox9, Sox10, Tfap2a, and Pax3 continue to
be expressed, and Sox2 and Egr1 expression is initiated, while
Etv5 is downregulated (Topilko et al., 1997; Jessen and Mirsky,
2005; Balakrishnan et al., 2016; Jessen and Mirsky, 2019a). As
SCPs become iSCs, transcription of the glial-TFs Sox9, Sox10,
and Tfap2a persists, while SCP-specific TF Pax3 is turned off and
Egr1 and Sox2 are downregulated (Topilko et al., 1997; Jessen
and Mirsky, 2005; Balakrishnan et al., 2016; Jessen and Mirsky,
2019a). Next, iSCs convert to pro-myelinating Schwann cells
that continue to express Sox9 and Sox10, downregulate Tfap2a,
and begin to express the TFs Jun, Pou3f1, and Yy1 (Arroyo
et al., 1998; He et al., 2010; Balakrishnan et al., 2016). Finally,
myelinating Schwann cells continue to express Sox9, Sox10,
Pou3f1, and Yy1 while also initiating the expression of Nfatc4,
and Egr2 (Nagarajan et al., 2002; Kao et al., 2009; Balakrishnan
et al., 2016). Notably, while Egr2 expression is not observed until
late embryonic/early postnatal stages in Schwann cells lining the
peripheral nerve, Egr2 is expressed in SCPs and Schwann cells
populating the dorsal and ventral roots fromE10.5 (Topilko et al.,
1997; Maro et al., 2004; Balakrishnan et al., 2016). Egr1, which is
downregulated at the SCP-to-iSC transition, is also re-expressed
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at postnatal stages, but only in non-myelinating Schwann cells,
which transcribe Sox9, Sox10, Sox2, Jun, and Pax3 (Kioussi et al.,
1995; Topilko et al., 1997; Yu et al., 2009; Blake and Ziman, 2013;
Balakrishnan et al., 2016).

Loss- and gain-of-function studies have elucidated the roles
of several of these signatory TFs in driving Schwann cell
development and in the maintenance of a mature Schwann cell
fate under normal physiological conditions.

(1) Sox (SRY-related HMG-box) genes: Sox9 and Sox10 are
expressed throughout Schwann cell development, beginning
in E10.5 NCCs and persisting in mature Schwann cells
throughout life (Kuhlbrodt et al., 1998; Stewart et al., 2001;
Cheung and Briscoe, 2003; Finzsch et al., 2010; Bremer et al.,
2011; Balakrishnan et al., 2016). Surprisingly, the function
of Sox9 in the Schwann cell lineage has yet to be elucidated
to the best of our knowledge, in part because heterozygous
mutants display perinatal lethality, and homozygous null
mutants cannot be generated (Bi et al., 2001). While a floxed
allele of Sox9 has been generated for conditional knock-out
(cKO) purposes (Akiyama et al., 2002), they have not been
used to assess Sox9 function in Schwann cell development.

During embryonic development, Sox10 is required for the
generation of Schwann cells and satellite glia, which ‘‘cap’’
neuronal cell bodies in sensory ganglia (Paratore et al., 2001).
At postnatal stages, Sox10 is not necessary for Schwann
cell survival, as revealed by in vivo analyses of Sox10 cKOs
(Bremer et al., 2011), but Sox10 is required to maintain an
intact and functional myelin sheath (Kim et al., 2003; Finzsch
et al., 2010; Bremer et al., 2011), consistent with its role in
transactivating genes involved in the generation of peripheral
myelin (e.g., Egr2, MBP, MPZ, MAG, S100β , Peirano et al.,
2000; Bondurand et al., 2001; Ghislain and Charnay, 2006;
Jones et al., 2007; LeBlanc et al., 2007; Fujiwara et al., 2014).
Notably, Sox10 acts synergistically with other TFs to initiate
a myelination program, including Pou3f1, Nfatc4 and Egr2
(Ghislain and Charnay, 2006; LeBlanc et al., 2006, 2007; Jang
and Svaren, 2009; Kao et al., 2009; Jones et al., 2012).

Ectodermal cells that become NCCs upregulate Sox2
expression (Wakamatsu et al., 2004). As NCC development
progresses, Sox2 expression declines in SCPs and iSCs, but
maintaining low Sox2 levels is required to sustain a glial
identity, whereas high Sox2 expression leads to neuronal
commitment (Wakamatsu et al., 2004). Sox2 also controls
a key decision point in SCPs, inhibiting the expression of
Mitf so that SCPs differentiate into myelinating Schwann
cells rather than melanocytes (Adameyko et al., 2012).

(2) Ets-domain gene (Etv5): Etv5 is expressed in NCCs and
satellite glia, and then rapidly turns off in SCPs (Hagedorn
et al., 2000; Balakrishnan et al., 2016). Etv5 loss-of-
function studies using dominant-negative constructs in
NCCs (Paratore et al., 2002) or hypomorphic mutants
(Balakrishnan et al., 2020) did not reveal any defects in NCC
glial fate selection or Schwann cell development, respectively.
Interestingly, the related gene, Etv1, which is also expressed
in Schwann cells (Srinivasan et al., 2007), is similarly
not required for the development of myelinating Schwann

cells (Fleming et al., 2016). However, Etv1 is required for
peripheral axons to interact with non-myelinating Schwann
cells in Pacinian corpuscles (Sedy et al., 2006; Fleming et al.,
2016). One possibility is that Etv1 and Etv5 have redundant
functions in the development of myelinating Schwann cells.

(3) AP-2α (Tfap2a): Tfap2a is also expressed in NCCs, persists
in SCPs, and then rapidly turns off in pro-myelinating
Schwann cells (Balakrishnan et al., 2016; Jessen and
Mirsky, 2019a). Sustained expression of Tfap2a in SCPs
prevents the transition to iSCs, revealing that Tfap2a
is a negative regulator of Schwann cell differentiation
(Stewart et al., 2001).

(4) Pax3: Pax3 is also expressed in NCCs and turns off rapidly
in SCPs before being re-expressed in Remak Schwann cells
(Kioussi et al., 1995; Doddrell et al., 2012; Blake and Ziman,
2013). During development, Pax3 induces Schwann cell
proliferation and blocks apoptosis (Nakazaki et al., 2009).
When overexpressed in Schwann cells in vitro, Pax3 prevents
Schwann cells from differentiating into myelinating cells by
inhibiting MBP and Egr2-driven MPZ expression (Kioussi
et al., 1995; Doddrell et al., 2012). Instead, Pax3 promotes a
non-myelinating Schwann cell identity (Kioussi et al., 1995),
consistent with its normal expression in Remak Schwann
cells (Kioussi et al., 1995; Doddrell et al., 2012; Blake and
Ziman, 2013).

(5) Pou3f1, Jun, Yy1: The expression of three key TFs is initiated
in pro-myelinating Schwann cells: Pou3f1 (Arroyo et al.,
1998), Nfatc4 (Kao et al., 2009), and Yy1 (He et al., 2010).
Pou3f1, which is expressed in non-myelinating Schwann
cells, turns off with the onset of myelination (Blanchard
et al., 1996). However, Pou3f1 is required to induce Egr2
expression and initiate a myelination program, at least
until postnatal day (P) 10, when redundant programs take
over, acting in synergy with Sox10 (Notterpek et al., 1999;
Zorick et al., 1999; Ghazvini et al., 2002; Ghislain and
Charnay, 2006). Pou3f1 overexpression leads to persistent
hypo-myelination and gradual axonal loss by acting as a
transcriptional repressor of MBP and MPZ (Monuki et al.,
1993; Ryu et al., 2007). Pou3f1 thus has dual roles as a positive
and negative regulator of myelination in the PNS.

Jun encodes a zinc finger TF that forms an AP1 hetero-
dimeric complex with Fos (Abate and Curran, 1990). Jun is
expressed in late iSCs at E17.5 and is then downregulated by
Egr2 with the onset of myelination (Parkinson et al., 2004).
Overexpression of Jun blocks myelination by suppressing
Egr2 and MPZ expression, initiating a Schwann cell
‘‘de-differentiation’’ program (Parkinson et al., 2008). In
contrast, Yy1 initiates Egr2 expression in a neuregulin-
dependent manner and is a positive regulator of myelination
(He et al., 2010).

(6) Egr1/Egr2: Egr1(Krox 24) and Egr2(Krox20) have
opposing roles in myelination (Topilko et al., 1997).
Activation of Egr2 initiates terminal differentiation of
Schwann cells to a myelinating phenotype, turning on
myelin-related genes such as MBP, MPZ, and Pmp22
(Nagarajan et al., 2002; LeBlanc et al., 2007; Jang and
Svaren, 2009; Jones et al., 2012). Conversely, Egr1 is

Frontiers in Molecular Neuroscience | www.frontiersin.org 6 January 2021 | Volume 13 | Article 608442

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Balakrishnan et al. Schwann Cell Development and Repair

expressed in non-myelinating Schwann cells and drives
a pro-proliferative phenotype (Topilko et al., 1997;
Balakrishnan et al., 2016).

Key Signaling Molecules Involved in
Schwann Cell Development
(1) Neurotrophins: nerve growth factor receptor (Ngfr), also

known as p75NTR, is a low-affinity receptor for multiple
neurotrophins. Ngfr is expressed in migrating NCCs and
in developing Schwann cells throughout development but
declines in expression as pro-myelinating Schwann cells
mature to a myelinating state (Mirsky et al., 2008; Betters
et al., 2010). In Ngfr knockouts, Schwann cells survive
but fail to myelinate (Song et al., 2006). BDNF is a
neurotrophin that is essential for iSCs to develop into
myelinating Schwann cells, activating the expression of
NFκB (Boyle et al., 2005). Stimulation of Ngfr in iSCs
leads to nuclear translocation and activation of the NFκB
subunit, p65, which initiates anti-apoptotic pathways to
prevent Schwann cell death (Boyle et al., 2005). In
the absence of NFκB (p65 knockout), iSCs undergo
apoptosis due to a lack of survival signals from the axon
(Boyle et al., 2005).

(2) Neuregulin signaling: neuregulins are axon-derived
signaling proteins that are essential for Schwann cell
development (Garratt et al., 2000). NRG1 exists in
transmembrane and soluble isoforms, of which NRG1 type
II and type III are relevant during Schwann cell development
(Garratt et al., 2000; Falls, 2003). The survival and
proliferation of SCPs depend upon transmembrane
NRG1 type III, which binds to the receptor tyrosine
kinases ErbB2 and ErbB3, both expressed by SCPs (Dong
et al., 1995; Garratt et al., 2000). NRG1 type III is also
essential during the terminal differentiation stage of
Schwann cells to bring about successful myelination
in vitro and in vivo (Michailov et al., 2004; Taveggia
et al., 2005). Neuregulin signaling is dosage sensitive,
with NRG1 type III+/− heterozygous neurons displaying
axon ensheathment but poor myelination, a phenotype
that can be rescued with low levels of exogenous
NRG1 type III, whereas high levels inhibit myelination
(Zanazzi et al., 2001; Syed et al., 2010).

Neuregulins intersect with several signal transduction
pathways to mediate their effects. For instance,
NRG1 type III activates PI3K/Akt signaling,
which is essential for myelination (Taveggia et al.,
2005). To achieve differentiation of Schwann cells
in vitro, NRG1 type III, and high levels of cAMP
are required, leading to CREB phosphorylation
at Ser133 (Arthur-Farraj et al., 2011; Bacallao
and Monje, 2015). Conversely, NRG1 acts as a
Schwann cell mitogen when cAMP levels are low
(Arthur-Farraj et al., 2011).

ErbB2 and ErbB3 also activate MEK-ERK signaling,
which is required for Schwann cell differentiation, based
on the analysis of ERK1/ERK2 mutants (Newbern et al.,
2011). Conversely, if ERK signaling is ectopically activated

in Schwann cells, myelination ensues (Ishii et al., 2013;
Sheean et al., 2014). In contrast to NRG1 type III, soluble
NRG1 type II isoforms signal in a paracrine fashion to
inhibit myelination, an effect mediated by downstream
MEK/ERK signaling, which promotes Jun expression—a
known inhibitor of myelination (Syed et al., 2010; Arthur-
Farraj et al., 2012). The MEK/ERK pathway can block
myelination alone as well as in cooperation with low
levels of soluble NRG1 type II (Ogata et al., 2004;
Chen et al., 2006; Syed et al., 2010). When MEK/ERK
signaling is blocked, soluble NRG1 type II instead promotes
myelination (Ogata et al., 2004). Critical TFs that are
activated downstream of MEK-ERK are the Ets-domain
proteins (Yang S. H. et al., 2013), including Pnt in
Drosophila, which specifies a glial fate (Klaes et al., 1994),
and Etv1, Etv4, and Etv5 in vertebrates. Notably, MEK-ERK
initiates Etv1 and Etv5 to specify an oligodendrocyte fate
in the CNS (Li et al., 2012; Wang et al., 2012; Li et al.,
2014; Ahmad et al., 2019), but these factors are not
required to specify a myelinating Schwann cell identity, as
highlighted above.

(3) Hippo pathway: Yap and Taz, which are transcriptional
co-activators and downstream effectors of the Hippo
pathway, promote iSC proliferation, differentiation,
myelination, and radial sorting (Lopez-Anido et al.,
2016; Poitelon et al., 2016; Deng et al., 2017; Grove
et al., 2017). Overexpression of Yap/Taz in naïve adult
nerves leads to an increase in Schwann cell proliferation
(Mindos et al., 2017; Wu et al., 2018). Yap/Taz initiate
the expression of DNA binding proteins like Tead1
(Lopez-Anido et al., 2016), Cc2d1b, and Purβ (Sophie
et al., 2019) to promote Schwann cell proliferation
and myelination.

(4) Wnts: canonical Wnt signaling induces Sox10
expression in NCCs (Honoré et al., 2003) and
induces the expression of mature myelin genes
such as MPZ and Pmp22 in Schwann cells
(Tawk et al., 2011).

(5) Rho GTPases: small GTPases of the Rho (e.g., Cdc42,
RhoA, Rac1) and Ras (RalA, RalB) families act as molecular
switches, shuttling between activated GTP-bound and
inactive GDP-bound states. Rho and Ras GTPases
regulate cytoskeletal organization in Schwann cells to
modulate critical events such as radial sorting during
development (Benninger et al., 2007; Guo et al., 2013;
Tan et al., 2018; Ommer et al., 2019). The chronic
lack of Ral proteins in Schwann cells impairs radial
sorting, resulting in the formation of unmyelinated or
hypo-myelinated large-caliber axons, and abnormalities
in the myelin sheath (Ommer et al., 2019). Similarly,
the large GTPase Dynamin2 (Dnm2) is also required for
Schwann cell survival, radial sorting, and myelination
(Gerber et al., 2019). Deletion of Dnm2 in developing
and/or adult Schwann cells leads to Schwann cell
apoptosis, radial sorting impairment, and a demyelinating
phenotype akin to defects seen in peripheral neuropathies
(Gerber et al., 2019).
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(6) Bone morphogenetic proteins (BMPs): NCC are
multipotent, giving rise to both glial and neuronal
progeny. BMPs have neurogenic potential and direct a
subset of NCCs towards the neuronal lineage during PNS
development (Dore et al., 2009). BMP2 suppresses the
expression of mature Schwann cell-specific genes in SCPs
by inducing early-stage glial genes such as Gfap (Dore
et al., 2009). SCPs residing in the cranial and trunk nerves
are responsive to the neurogenic effects of BMP2 and can
switch between neuronal or glial fates, thereby giving rise
to neurons in the parasympathetic ganglia (Dyachuk et al.,
2014; Espinosa-Medina et al., 2014). Among the BMP
subtypes, BMP7 is detected in early and adult postnatal
sciatic nerves (Liu et al., 2016; Kokubu et al., 2018),
and BMP7 expression is associated with the suppression
of the myelin gene (Pmp22, MBP, MPZ) expression
(Liu et al., 2016).

Future Perspectives
While much is now known about the roles that individual
TFs play in guiding Schwann cell development, it is important
to note that none of these factors act in isolation—instead,
TFs form complex gene regulatory networks (GRNs) that
govern Schwann cell proliferation, myelination, and repair.
Thus, while Sox10, Pou3f1, and Egr2 likely lie at the core of a
myelinating GRN, given their importance in driving myelination
(Jessen and Mirsky, 2019a), how Sox10, Pou3f1, and Egr2 act
in a cooperative manner with the full complement of other
TFs expressed in myelinating Schwann cells has not been
fully elucidated.

In all tissues and organs, the selection of distinct cell fates
during development occurs at lineage branch or decision points.
The choice to follow one developmental fate or another is
regulated by the combinatorial actions of TFs and chromatin
structure, which defines the accessibility of TFs to their binding
sites (Brand and Morrissey, 2020). Accordingly, Schwann cell
development and myelination are also regulated by epigenetic
drivers [reviewed in (Ma and Svaren, 2018; Duman et al., 2020)].
For instance, Schwann cells express histone deacetylase (HDAC)
1 and 2, which ‘‘open’’ chromatin to make it more accessible
to binding by lineage-specifying TFs, as well as deacetylate TFs
themselves to alter cellular activity (Jacob et al., 2011; Arthur-
Farraj et al., 2012). When overexpressed in Schwann cells,
HDAC1 and 2 promote Sox10 and MPZ expression, while loss-
of-function mutations prevent the expression of Sox10 andMPZ,
leading to a hypomyelinating phenotype (Chen et al., 2011; Jacob
et al., 2011; Brugger et al., 2015). It is thus important to consider
how epigenetic drivers might influence the actions of TFs that
act as lineage determinants and differentiation factors during
Schwann cell development.

In the future, combinatorial analyses of transcriptomic and
epigenomic data could be collected from progenitor cells at
various stages in the Schwann cell differentiation program,
allowing visualization of the GRNs that are associated with
specific cell states (Okawa et al., 2015). Follow-up studies could
then assess how these GRNs are influenced by extrinsic signals,

for example, by examining how GRNs change in mutants
that lack certain critical extrinsic signals, such as NRG1. Also,
GRN studies could identify new TFs that lie at the center of
regulatory hubs that may play critical roles in guiding Schwann
cell developmental transitions.

MOLECULAR REGULATORS OF THE
SCHWANN CELL REPAIR RESPONSE

Axonal injury in the periphery is followed by what some have
termed Schwann cell ‘‘de-differentiation’’, which reverts mature
myelinating Schwann cells to a ‘‘repair state’’ that resembles
embryonic progenitor stages based on the re-initiation of
expression of critical TFs and developmental signaling pathways
(Balakrishnan et al., 2016; Jessen andMirsky, 2019b). Also, repair
Schwann cells express genes that are not normally expressed
in the embryonic Schwann cell lineage, including the TF Olig1
and the signaling molecules GDNF, BDNF, and Shh, the repair-
specific roles of which are reviewed below (Arthur-Farraj et al.,
2012, 2017; Jessen and Mirsky, 2019b).

Key Transcription Factors Involved in
Schwann Cell Repair
(1) Sox2: Sox2 is upregulated post nerve transection and is

required for EphB/ephrin-B mediated clustering of Schwann
cells at the injury site through re-localization of N-cadherin
to gap junctions (Parrinello et al., 2010). N-cadherin
clustering in Schwann cells promotes the formation of
multicellular cords (Büngner bands) responsible for guiding
regenerating axons through the injured site (Parrinello
et al., 2010). Sox2 expression also promotes infiltration of
macrophages into the nerve, which are required to clear
myelin and axonal debris from the site of injury (Roberts
et al., 2017). Moreover, sustained expression of Sox2 blocks
myelination post-injury, and attenuates functional recovery
(Roberts et al., 2017). However, the transcriptional targets
of Sox2 which are responsible for driving the Schwann cell
response to injury are not yet known.

(2) Egr1/Egr2: Egr2 is rapidly downregulated in Schwann
cells post-PNI, which aids in the reduction of myelin
gene expression (Zorick et al., 1996; Topilko et al.,
1997). In contrast, Egr1 expression is upregulated in
Schwann cells post-injury, mimicking embryonic SCPs,
and further highlighting the importance of Egr1 in
attaining a proliferative repair Schwann cell phenotype
(Topilko et al., 1997).

(3) Jun: Jun is up-regulated post-PNI, and as an essential
inhibitor of myelination, Jun has been aptly deemed a
master regulator of nerve repair (Parkinson et al., 2004,
2008; Arthur-Farraj et al., 2012; Painter et al., 2014; Jessen
and Mirsky, 2019b). Overexpression of Jun suppresses
myelination and induces Schwann cell de-differentiation
by suppressing myelination genes, such as Egr2 and MPZ
(Parkinson et al., 2004, 2008; Arthur-Farraj et al., 2012;
Painter et al., 2014; Jessen and Mirsky, 2019a). Jun also
contributes to the clearance of myelin debris post-injury,
which is crucial for successful nerve regeneration (Arthur-
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Farraj et al., 2012; Painter et al., 2014; Fazal et al., 2017).
Finally, Jun also has non-cell-autonomous effects on motor
neuron survival and axonal regeneration, as it is required
to promote the expression of GDNF and other neurotrophic
factors in Schwann cells (Fontana et al., 2012).

(4) Olig1: Olig1 is best known for its role in the differentiation
of oligodendrocyte precursor cells in the CNS (Zhou et al.,
2000). However, Olig1 is also expressed in P7 Remak cells, in
adult sciatic nerves (Schmid et al., 2014), and is upregulated
in the peripheral nerve post-injury (Arthur-Farraj et al.,
2012). However, the function ofOlig1 in repair Schwann cells
is yet to be elucidated.

(5) Pax3: Pax3 is also upregulated in repair Schwann cells
post-injury (Kioussi et al., 1995; Blake and Ziman, 2013).
Since Pax3 promotes Schwann cell proliferation and
prevents TGFβ-mediated apoptosis (Nakazaki et al., 2009),
Pax3may play an important role in guiding Schwann cell de-
differentiation, but this possibility remains to be tested.

Key Signaling Molecules Involved in
Schwann Cell Repair
(1) Neurotrophins: Ngfr is upregulated post-PNI, but promotes

cell death, as revealed by the enhanced survival of Schwann
cells in Ngfr KOs after injury (Hall et al., 1997; Ferri and
Bisby, 1999). When Ngfr is activated by ligand binding,
it promotes Schwann cell death when the RIP2 adaptor
protein is bound to the Ngfr ‘‘death domain’’ (Khursigara
et al., 2001). The pro-apoptotic functions of Ngfr post-PNI
contrast to the essential role of Ngfr during myelination in
development (Cosgaya et al., 2002). However, conventional
Ngfr KOs deleted the gene in all cells, including both
sensory neurons and Schwann cells in the peripheral nerve
(Cosgaya et al., 2002). A more recent analysis of Schwann
cell-specific Ngfr cKOs revealed that axonal repair and
remyelination ability is intact post-PNI, suggesting that
Ngfr is not required for repair (Gonçalves et al., 2019).
Nevertheless, neurotrophic factors such as BDNF and GDNF
are upregulated in Schwann cells post-injury and generally
have anti-apoptotic effects that may instead be mediated
by the Trk receptors (Funakoshi et al., 1993; Hoke et al.,
2000). For instance, BDNF aids axonal regeneration by
promoting neuronal survival (Boyd and Gordon, 2003),
while GDNF supports the proliferation of Remak cells and
ultimately the myelination of small, unmyelinated axons
(Höke et al., 2003).

(2) Hippo pathway: Yap/Taz expression is upregulated in
repair Schwann cells post-PNI, but declines with axonal
degeneration (Grove et al., 2020). Repair Schwann cells can
proliferate in the absence of Yap/Taz, but these genes are
required for remyelination of injured nerves (Mindos et al.,
2017; Wu et al., 2018; Grove et al., 2020).

(3) Bone morphogenetic proteins (BMPs): BMP7 is upregulated
post-PNI, but there is a delayed response, with the increase in
BMP7 transcripts only observed after 24 h, whenmyelination
gene expression starts to decline (Liu et al., 2016). Consistent
with BMP7 inhibiting myelination, the addition of BMP7 to
Schwann cells in vitro reduces the expression of myelination-

associated genes such as Pmp22 and Egr2 (Liu et al., 2016).
Thus, BMP7 may help to attenuate myelination during the
initial repair response post-PNI (Liu et al., 2016).

(4) Sonic hedgehog (Shh): Gli3 functions as a repressor of
Hedgehog signaling in mature Schwann cells (Yamada
et al., 2020). PNI reduces Gli3 expression, accompanied by
increased Shh expression in repair Schwann cells, which
promotes nerve regeneration (Yamada et al., 2020). Notably,
Shh signaling induces Olig1 expression in myelinating
oligodendrocytes in the CNS (Lu et al., 2000), and may thus
underlie the observed increase in Olig1 expression in repair
Schwann cells in the PNS.

(5) Growth factors: FGF2 is expressed in adult nerves and is
upregulated post-PNI (Grothe et al., 2001). FGF2 promotes
Schwann cell proliferation in vitro as well as in injured
nerves in vivo. Schwann cells modified to overexpress
FGF2 promote motor axon regeneration in a resected nerve
model (Allodi et al., 2014). PDGF-AA is also secreted by
Schwann cells post-nerve injury, and while PDGF is a known
Schwann cell mitogen in vitro (Davis and Stroobant, 1990;
Hardy et al., 1992), PDGF-AA also has paracrine effects,
promoting the proliferation of mesenchymal cells during
digit tip regeneration (Johnston et al., 2016).

(6) EphB/ephrin-B signaling: Activation of EphB/ephrin-B
signaling is observed in Schwann cells in transection injuries
of the peripheral nerve (Parrinello et al., 2010). When
added to Schwann cell cultures, ephrin-B ligands induce
clustering of these cells and segregation from fibroblasts that
also fill the injury site (Parrinello et al., 2010). Ephrin-B
mediated sorting of Schwann cells leads to the formation
of multicellular cords that are essential for axonal regrowth
across the injured site.

(7) Signal transduction cascades: several signal transduction
cascades are activated in repair Schwann cells
(reviewed extensively in Nocera and Jacob, 2020;
Stassart and Woodhoo, 2020), including ERK1/2 (Sheu
et al., 2000; Harrisingh et al., 2004; Hausott and
Klimaschewski, 2019), Jun N-terminal Kinase (JNK;
Parkinson et al., 2008; Monje et al., 2010), and p38 MAPK
(Haines et al., 2008; Yang et al., 2012) signaling. JNK
activation leads to phosphorylation of Jun, induces Schwann
cell proliferation, and inhibits myelination (Parkinson et al.,
2004, 2008; Monje et al., 2010). Similarly, p38 MAPK activity
induces Jun expression, inhibits myelination, and promotes
repair Schwann cells to associate with regrowing axons
(Haines et al., 2008; Yang et al., 2012). Strikingly, sustained
activation of MAPK signaling in developing Schwann
cells leads to premature and continuous myelin synthesis,
culminating in a hyper-myelinating phenotype (Sheean
et al., 2014). However, MAPK activation is detrimental in
mature Schwann cells, leading to myelin compaction defects
and impaired formation of non-myelinating Schwann cell
bundles (Cervellini et al., 2018), and is thus not useful as
a therapeutic strategy. Similarly, while ERK1/2 activation
induces Schwann cell de-differentiation at the site of injury
(Sheu et al., 2000; Harrisingh et al., 2004), upregulation
of ERK1/2 in Schwann cells under normal physiological
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conditions promotes a transient demyelinating phenotype
(Napoli et al., 2012).

Future Perspectives
While recent studies have identified genes enriched in
repair Schwann cells, a more detailed analysis of the repair
Schwann cell phenotype will be gained by exploiting the
power of single-cell transcriptomics (like in Toma et al.,
2020) for population stratification and gene discovery. The
information gained through such approaches may aid in
the prospective isolation of a homogenous pool of ‘‘repair’’
cells for therapeutic purposes. Additionally, the further
investigation of genes regulated by TFs like Olig1, which
are exclusively expressed in repair Schwann cells, may also
help to elucidate further insights into a repair Schwann
cell phenotype.

An interesting question in the field of PNI repair is the
variability in the repair response in humans vs. rodent
models, which are commonly used in research (Meyer
Zu Reckendorf et al., 2020). While the repair response is
largely conserved between the two species, the transition of
differentiated mature Schwann cells into proliferative repair
cells is more robust in mice compared to humans (Meyer
Zu Reckendorf et al., 2020). The enhanced repair response
in mice is attributed to lower lipogenic gene expression
and reduced S1P-PPARγ signaling, which prevents de
novo myelin synthesis to promote nerve repair (Meyer Zu
Reckendorf et al., 2020). Mimicking the murine response
might prove beneficial for promoting a more pronounced
repair response in humans post-injury. Given that PPARγ

antagonist (SR16832, GW6992) administration in humans
reduces lipogenic gene expression (Meyer Zu Reckendorf
et al., 2020), such an approach could potentially aid PNI
repair, perhaps in combination with growth factors to promote
Schwann cell proliferation.

While the delivery of growth factors using novel systems
(e.g., carriers like magnetic nanoparticles; Giannaccini et al.,
2017) are in development, there is a possibility of adverse effects
arising due to the administration of growth factors. For example,
administration of FGF9 to a nerve injury led to fibrotic scar
formation (Huang et al., 2020) and prevented Schwann cell
de-differentiation (Lv et al., 2019). Hence, it is important to
assess the effects of exogenously administered growth factors
carefully. In the future, the administration of appropriate
growth factors/pharmacological agents in combination with
exogenous Schwann cells may prove beneficial in promoting
nerve repair.

CELLULAR REPROGRAMMING FOR
PERIPHERAL NERVE REPAIR

Directed Differentiation of Pluripotent and
Somatic Stem Cells to Schwann Cells
To use Schwann cells clinically, it is necessary to culture
these cells on a large scale in vitro. In experimental animals,
the sciatic nerve is a common source for harvesting and

culturing Schwann cells (Morrissey et al., 1991). However,
nerve-derived Schwann cells are not readily accessible (Hood
et al., 2009), and to acquire large numbers of cells, long
expansion periods are required (Morrissey et al., 1991). Given
these limitations, nerve-derived Schwann cells are not an ideal
source for experimental procedures or clinical applications
(Faroni et al., 2016). Hence, alternative Schwann cell sources are
required for the future development of glial support cell therapies
(Figure 3).

Numerous groups have used small molecules and growth
factors to derive Schwann cells from pluripotent or somatic
stem cells, including skin-derived neural crest stem cells (Sakaue
and Sieber-Blum, 2015), hair follicle-derived neural crest stem
cells (Lavasani et al., 2014), muscle-derived stem/progenitor cells
(Lavasani et al., 2014), dental pulp stem cells (Martens et al.,
2014), umbilical cord- or bone marrow-derived mesenchymal
stromal cells (Matsuse et al., 2010; Cai et al., 2017), adipose tissue-
derived stem cells (Faroni et al., 2016; Huang et al., 2020), human
embryonic stem cells (hESCs; Ziegler et al., 2011; Liu et al.,
2012), and induced pluripotent stem cells (iPSCs; Liu et al., 2012;
Kim et al., 2017). These directed differentiation strategies take
advantage of our knowledge of developmental processes, with
two representative examples described.

(1) Directed differentiation of pluripotent stem cells: hESCs
cultured as neurospheres in ‘‘Schwann cell differentiation
media’’ containing NRG1 and forskolin, an adenylyl cyclase
and protein kinase A agonist, differentiate into mature
myelinating Schwann cells within ∼12 weeks (Ziegler et al.,
2011). Similarly, hESCs can be directed towards an SCP fate
and further differentiated into mature Schwann cells over
4 weeks using a combination of chemical small molecule
inhibitors including a GSK3 inhibitor (CT99021), TGF-
β inhibitor (SB431452), NRG1, and forskolin (Kim et al.,
2017). The generation of SCPs has potential advantages
in therapeutic applications. For instance, repair Schwann
cells mimic an embryonic Schwann cell phenotype, and
hence use of a pure SCP population may fare better in a
clinical setting compared to mature myelinating Schwann
cells. Second, SCPs are an expandable cell population, and
thus better suited in a clinical setting compared to mature
Schwann cells.

The design of these directed differentiation approaches
is rooted in a solid understanding of developmental events.
NRG1 is a critical regulator of Schwann cell differentiation,
acting cooperatively with cAMP, the production of which
is induced by forskolin (Arthur-Farraj et al., 2011; Bacallao
and Monje, 2015). GSK3 inhibitors serve as Wnt agonists, a
pathway that induces Sox10 expression, a master regulator
of Schwann cell development (Tawk et al., 2011). Finally,
TGF-β signaling induces Schwann cell apoptosis, so blocking
this pathway may aid the survival of derivative glial cells
(Parkinson et al., 2001).

(2) Directed differentiation of somatic stem cells: adult skin
dermis, which can be obtained from patients with minimal
morbidity, has a reservoir of multipotent mesenchymal
stem cells similar to embryonic NCCs (Biernaskie, 2010).
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FIGURE 3 | Cellular reprogramming approach to generate induced Schwann cells. Skin biopsy samples isolated from individuals can be used to collect dermal
fibroblasts for in vitro culture. Fibroblasts can undergo lineage conversion to a Schwann cell fate under the direction of TF determinants, signaling molecules, and
small molecules. Ultimately, induced Schwann cells can be used in a clinical setting to aid nerve repair post-PNI. Current TF-based lineage conversion strategies use
Sox10 or Sox10+Egr2. Small molecules employed to generate Schwann cells include Valproic acid (VPA), 5-azacytidine (5-Aza), SB431542, CHIR/CT99021/CP21,
RG108. Signaling molecules include Noggin, BDNF, GDNF, and FGF2. In the future, in vivo cellular reprogramming may become a reality using
combinatorial approaches.

These NCC-related somatic stem cells, termed skin-derived
precursors (SKPs), readily differentiate into NCC progeny,
including Schwann cells, in response to appropriate cues
(Toma et al., 2001, 2005; Fernandes et al., 2004; McKenzie
et al., 2006; Krause et al., 2014). By removal of FGF2 and
EGF followed by addition of N2 supplement, forskolin, and
NRG1, SKPs from facial skin differentiate into skin-Schwann
cells that can be expanded over multiple passages, and
when transplanted, skin-Schwann cells associate with axons
and generate myelin (Toma et al., 2005; Biernaskie et al.,

2006; McKenzie et al., 2006). Notably, skin-Schwann cells
re-initiate the expression of several embryonic Schwann cell
genes, including Pou3f1, Tfap2a, Sox2, and Jun (Krause
et al., 2014). Moreover, skin-Schwann cells exhibit better
proliferative andmyelination abilities in comparison to adult
nerve-derived Schwann cells (Khuong et al., 2014).

The therapeutic potential of skin-Schwann cells has been
studied in both acute and chronic nerve injury settings in
rodent models with encouraging results (Walsh et al., 2009,
2010; Khuong et al., 2014; Kumar et al., 2016). However, a
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major limitation remains, which is that skin-Schwann cells
take extended periods to expand (∼6 weeks) to levels that
might be used clinically (McKenzie et al., 2006). Moreover,
incomplete conversion of these somatic stem cells to a
Schwann cell fate could result in tumorigenesis (May et al.,
2018). Nonetheless, these studies opened the possibility that
Schwann cells can be successfully acquired through multiple
sources other than a nerve biopsy.

There are potential issues associated with directed
differentiation strategies using pluripotent and somatic stem
cell sources that must be considered. For example, the use
of hESCs for directed differentiation is invariably associated
with ethical concerns as well as tumorigenic potential
(Blum and Benvenisty, 2008; Zakrzewski et al., 2019).
Similarly, Schwann cells generated by the differentiation
of human adipose-derived mesenchymal stem cells were
found to revert to a stem cell-like state upon withdrawal
of glial induction factors from the differentiation media
(Faroni et al., 2016). Thus, the differentiated Schwann cells
must be assessed in the absence of stimulatory cues over
extended cell passages, to determine the stability of the
cell phenotype.

Introduction to Cellular Reprogramming
An alternative approach to generate Schwann cells for
repair is cellular reprogramming, which converts accessible
sources of terminally differentiated somatic cells to a
Schwann cell fate (Lujan and Wernig, 2013). The design
of such strategies has been built on an extensive body
of work investigating the design principles of Schwann
cell development and repair, as described in the previous
sections. Considerations for cellular reprogramming include
the starting cell type and reprogramming factors. A commonly
used somatic cell source amenable to lineage conversion
are fibroblasts, which are typically obtained from human
foreskin (Malik and Rao, 2013; Bajpai et al., 2017) or 3 mm
skin punch biopsies of the dermis (Streckfuss-Bömeke et al.,
2013; Castro-Viñuelas et al., 2020). Lineage conversion of
fibroblasts is achieved by the overexpression of lineage-
specifying TFs and/or by the addition of extrinsic factors
such as growth factors or small molecule antagonists or
agonists, which specify alternative cell identities, repress
the identity of the starting cell type, and remove epigenetic
barriers to alter cell state (Lewitzky and Yamanaka, 2007;
Qin et al., 2017). Initial reprogramming studies focused
on generating iPSCs from fibroblasts by overexpressing
the Yamanaka factors (c-Myc-Klf4-Sox2-Oct4, Takahashi
and Yamanaka, 2006) and then differentiating iPSCs
into the cell type of interest. However, the need to
transit through a pluripotent stem cell state poses several
problems, including the possibility of generating partially
reprogrammed cells that may proliferate and/or differentiate
erroneously (Takahashi and Yamanaka, 2016). Moreover,
iPSCs are self-renewing stem cells, and are thus potentially
tumorigenic. Consequently, more recent studies have looked
at direct cellular reprogramming as an alternative approach
(Ieda et al., 2010; Sekiya and Suzuki, 2011; Son et al., 2011).

(1) TF mediated reprogramming: examples of direct cellular
reprogramming include the trans-differentiation of
fibroblasts to a neuronal fate (Son et al., 2011; Victor
et al., 2014; Wainger et al., 2015) or oligodendrocyte fate
(Najm et al., 2013; Yang N. et al., 2013) without first going
to a pluripotent stage, both involving the use of select
sets of developmental TFs. Notably, oligodendrocytes, the
myelinating glial cells of the CNS have been induced using
an eight TF cocktail including the core TFs Sox10-Olig2-
Nkx6.2 (Najm et al., 2013), or with a triple TF approach
(Sox10-Olig2-Zfp536; Yang N. et al., 2013), and finally, by
overexpression of Sox10 alone (Weider et al., 2015). In
general, TF cocktails include at least one pioneer factor,
which aids lineage conversion by binding to and opening
sites of closed chromatin. For example, reprogramming
of fibroblasts to a neuronal fate includes Ascl1, which acts
as a pioneer factor and accesses closed chromatin sites
in fibroblasts (Vierbuchen et al., 2010; Zaret and Mango,
2016). Ascl1 then recruits Brn2 and Myt1 to these sites to
aid reprogramming, with Myt1 repressing alternative cell
fates and Brn2 activating neuronal lineage genes (Wapinski
et al., 2013; Zaret and Mango, 2016). Similarly, Olig2 is
incorporated in oligodendrocyte reprogramming protocols
for its function as a pioneer factor (Yu et al., 2013), as are
Sox family genes (Soufi et al., 2015; Hou et al., 2017).

(2) Small molecule mediated reprogramming: cell permeable,
chemical small molecules have also been used to promote
desired, alternative cell fates in fibroblasts (Wang et al.,
2014). For example, reprogramming of human fibroblasts
into glutamatergic neurons used a chemical cocktail
consisting of a Wnt agonist/GSK3 inhibitor (CHIR99021),
TGF-β inhibitor (RepSox), HDAC inhibitor (Valproic acid,
VPA), and protein kinase A agonist (Forskolin; Hu et al.,
2015). Similarly, mouse fibroblasts have been converted into
glutamatergic neurons using a similar cocktail involving
CHIR99021, Forskolin, ISX9 (promotes neurogenesis),
and I-BET151 (bromodomain inhibitor; Li et al., 2015).
Thus, small molecule and TF-based approaches can be
used independently or in conjunction with efficient cell
reprogramming.

Reprogramming of Somatic Cells to a
Schwann Cell Fate
Reprogramming of adult fibroblasts to a Schwann cell fate
has been achieved using either TFs or small molecules
(Figure 3; Kim et al., 2014; Thoma et al., 2014; Mazzara
et al., 2017; Sowa et al., 2017; Kitada et al., 2019). The first
success came from the conversion of fibroblasts first to an
NCC state by misexpressing Sox10, a critical Schwann cell
determinant as outlined above, and culturing cells with VPA
and 5-Azacytidine (inhibitor of DNA methylation) to open
the chromatin, and CHIR99021 (Wnt agonist/GSK3 inhibitor),
to activate Wnt signaling (Kim et al., 2014). HDAC and
DNA methylation inhibitors make target cells amenable to
reprogramming by opening the chromatin so that TFs that
act as lineage-specifiers can bind to target sites and facilitate
Schwann cell differentiation to a myelinating phenotype
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(Chen et al., 2011; Jacob et al., 2011; Brugger et al., 2015).
Induced NCCs were further differentiated into mature
Schwann cells by providing appropriate environmental cues,
including NRG1 and cAMP (Kim et al., 2014), which act
together to promote a myelinating Schwann cell phenotype,
as highlighted above (Arthur-Farraj et al., 2011; Bacallao and
Monje, 2015), and FGF2, a Schwann cell mitogen post-PNI
(Grothe et al., 2001). More recently, Schwann cells were
generated from adult human fibroblasts by overexpressing
Sox10 and Egr2, a pro-myelinating factor described above,
together with forskolin, NRG1, FGF2, and PDGF, the
latter also a Schwann cell mitogen (Mazzara et al., 2017;
Sowa et al., 2017).

Investigators have also successfully employed small molecules
(VPA and Compound B—undefined) to reprogram fibroblasts
to a transient neural precursor state (Thoma et al., 2014).
These proliferative intermediate cells were then treated with
Noggin [BMP inhibitor, to block neuronal induction by BMPs
(Dore et al., 2009)], SB431542 (TGF-β inhibitor), and CP21
(GSK3 inhibitor) and differentiated into Schwann cells by
culturing in a neural differentiation media enriched with
B27 and N2 supplements, BDNF, GDNF, and dibutyryl-
cAMP. As indicated above, BDNF and GDNF are upregulated
in Schwann cells post-injury and have anti-apoptotic effects
(Funakoshi et al., 1993; Hoke et al., 2000). A more recent
study used a cocktail of chemical small molecules with all-trans
retinoic acid, FGF2, forskolin, PDGF-AA, and NRG1 to generate
Schwann cells from fibroblasts (Kitada et al., 2019). Thus,
there are wide-ranging protocols now available for investigators
to adapt to their studies, all of which are based on prior
molecular studies of Schwann cell development and the
repair phenotype.

Notably, early reprogramming protocols required ∼6 weeks
for the first appearance of mature Schwann cell markers
(Kim et al., 2014; Thoma et al., 2014), whereas newer studies
observed Schwann cell marker expression within 9–21 days of
treatment (Mazzara et al., 2017; Sowa et al., 2017; Kitada et al.,
2019). However, it is important to consider that several of the
protocols produced a heterogeneous population of Schwann
cells representing early and late developmental stages (Sowa
et al., 2017; Kitada et al., 2019), with additional maturation
protocols required to obtain mature myelinating Schwann cells.
More recently, induced SCPs were generated from human
fibroblasts by misexpressing pluripotency factors (OCT4, SOX2,
KLF4, MYCL1, LIN28, p53 shRNA) in fibroblasts using episomal
vectors, followed by the use of an induction medium enriched
with NRG1 and a host of small molecules [e.g., CT-99021,
Wnt agonist/GSK3 inhibitor; RG108, DNA methyltransferase
inhibitor; 5′-(N-ethylcarboxamido) adenosine, adenosine
receptor- and cAMP agonist; Kim et al., 2020]. Induced
SCPs of high purity were generated in nearly 3 weeks with
this approach, and only one additional week was required
to differentiate the induced SCPs into mature Schwann
cells, significantly reducing the reprogramming time-period
(Kim et al., 2020). Investigators are thus getting closer to
manageable periods for generating induced Schwann cells for
clinical purposes.

Future Perspectives
Directed differentiation and cellular reprogramming strategies
have effectively changed the landscape of autologous cell
replacement therapy in the past decade and realistically presents
an alternative therapeutic approach (Srivastava and DeWitt,
2016). While in vitro cellular reprogramming has dominated
reprogramming studies in mammalian systems, there is always
the potential that ‘‘rogue’’ cells that have not fully trans-
differentiated may become tumorigenic, and if transplants are
not autologous, lifelong immunosuppression is required. One
development that may have far-reaching implications is the
incorporation of a ‘‘suicide’’ gene cassette that is activated
when reprogrammed cells proliferate aberrantly (Liang et al.,
2018). Besides, the generation of iPSCs that can serve as
universal donors by immune cloaking, may also eliminate
the need for immunosuppression, although the safety of such
an approach remains under debate (Harding et al., 2019;
González et al., 2020; Harding et al., 2020). Nevertheless,
exogenous cell-based glial support therapies continue to be
under development.

Other important considerations for the future design of
lineage conversion strategies is the optimal and minimal
combination of TFs to be used to convert somatic cells
into Schwann cells in the shortest period that are the
most efficacious for repair. Apart from Sox10 and Egr2,
overexpression of other TFs expressed in repair Schwann cells,
as described above (e.g., Sox2, Jun, Pax3, Egr1, Olig1), may
prove beneficial in improving reprogramming efficiencies. In
the future, Schwann cells generated via direct differentiation or
cellular reprogramming could be used in a stand-alone fashion
for transplantation or supplemented in nerve conduits to aid
nerve remyelination (Biernaskie et al., 2007; Mozafari et al.,
2015; Sparling et al., 2015; Assinck et al., 2020). Schwann cells
derived from rodent SKPs were demonstrated to successfully
repair and remyelinate axons in the injured/diseased CNS as well
(Biernaskie et al., 2007; Mozafari et al., 2015; Sparling et al., 2015;
Assinck et al., 2020). Thus, Schwann cells generated through
alternate sources have found applications beyond the PNS.
Generation of Schwann cells via cellular reprogramming also
permits in vitro disease modeling for demyelinating disorders
and provides a platform for studying the molecular mechanisms
underlying such disorders (Mazzara et al., 2017).

An important alternative for future consideration is ‘‘in vivo’’
or ‘‘in situ’’ cellular reprogramming’, which targets resident
cells for lineage conversion, and in theory, may allow
ready integration of trans-differentiated cells into existing
micro-environments (Srivastava and DeWitt, 2016). An added
advantage of in vivo reprogramming is the potential for quicker
treatments, as it will not be necessary to extract cells and
grow them ex vivo for protracted periods. Notably, in vivo
reprogramming was carried out in rodent models as early as
2008 for the generation of β cells from pancreatic exocrine
cells using a TF cocktail (Ngn3, Pdx1, Mafa, Zhou et al., 2008).
However, several shortcomings (e.g., optimum targeting of the
host cell, conversion efficiency, survival post-conversion, as well
as conversion into altered cell fates leading to a tumor-like
state Ofenbauer and Tursun, 2019) have limited the widespread
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use of such an approach. Nevertheless, advances in in vivo
reprogramming are being made (Guo et al., 2014; Nishimura
et al., 2014; Liu et al., 2015; Niu et al., 2015), and may soon be
applied to the PNS. For instance, in the CNS, the conversion of
reactive astrocytes to neurons was achieved using a ‘‘clinically-
friendly’’ adeno-associated virus (AAV) to express NeuroD1
in an ischemic injury model, leading to improved behavioral
outcomes (Chen et al., 2020). A similar approach involving
AAV mediated expression of NeuroD1 and Dlx2 was used
to generate neurons from striatal astrocytes in a Huntington
disease model system (Wu et al., 2020). Finally, in vivo
reprogramming of astrocytes into neurons by knocking-down
PTB, an RNA-binding protein, was reported in a Parkinson’s
disease model (Qian et al., 2020).

Notably, direct in vivo reprogramming to treat brain
pathologies holds immense potential as target astrocytes are
numerous. In contrast, in vivo reprogramming in the PNS
may be more complicated as there are fewer cells to directly
target for the generation of Schwann cells, and indeed, what is
the optimal target cell remains an open question. Fibroblasts
are commonly used for in vitro lineage conversion to a
Schwann cell identity, however, fibroblasts in the nerve (i.e., in
the endoneurium, perineurium, epineurium), even those that
migrate to the injury site post-injury (Parrinello et al., 2010;
Roberts et al., 2017), may prove difficult to target for in vivo
reprogramming due to their location as well as low cell
numbers. Notably, endoneurial fibroblasts expand post nerve
injury, and differentiate into skeletogenic and dermal tissue,
thereby promoting tissue repair (Carr et al., 2019), and may
serve as a potential target for direct in vivo reprogramming
if techniques for precise targeting are developed. Thus, it
remains to be seen whether in vivo reprogramming, for example
using an AAV to direct expression of Sox10 and Egr2, could
ultimately be employed as a therapeutic approach for PNI repair
(Figure 3).

CONCLUSION

Glial cells are often considered to be ‘‘supporting cast’’ members
in the nervous system, with ancillary roles in providing
nutrient and structural support to neurons. However, glial
cells have many essential roles, including the myelination of
nerves to allow information to be transmitted rapidly and

efficiently. As reviewed herein, we have come a long way
towards understanding the molecular and cellular events that
underlie Schwann cell development and their functions in repair.
This information is proving essential in the design of new
repair strategies for PNI, as nerve grafts alone often yield
poor results, which can be attributed in part to the limited
regenerative potential of endogenous Schwann cells (Kelsey
et al., 1997; Saheb-Al-Zamani et al., 2013; Poppler et al.,
2016; Hoben et al., 2018; Kornfeld et al., 2019). Alternative
approaches to enhance nerve repair have been tested, including
grafting nerve-like conduits containing autologous cultured
Schwann cells to aid nerve regeneration (Hood et al., 2009).
With the emerging successes of Schwann cell transplantation
that are now in clinical trials (NCT01739023, NCT03999424,
NCT04465929, NCT02480777, NCT02354625, NCT02510079;
Saberi et al., 2008, 2011; Zhou et al., 2012; Anderson et al.,
2017), optimizing strategies to efficiently acquire and/or generate
repair Schwann cells in a shorter time frame is of the essence.
Therapeutic approaches for the treatment of PNI involving
the generation of Schwann cells using an in situ directed
reprogramming protocol or by the exogenous introduction of
repair-like Schwann cells generated in a dish may soon be a
reality. Taken together, the realization of autologous Schwann
cell therapy for effective clinical use is anticipated to be within
our grasp.
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