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Abstract
Raman spectroscopy is an imaging technique that has been applied to assess molecu-
lar compositions of living cells to characterize cell types and states. However, owing 
to the diverse molecular species in cells and challenges of assigning peaks to specific 
molecules, it has not been clear how to interpret cellular Raman spectra. Here, we 
provide firm evidence that cellular Raman spectra (RS) and transcriptomic profiles of 
glioblastoma can be computationally connected and thus interpreted. We find that 
the dimensions of high-dimensional RS and transcriptomes can be reduced and con-
nected linearly through a shared low-dimensional subspace. Accordingly, we were 
able to predict global gene expression profiles by applying the calculated transfor-
mation matrix to Raman spectra and vice versa. From these analyses, we extract a 
minimal gene expression signature associated with specific RS profiles and predictive 
of disease outcome.
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1  |  INTRODUC TION

Glioblastoma multiforme (GBM; WHO Grade IV), the most aggres-
sive form of primary brain tumours, harbour a dreadful prognosis 
despite invasive treatments including maximal safe resection, ra-
diotherapy and chemotherapy.1 Although all glioblastomas share 
common histopathological characteristics, they form a highly het-
erogeneous group of tumours in terms of underlying molecular and 
genetic alterations. Some alterations already were linked to strong 
therapeutic and survival outcomes, such as the methylation of the 
MGMT promoter and the presence of mutations in the isocitrate 
deshydrogenase (IDH) gene.2,3

As such, one of the keys of future targeted therapies is the op-
timization of the stratification of patients and tumours. Currently, 
two main molecular sub-classifications of glioblastomas are widely 
used. The first is based on the presence of a pre-existing low-
grade tumour (primary vs. secondary GBM, correlated with IDH 
mutations) whereas the second derives from a multiparametric 
clustering, mostly based on genomic data, which differentiated 
four subtypes of GBM (mesenchymal, pro-neural, neural and clas-
sical).3,4 This classification is strongly correlated with clinical fea-
tures, but the limited therapeutic arsenal against GBM, as well as 
the genetic information, it requires preclude it from being used in 
clinical settings. Furthermore, no metabolic data have been so far 
used in either classification, thus, limiting a complete exploration 
of tumour physiology.

Raman or vibrational spectroscopy (RS) is a non-invasive, label-
free technique allowing chemical analysis based on the analysis of 
the reflection of a monochromatic light on a sample. As the wave-
length shift of the scattered light is correlated with some molecular 
structural properties, RS is able to provide an immediate chemical 
fingerprint of a sample. RS is widely used in chemistry, but its appli-
cation in biology has long been restricted due to technical limitations 
and issues in processing complex spectra related to the multiplicity 
of different chemical compounds found in biological samples such 
as tumours.5,6 Two main spectroscopy techniques were described in 
the literature (Raman and infrared spectroscopy), with highly variable 
conditions across studies, and numerous subtypes of technologies.7 
Raman and IR spectroscopy might provide complementary informa-
tion, considering that they do not assess the same physical phenom-
ena. However, one of the main advantages of RS is the absence of 
need for sample preparation, thus, allowing direct analysis of tissues. 
Several studies showed that RS is able to discriminate normal brain 
from tumour tissue with high specificity, and even differentiate dif-
ferent types of primary brain tumours.8–10 Recent developments 
of miniaturization now enable RS to be performed during surgical 
removal, thus, providing continuous information about the nature 
of the tumour and resection margins.8,9,11 However, if the diagnos-
tic power of RS has been studied considering the whole spectra, no 
detailed analysis of the data provided by individual peaks has been 
performed to our knowledge.

Herein, we hypothesized that tumour RS might correlate 
with genomic data and, therefore, allow the rapid and accurate 

determination of tumour features and prognosis. To test this hy-
pothesis, we utilized transcriptome data on RS-based GBM clus-
tering. We identified a RS-based signature that correlates with the 
expression of specific genes and predicts specific tumour features 
associated with aggressiveness. We discuss how this tool could be 
used in a clinical context.

2  |  MATERIAL S AND METHODS

2.1  |  Samples processing and transcriptomic data

Tumour samples were frozen after surgical resection performed 
at the department of Neurosurgery of Rennes. Informed con-
sent was obtained in accordance with the French legislation and 
biological samples were stocked in the local biobank (Centre de 
Ressources Biologiques Santé of Rennes, BB-0033-00056). The 
research protocol was conducted under French legal guidelines 
and fulfilled the requirements of the local institutional eth-
ics committee. Normal brain samples came from cortectomies. 
Histopathological analysis was carried out by the local histopa-
thology department. Different cohorts of patients were used: a 
cohort comprising different types of gliomas for the exploratory 
phase, a previously published cohort (GBM-MARK) comprising 
transcriptomic analysis and clinical annotation12 for the main 
analysis, and a last set of samples were used for a validation phase 
of the Raman analysis. Clinical and histological data are showed 
in Table 1. Complementary survival data were extracted from the 
TCGA cohort available through the TCGA Data Portal (https://
portal.gdc.cancer.gov).

2.2  |  Raman spectroscopy

Raman spectra were acquired with a ThermoFisher Raman 
Microscope DRX2. Frozen samples were cut in slices of 30  µm 
thickness. Three fields of acquisition were randomly selected in 
non-necrotic areas (100  µm  ×  100  µm, 121  spectra by field). The 
acquisition conditions were as follows: 532  nm laser, laser power 
3.5 mW, exposure time 0.2 s, 45 iterations, pinhole diameter 25 µm. 
Each sample's final spectrum corresponded to a mean of all acquired 
spectra.

2.3  |  Statistical analyses

2.3.1  |  Processing of Raman spectra

Raman spectroscopy data were analysed with R ChemoSpec 
5.0.229 package.1 Raw signals for 30 samples were imported and 
processed for (i) Quality control, detection and removal of outliers, 
(ii) baseline correction (removal of background effects) (Andreas 
F. Ruckstuhl, Matthew P. Jacobson, Robert W. Field, James A. 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Dodd's algorithm based on LOWESS and weighted regression), (iii) 
hierarchical cluster-based peak alignment,2 (iv) binning (smooth-
ing of signals by summing every n = 20 intensity values), (v) nor-
malization using the Probabilistic Quotient Normalization (PQN) 
method.3

2.3.2  |  Clustering of Raman spectra

Model-based clustering of spectra was performed, using the R pack-
age mclust in order to find the optimal number of clusters. The se-
lected optimal model comprised 2 clusters maximizing the distance 
amongst distinct groups. Each spectrum was then labelled according 
to its belonging to either group (Raman Group 1/Group 2).

2.3.3  |  Differential gene expression analysis

(i) Processing of Raman spectra: Raman spectroscopy data were 
analysed with R ChemoSpec 5.0.229 package.1 Raw signals for 
30  samples were imported and processed for (a) Quality con-
trol, detection and removal of outliers, (b) baseline correction 
(removal of background effects) (Andreas F. Ruckstuhl, Matthew 
P. Jacobson, Robert W. Field, James A. Dodd's algorithm based 
on LOWESS and weighted regression), (c) hierarchical cluster-
based peak alignment,2 (d) binning (smoothing of signals by 
summing every n  =  20 intensity values), (e) normalization using 
the Probabilistic Quotient Normalization (PQN) method.3 (ii) 
Clustering of Raman spectra: Model-based clustering of spectra 
was performed, using the R package mclust to find the optimal 
number of clusters. The selected optimal model comprised 2 clus-
ters maximizing the distance amongst distinct groups. Each spec-
trum was then labelled according to its belonging to either group 
(Raman Group 1/Group 2).

TA B L E  1  Clinical characteristics of glioblastoma patients

Characteristics RAMAN cohort

Age, years

Median 58

Range 36–75

Age, n (%)

≤50 7 (18%)

>50 31 (82%)

Gender, n (%)

Women 10 (26%)

Men 28 (74%)

KPS

Median 90

Range 60–100

Location of the tumour, n (%)

Frontal 19 (50%)

Temporal 14 (37%)

Parietal 3 (8%)

Occipital 2 (5%)

Type of surgery, n (%)

Partial resection 16 (42%)

Complete resection 22 (58%)

Nb of TMZ cycles

Median 6

Range 1–12

PFS (months)

Median 10.7

Mean 13.2

95% CI 11.4–14.6

OS (months)

Median 17.1

Mean 19,9

95% CI 17.4–20.6

Abbreviation: KPS, Karnofsky performance status at diagnosis.

TA B L E  2  List of prioritized genes according to the first two 
Eigen vectors (principal components) with Raman group 1 (green), 
genes are strongly correlated with the group I (yellow) and group 
2 (red)
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2.3.4  |  Differential gene expression  
analysis

Differential gene expression analysis was performed on microarray 
gene expression data (quantile normalization) using the Rank Products 
method (R package RankProd), which performs multiple permutations, 
in order to infer robustly the statistical significance of the expression 
change by measuring the variation of the rank of each gene. Gene 
consistently highly ranked in multiple comparisons between the two 
Raman groups were extracted as significantly differentially expressed 
(671 genes).

2.3.5  |  Multiple factor analysis combining gene 
expression with Raman spectroscopy

Multiple Factor Analysis (MFA) is a variation of Principal Component 
Analysis (PCA) suitable for heterogeneous variables by projecting 
them into a common high-dimensional space.13,14 In this case, the 
gene expression values of the 671 differentially expressed genes 
were correlated with frequencies of Raman spectroscopy. MFA was 
performed with the R package FactoMiner.15 The analysis considered 
only peaks from 600 to 1800 cm−1 and 2800 to 3100, which corre-
spond to biologically meaningful signal ranges. MFA produced com-
posite Eigen vectors (linear combinations of variables) consisting of 
Raman peak frequencies and gene symbols. Table 2 shows the prior-
itized genes using as ranking measure their contribution to the first 
two Eigen vectors (principal components). The top 36 genes were se-
lected as the minimum subset that maximizes the distance between 
the two clusters.

2.3.6  |  Survival analyses

We performed a cross-study analysis to assess the prognostic value 
of the RS-based signature. Gene expression was used as a predictor 
and survival time (in months) as the response. We used the TCGA 
cohort (Affymetrix microarray data) to train the prognostic model. 
We performed univariate Cox regression analysis on the expression 
of the genes correlated with the RS-based classification of GBM and 
selected those with a p-value threshold at 0.05. We then performed 
multivariate Cox regression analyses on these genes to create a 
gene-based survival model. Patients were then ranked according to 
their risk score. The optimal risk cut-off was assessed and used for 
the stratification of patients into two groups: low risk of death and 
high risk of death. The Kaplan–Meier method was used to estimate 
the survival distributions. Log-rank tests were used to test the dif-
ference between survival groups. Analyses were carried out with 
the survival R package. The validation of the prognostic model (same 
coefficients and cut-off) was performed on the GBM-MARK cohort, 
a technically (Agilent microarray data) and biologically independent 
cohort.

2.4  |  Histochemistry and immunohistochemistry

Paraffin blocks corresponding to the tumour samples analysed using 
Raman were processed for immunohistochemistry (IHC). IHC were 
carried out on the H2P2 core facility. The sections were incubated 
1 h at room temperature with anti-IBA1 (1:10,000 dilution; protein-
tech). Immunostaining was carried out using the discovery ultra 
(Ventana Medical Systems) with the Rhodamine kit (a “biotin-free” 
system using multimer technology, Roche) and a Tris borate EDTA 
pH8 buffer for antigen retrieval. Sections were converted on to digi-
tal slides with the scanner Nanozoomer 2.0-RS and immunostaining 
were quantified with the NIS software (Nikon).

3  |  RESULTS

3.1  |  Histological classification of primary brain 
tumours using Raman spectroscopy

Our initial objective was to evaluate whether Raman spectroscopy 
(RS) was a relevant tool to analyse primary brain tumour in order 
to classify them and to potentially predict patient outcome. To this 
end, we designed an experimental approach relying on a collection 
of frozen tumour samples conserved in our institutional biobank, the 
“Centre de Resources Biologiques (CRB) de Rennes” and analysed 
using RS and histochemistry (Figure 1A). Sixteen primary brain tu-
mours (comprising astrocytomas [grade II and III – n = 5]; oligoden-
drogliomas [grade II and III – n = 6]; glioblastoma multiforme [GBM 
– n = 5]) and normal brain samples (only for RS) were analysed using 
histochemistry and RS (Figure 1B,C). Histological analyses revealed 
several different levels of cellularity, according to tumour types, with 
oligodendroglioma-III and GBM those presenting the greater cellu-
larity. Both of them showed also, high level of pleiomorphism and 
some mitotic figures. Necrotic zones observed in GBM samples were 
excluded from our study. Matched samples were also analysed using 
RS and produced various spectra with peaks-containing regions that 
were aligned (Figure 1C). Hierarchical clustering allowed us to pro-
pose a RS-based classification for brain tumours. Two well estab-
lished groups were observed. The first group contained Astro-III, 
Astro-II and normal tissue, Astro-II resembling more normal tissue 
than Astro-III. The second comprised the oligodendroglial lineage, 
with Oligo II and III as part of the same group. However, GBM shared 
some characteristics with oligo II suggesting similar metabolic path-
ways involvement in pathogenesis (Figure 1D). As such, one might 
conclude from these analyses that RS spectra could sort the tu-
mours based on their nature as determined by histopathology.

3.2  |  GBM stratification using Raman spectroscopy

To further push this idea, we next sought to test whether the power 
of RS would be sufficient to identify different groups in GBM, a 
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tumour type known for its high heterogeneity.16 To this end, 34 
tumours from the GBMmark cohort and 23 other GBM were 
analysed using RS and this led to the identification of two major 
RS spectrum profiles (Figure  2A). Lipid, nucleic acid and protein 
content allows the detection of characteristic RS peaks that cor-
responded to the vibration/ rotation of functional groups of atoms 
in the region between 600 and 1800  cm−1 (fingerprint) whereas 
characteristic band of spectral peaks observed between 2800 and 
3100  cm−1 are attributed to the vibrations of methyl(-CH3) and 
methylene (-CH2-) groups. When these spectra were used to hi-
erarchically cluster the tumours, two highly distant groups were 

obtained (Figure 2B). Next, in an attempt to functionally annotate 
the two groups of tumours, we performed MFA in order to identify 
the genes whose expression correlated with Raman group 1 and 
those whose expression correlated with Raman group 2. A total 
of 36  genes were selected, the expressions of which maximized 
the distance between the two groups in the clustering analysis 
(Figure  2C). Of those genes, 24 correlated with group 1 and 12 
with group 2 (Figure 2C, Table 2). Their correlation values with the 
first principal component (PC1) (Figure 2C) highlight the direction 
in which the expression of the genes shapes the Raman spectrum; 
a positive correlation value signifies that the upregulation of a gene 

F I G U R E  1  Raman spectroscopy-based classification of brain tumours. (A) Schematic representation of the analytical pipeline. (B) 
H&E stained and Histological analysis of 5 tumour types including grade II and III astrocytomas, grade II and III oligodendrogliomas and 
glioblastoma multiforme (GBM). Bar = 50 μm. (C) Raw Raman spectra of various primary brain tumours (top) and deconvoluted spectra per 
tumour type: grade III astrocytoma (cyan), grade II astrocytoma (dark blue), grade III oligodendroglioma (blue), grade II oligodendroglioma 
(pink), GBM (red) and normal brain (green). (D) Hierarchical clustering from Raman spectra of several tumours of each group
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results in more intense peaks around ~3000 cm−1, and less intense 
peaks around 1000–1600 cm−1, whilst a negative correlation value 
signifies the exact opposite. Interestingly, tumour clustering based 
on the expression of these 30 genes almost perfectly recapitulated 
the segregation obtained using RS data. At last, we functionally 
analysed the genes identified through this approach and found 
that genes whose expression correlated with Raman profiles might 
relate to an altered immune cell infiltration (Figure 2D). This pre-
diction was evaluated using immunohistochemistry with anti-IBA1 
antibodies (for the staining of macrophages and microglial cells) 
in matched tumour sections and revealed that RS-based Group2 
tumours were more infiltrated by myeloid cells than RS-based 
Group1 tumours (Figure 2E), which could be indicative of a differ-
ential tumour aggressiveness provided that the infiltrate could be 
immune promoting or suppressive.

3.3  |  Establishment of GBM RS-based 
molecular signatures

Since we established that RS-based classification of GBM pro-
vided a relevant tool to characterize the tumour features, we 
next sought to further document the links between RS analysis 
and tumour characteristics. The first step in this initiative was 
to identify the nature of the peaks marking Group1 and Group2. 
The most remarkable difference between the spectra identified 
two groups corresponding to the intensity of the two peaks 1156 
and 1518, four times more important in group 1. These peaks 
are part of the peaks representing the carotenoids.5 We also 
noticed a smaller increase of peak 957 and peak 1004, the lat-
ter being a mixed Raman peak, with contribution of carotenoids 
and phenylalanine (Figure  3A). As the main peaks identified in 
Group1 corresponded to retinoids, we next evaluated how the 
expression of genes involved in the biosynthesis of vitamin 
A was altered in both groups. Interestingly, the expression of 
seven selected genes involved in this pathway did not yield to 
a clear segregation of the two groups as performed following 
RS-based analysis (Figure  3B). This observation might indicate 
a non-transcriptionally dependent regulation of retinoid pro-
duction in GBM and led us to further inquire the existence of 
a minimal gene signature correlating with the RS-based groups. 
An in-depth analysis of the data presented in Figure  2  led us 
to identify six genes (WSDC, RIMS4, PAQR9, F13A1, CBF and 
RASSF9) whose expression variation robustly reflected the clas-
sification obtained using RS. The expression of these genes was 
then evaluated in a validation cohort of 10 tumours classified 

using RS (Figure 3C) and confirmed the results obtained on the 
test cohort (Figure 3D). The approach described above allowed 
us to demonstrate that RS-based classification of GBM correlates 
with specific gene expression signatures and, thus, might have a 
predictive value regarding tumour outcome.

3.4  |  RS-based molecular signature and 
prediction of tumour outcome

To follow up on this analysis, we used the TCGA cohort, the genes 
included in the prognostic model based on the genes found to cor-
relate with RS showed differential expression between high-risk and 
low-risk patients (Figure 4A). This was also observed in the validation 
GBM-MARK cohort (Figure 4B). In the latter cohort, the expression 
of these signature genes was also significantly lower for patients 
from the Raman Group 1 compared to those in the Raman Group 
2 (Table 3). The multi-gene survival model based on this molecular 
signature was used to stratify each cohort into high-risk and low-risk 
patients. In the TCGA cohort, the overall survival (OS) was signifi-
cantly higher in low-risk patients (n = 56) than in high-risk patients 
(n = 142): 20.7 months (95% CI, 16.5–30.1) versus 14.2 months (95% 
CI, 12.6–16.6), respectively; p = 0.002 (Figure 4C). This stratifica-
tion was also observed in the validation cohort with a median OS 
of 31.4 months (95% CI, 17.5 to not reached) for low-risk patients 
(n = 34) and of 17.4 months (95% CI, 15.8–19.6) for high-risk patients 
(n = 83); p = 0.03 (Figure 4D). These results indicate that genes from 
the predictive Raman signature showed higher expression in the 
Raman group 2 than in the Raman group 1 and their expression cor-
related with a better prognosis.

4  |  DISCUSSION

In a recent study, Riva and colleagues10 demonstrated that Raman 
spectra effectively and accurately discriminated glioma tissue from 
healthy brain ex-vivo in fresh samples. This observation, together 
with the use of intraoperative Raman spectroscopy9 to delineate 
the tumour boundaries, point towards RS as a relevant and versa-
tile tool to classify and characterize brain tumours. In the present 
study, we have pushed forward this concept by testing the depth 
of RS-based brain tumour classification using transcriptome-related 
information as our reference. We first showed that RS effectively 
discriminated different types of primary brain tumours and also at 
least two major types of the very heterogeneous GBM. As such, we 
used a well-defined GBM cohort for which transcriptome data and 

F I G U R E  2  Correlation between GBM Raman profiles and gene expression data. (A) Raman spectra (after baseline correction, smoothing 
and normalization) corresponding to 28 GBM that segregate in two groups based on their respective profiles (blue and red). (B) Hierarchical 
clustering of patient tumours based on the corresponding Raman spectra (blue and red). (C) Heat map representation of gene expression 
profiles matching the groups formed based on Raman spectra. Gene profiles corresponding to the blue and red groups are indicated. (D) 
String-derived network comprising genes correlating with Raman Group 1 (red) and 2 (blue). Functional enrichment might be indicative of 
an immune infiltration in tumours from group 1. (E) Immunofluorescence analysis of tumour sections from group 1 and 2 using anti-IBA1 
antibodies (staining macrophages and microglial cells; left panels, scale bar: 1 mm) and quantitation of the staining (right panel)
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the corresponding tumour tissues were available to test whether RS 
profiles corresponded to specific gene expression patterns.

As previously illustrated in many tumour types5 and in brain 
tumours,6,9,10 we first evaluated whether RS could discriminate be-
tween different types of primary brain tumours and normal brain 
using frozen sections. Our results indicated that not only RS allowed 
to discriminate brain tumours from normal tissue but also classify 
tumours based on their lineage (astrocytoma vs. oligodendrioglioma 
vs. glioblastoma [GBM]; Figure 1). In our principal components anal-
ysis, glioblastoma was classified closer to oligodendroglioma than 
astrocytomas. Considering the very different oncogenesis mecha-
nisms and prognosis of these two tumoral entities, it is somehow 
surprising that the Raman spectra showed similar patterns. Two main 

hypotheses could be considered to explain this phenomenon, first, 
the existence of a strong oligodendroglial pattern in the GBM sam-
ples resulting from a bias in selection, as oligodendroglial patterns 
can be present in GBM17 second, the principal components analysis 
segregating different spectra due to the similarity of tumour global 
morphologies, even if the underlying metabolic pathways are quite 
different. To test the first hypothesis, we performed a histological 
analysis of our samples, which showed typical GBM morphological 
characteristics with no strong oligodendroglial patterns. In addition, 
we restricted our analysis IDH wild-type samples. However, the par-
ticipation of an oligodendroglial component cannot be completely 
ruled out, as some very subtle chemical changes may lead to import-
ant spectral changes. Regarding the second hypothesis, the genetic 

F I G U R E  3  Integration of molecular and Raman signatures highlighting Vitamin A pathway. (A) Average Raman spectra from which 
average background was subtracted for GBM group1 is indicated in Red and for GBM group2, indicated in Blue. (B) Heat map expression of 
seven genes, involved in the biosynthesis of vitamin A. (C) Hierarchical clustering of patients GBM mark group1 (red) and group2 (blue) and 
validation cohort (black). (D) Heatmap expression of six genes, robustly reflecting the classification using RS, and also the validation cohort
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and metabolic drivers are different between GBM and oligodendro-
gliomas illustrates the complexity of spectral analysis of complex 
biological samples.

Interestingly, the functional annotation of the gene pro-
files associated with one of the two groups unveiled an im-
mune cell infiltrated phenotype, which was later validated using 

immunofluorescence (Figure  2) and also correlated with better 
survival (Figure  3), which might be indicative of tumour suppres-
sive functions. As such, at present one cannot rule out the fact 
that the different Raman spectra obtained in group 2 could result 
from the immune infiltration rather than from tumour cells hetero-
geneity and remains to be further documented. One of the most 
striking finding in the analysis of spectra was the occurrence of 
strong peaks corresponding to carotenoids. We did not identify any 
variation in the expression of the main components of the canon-
ical carotenoid metabolism pathway; however, two genes related 
to carotenoid metabolism were found in the 36  genes signature 
(RARRES1 and ALDH1A3). Indeed, an analysis based on the seven 
most relevant genes related to carotenoid metabolism failed to 
match the spectral morphology of the two Raman groups, mean-
ing that post-translational regulation might occur, as it has been al-
ready been showed for the main Vitamin A receptors.18,19 Amongst 
the 36 most significant genes linked to spectral characteristics, we 
identified two minimal sets of genes with different interests: one 

F I G U R E  4  Raman signature and survival prediction. Normalized expression of the genes included in the prognostic model for the TCGA 
(training) (A) and GBM-MARK (validation) cohorts (B). In the validation cohort, the RAMAN patient classification is reported in red (group 
1) or blue (group 2) dots. Survival analysis in TCGA (C, training) and GBM-MARK (D; validation) cohorts. The signature-gene expression 
levels are reported for the two groups identified by the prognostic model (high risk/low risk). Survival of GBM patients according to the risk 
score derived from the RS-based molecular signature. Kaplan–Meier estimates of overall survival in the cohort after subdivision into two 
groups (low and high risk of death) on the basis of the risk-score model. The difference in survival between groups is reported (log-rank test 
p-value). The shade around the lines represents the 95% confidence interval. Median survival in each group is indicated by the dashed line

TA B L E  3  Differential expression of the six signature genes 
between Raman group 1 and Raman group 2 showing the 
significantly higher expression in Gp2 versus Gp1

Gene probe p p-adj

CP A_33_P3343196 0.0001569146 0.0006460079

CFB A_23_P156687 0.0018015385 0.0027023077

IL6 A_23_P71037 0.0002153360 0.0006460079

AQP9 A_23_P106362 0.0049949273 0.0064220494

F13A1 A_32_P140139 0.0003993423 0.0008985201

TFPI2 A_23_P393620 0.0066523275 0.0074838684
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set represents the genes that participate the most to the shape 
of the spectra (WSDC, RIMS4, PAQR9, F13A1, CBF, RASSF9), and 
one set of highly expressed genes linked to survival (CP, CFB, IL6, 
F13A1, TFPI2). No major known driver of gliomagenesis was found. 
Some of the genes related to survival have showed to play a role 
in the regulation of stem cells and resistance (IL6, CFB), as well as 
migration and invasion (TFPI2).20–22 Interestingly, F13A1 was found 
in both minimal genes set. Factor XIII is an enzyme, which plays a 
role in the stabilization of fibrin and has been showed to be asso-
ciated with survival.23,24 However, its role in glioblastoma aggres-
siveness has been scarcely studied. These six genes were expressed 
at higher level in group 2 than in group 1 and were associated a 
better survival with group 2 than in group 1 in two independent 
cohorts of patients (GBM-MARK and TCGA; Figure 4). As such, one 
might conclude that RS-based classification of GBM can document 
almost in real-time during surgery not only some characteristics of 
the tumour (e.g., immune infiltration) but also of its aggressiveness 
(as indicated by patient survival), both potentially of interest in the 
decision-making regarding follow-up patient handling.

In summary, this study provides the first association between 
gene expression and Raman profiles associated with tumour pheno-
types (e.g., immune infiltrate). The approach presented in this study 
could, therefore, pave the way for near real-time intraoperative tu-
mour characterization and could represent a relevant tool for help-
ing in patient management at a very early stage.
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