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INTRODUCTION

Air pollutants are believed to be a factor in the increasing 
prevalence of asthma and to exacerbate respiratory diseases.1 
Diesel exhaust particles (DEPs) as a major component of fine 
particulate matter (PM2.5) in the atmosphere of urban areas 
can induce airway hyperresponsiveness (AHR) and inflamma-
tion by amplifying the T-helper 2 (Th2) immune response2-5 
and are associated with cardiorespiratory mortality and the ag-
gravation of disease.6-8 DEPs can induce acute AHR and acute 
asthma exacerbations independent of their effects on allergic 
sensitization.9

Long-term exposure to air pollution causes chronic respirato-
ry disease,10 and chronic inhalation of DEPs leads to the devel-
opment of cough and sputum. In addition, chronic bronchitis 
may be partially responsible for some of the exacerbations of 
asthma.11 The biological response to inhaled particles is aggra-

vated during chronic exposure to DEPs in a dose-dependent 
manner. In a previous study, inflammation and overproduction 
of mucus and surfactant components reached a plateau at 12 
or 18 months of exposure during a 24-month experimental pe-
riod, suggesting that DEPs play an important role in the devel-
opment of chronic lung injury.12 Airway remodeling in asthma 
is defined by several structural changes, including epithelial cell 
mucus metaplasia, an increase in peribronchial smooth mus-
cle mass, subepithelial fibrosis, and angiogenesis. Cytokines, 
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chemokines, and growth factors released from inflammatory 
and structural cells in the airway are believed to play a pivotal 
role in the development of remodeling.13-16 Chronic inflamma-
tion is thought to initiate and perpetuate the cycles of tissue in-
jury and repair in asthma, although remodeling may also occur 
in parallel with inflammation.17

Although long-term, repeated exposure to DEPs in air pollu-
tion increases the risk for chronic respiratory diseases and car-
diorespiratory mortality,18 the biological mechanism and re-
modeling remain poorly understood during chronic exposure 
to DEPs. Therefore, we developed a mouse model of exposure 
to DEPs, and the effect of long-term exposure to DEPs as one of 
the air pollutants on airway inflammation and responsiveness, 
lung fibrosis, and goblet cell hyperplasia was examined. 

 

MATERIALS AND METHODS

DEP sources and preparation
We obtained and used DEPs from Hajime Takizawa. DEPs 

were collected using the following method. The engine used for 
preparation of DEPs was a 4JB1 type (Isuzu Automatic Co., To-
kyo, Japan), light-duty (2,740-cc), 4-cylinder diesel engine. The 
engine was connected to an EDGY dynamometer (Meiden-Sya, 
Tokyo, Japan) and operated using standard diesel fuel with a 
speed of 1,500 rpm under a load of 10 torque (kg/m). The ex-
haust was introduced into a stainless steel dilution tunnel (300×

8,400 mm) in a constant-volume sampler system equipped to 
the end of the dilution tunnel. The temperature at the sampling 
point was below 50°C. The diameter of the particles was mea-
sured using an Anderson Air Sampler of the low-pressure type,19 
and the mean diameter was 0.4 µm. Most of the shapes ana-
lyzed using a scanning electron microscope were globular. De-
tails on the DEPs used were previously described.20,21

Animal sensitization and exposure conditions
DEPs were sterilized by autoclaving and suspended in serum-

free media after coating with BSA to minimize particle aggrega-
tion and hydrophobicity.22 After sonication, the endotoxin con-
centration of the DEP suspension was <0.064 ng/mL (0.32 EU/

mL) using the Limulus Amebocyte Lysate assay (QCL-1000; 
BioWhittaker Inc., Walkersville, MD, USA).23 Female Balb/c 
mice, 5 to 6 weeks of age and free of mice-specific pathogens, 
were obtained from Orient Co, Ltd (Charles River Laboratories, 
Seoul, Korea). The mice were housed throughout the experi-
ments in a laminar flow cabinet and maintained on standard 
laboratory chow ad libitum. All experimental animals used in 
this study were treated according to guidelines approved by the 
Institutional Animal Care and Use Committee of the Soonc-
hunhyang University Medical School. DEPs were resuspended 
in saline solution for 30 minutes before administration. The 
mice (n=8 in each group) were exposed to 100 µg/m3 and 3 
mg/m3 DEPs for 1 hour a day for 5 days a week from 4 to 12 
weeks (Fig. 1) in a closed-system chamber attached to an ultra-
sonic nebulizer (NE-UO7; Omron Corporation, Tokyo, Japan) 
with an output of 1 mL/min and 1- to 5-µm particle size.

The control mice were administered and exposed to saline 
solution alone. Mice were sacrificed with an overdose of pento-
barbital sodium (65 mg/kg body weight, administered intraper-
itoneally). The chest cavity was exposed, and the catheter was 
carefully inserted into the trachea and secured with ligatures. 
Bronchoalveolar lavage (BAL) was performed by 4 instillations 
of 1 mL of normal saline and gentle retrieval. Cell numbers 
were measured using a hemocytometer, and differential cell 
counts were performed on slides prepared by cyto-centrifuga-
tion and Diff-Quik staining (Scientific Products, Gibbstowne, 
NJ, USA). Supernatants were separated by centrifugation (500 g, 
5 minutes) and maintained at -70°C until use. After ligation of 
the right main bronchus, the left lung was fixed with 4% para-
formaldehyde in phosphate-buffered saline and paraffin-em-
bedded. The right lung was excised and immersed in TRI re-
agent (guanidinium thiocyanate-phenol mixture; Molecular 
Research Center Inc., Cincinnati, OH, USA), and immediately 
frozen in liquid nitrogen. 

Determination of airway responsiveness to methacholine 
Airway responsiveness was measured in unrestrained, con-

scious mice 1 day after the last challenge, as previously de-
scribed.24 Mice were placed in a barometric plethysmographic 

Day(s) 27

Airway 
physics

55

Airway 
physics

83

Airway 
physics

28

Sampling

56

Sampling

84

Sampling

 1 2 3 4 5 6 7

DEP exposure (5 days a week)
- Low DEP (100 μg/m3)
- High DEP (3 mg/m3) 

4 weeks
Control, Low DEP, and 

High DEP

8 weeks
Control, Low DEP, and 

High DEP

12 weeks
Control, Low DEP, and 

High DEP

Fig. 1. Schematic diagram of the experimental protocol. Mice were exposed to DEPs 5 days a week for 3 months and either 100 µg/m3 or 3 mg/m3 DEPs (or saline as 
a control) using an ultrasonic nebulizer. 
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chamber (All Medicus Co., Seoul, Korea), and baseline read-
ings were taken and averaged for 3 minutes. Aerosolized 
methacholine in increasing concentrations (from 2.5 to 50 mg/
mL was nebulized through an inlet of the main chamber for 3 
minutes. Readings were taken and averaged for 3 minutes after 
each nebulization, at which time the enhanced pause (Penh) 
was determined. Penh, calculated as (expiratory time/relax-
ation time – 1)×(peak expiratory flow/peak inspiratory flow) 
according to the manufacturers’ protocol, is a dimensionless 
value that represents the proportion of maximal expiratory to 
maximal inspiratory box pressure signals and the timing of ex-
piration. Penh is used as a measure of airway responsiveness to 
methacholine. The results are expressed as the percentage in-
crease of Penh following challenge with each concentration of 
methacholine, where the baseline Penh (after saline challenge) 
is expressed as 100%. Penh values averaged for 3 minutes after 
each nebulization were evaluated. 

Preparation of lung tissues for histology and 
immunohistochemistry 

Trachea and lung tissues were removed from the rats. Four 
percent paraformaldehyde fixing solution was infused into the 
lungs via the trachea. The specimens were dehydrated and em-
bedded in paraffin. For histological examination, 4-μm sections 
of embedded tissue were cut on a rotary microtome, placed on 
glass slides, deparaffinized, and stained sequentially with he-
matoxylin and eosin.

Measurement of cytokine levels in BAL fluids 
The cytokine levels were quantified in BAL fluid using a sand-

wich enzyme-linked immunosorbent assay kit according to the 
manufacturer’s protocol (Biosource International Inc., Camaril-
lo, CA, USA). Each sample was determined in triplicate. The 
lower limit of detection for interleukin (IL)-5, IL-13, interferon 
(IFN)-γ, IL-10, and vascular endothelial growth factor (VEGF) 
was 0.17, 30.00, 14.70, 15.60, and 2.00 pg/mL, respectively. Val-
ues below these limits were considered zero for statistical anal-
ysis. Inter- and intra-assay coefficients of variance were <10%.

Collagen assay
Collagen assays were performed according to the user manu-

al of the Sircol collagen assay kit (Biocolor, Northern Ireland, 
UK). Briefly, 100 μL of the protein extract sample in lung tissue 
was mixed with 1 mL of Sircol dye for 30 minutes and centri-
fuged at 10,000 rpm for 5 minutes to precipitate the formed col-
lagen-dye complex. After decanting the suspension, droplets 
were dissolved in 1 mL of Sircol alkali reagent and vortexed. A 
total of 100 μl of the acquired solution was read at 540 nm.

Masson trichrome assay
The lung tissue slides were placed under a warmer at 60°C for 

30 minutes. Next, samples were immersed in xylene for 15 min-

utes, followed by 100%, 95%, 90%, 80%, and 70% ethanol for 10 
minutes each. The slides were stained in accordance with the 
manual of the Masson trichrome assay kit (Sigma-Aldrich, St. 
Louis MO, USA). Briefly, Bouin’s solution was used as a mor-
dant to intensify the color reactions. The nucleus and cyto-
plasm were dyed using hematoxylin and scarlet acid. Phospho-
tungstic/phosphomolybdic acid solution was used to change a 
positive to a negative charge. After staining with aniline blue, 
the samples were treated with 1% acetic acid. Prior to observa-
tion, the samples were mounted with a cover slip using mount-
ing media (Amresco, OH, USA). The positive trichrome-stained 
area was quantified using ImageJ software (National Institutes 
of Health, Bethesda, MD, USA). Values are reported as a per-
centage of positive areas within the total sample. 

Periodic acid-Schiff assay
The slides were stained in accordance with the manual of a 

periodic acid-Schiff assay kit (Abcam, Cambridge, MA, USA). 
Briefly, lung tissue was cut into 4-μm sections and placed in pe-
riodic acid solution for 5 minutes. After washing with distilled 
water, the specimens were immersed in Schiff’s fluid for 15 
minutes. The slides were again washed with distilled water for 5 
minutes and then placed in hematoxylin for 3 minutes. After 
the slides were exposed to running tap water for 3 minutes, blu-
ing reagent was applied for 30 seconds. Before observation, the 
slides were mounted with a cover slip using mounting media 
(Amresco). 

Statistical analysis
Differences between independent samples were compared 

using the nonparametric Kruskal-Wallis H test for continuous 
data. If differences were found to be significant, the Mann-
Whitney U test was applied to compare differences between 2 
samples. Differences were considered significant when a P val-
ue was <0.05. Results are expressed as mean±standard error 
of the mean (SEM) unless otherwise stated.

 

RESULTS

Airway responsiveness was measured 4, 8, and 12 weeks after 
the last exposure to DEPs in mice (Fig. 1). Airway responsiveness 
to aerosolized methacholine was measured in unrestrained, 
conscious mice. Mice were placed in the main chamber with a 
barometric plethysmograph and nebulized first with saline and 
then with increasing doses (from 2.5 to 100.0 mg/mL) of metha-
choline for 3 minutes for each nebulization. Readings of breath-
ing parameters were taken for 3 minutes after each nebulization, 
during which time Penh values were determined. AHR was 
higher in the low-dose and high-dose DEP groups than in the 
control group and higher in the high-dose DEP group than in 
the low-dose DEP group at 4, 8, and 12 weeks (Fig. 2). 

The total cell count in the BAL fluid tended to be higher in the 
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low-dose DEP group than in the control group at 4, 8, and 12 
weeks, and there was a significant increase in the total cell 
count in the high-dose DEP group than in the control group at 
4 weeks (P<0.05) (Fig. 3). There were no differences in the 
number of macrophages among the 3 groups. The number of 
neutrophils was larger in the high-dose DEP group than in the 
control group at 4, 8, and 12 weeks (P<0.05 for each) (Fig. 3). 
The number of lymphocytes was larger in the high-dose DEP 
group than in the control group at 4, 8, and 12 weeks (P<0.05). 

The level of IL-5 was higher in the low-dose DEP group than 
in the control group at 12 weeks (Fig. 4). The level of IL-13 was 

higher in the low- and high-dose DEP groups than in the con-
trol group at 12 weeks (Fig. 4). The level of IFN-γ was higher in 
the low-dose DEP group than in the control group at 12 weeks 
(Fig. 5). The level of IL-10 was higher in the high-dose DEP 
group than in the control group at 12 weeks (Fig. 6). The level of 
VEGF was higher in the low- and high-dose DEP groups than in 
the control group at 12 weeks (Fig. 7). The level of IL-6 was 
higher in the low-dose DEP group than in the control group at 
12 weeks (Fig. 8A). The level of transforming growth factor-β 
(TGF-β) was higher in the high-dose DEP group than in the 
control group at 4, 8, and 12 weeks (Fig. 8B).
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Lung fibrosis as shown by Masson trichrome staining of lung 
tissues was more severe in the low- and high-dose DEP groups 
than in the control group (Fig. 9A and B). The collagen content 
in lung tissues was greater in the high-dose DEP group than in 
the control group at 8 and 12 weeks (P<0.05) (Fig. 9C). Goblet 
cell hyperplasia in lung tissues was more severe in the high-dose 
DEP group than in the control group at 8 and 12 weeks (Fig. 10).

 

DISCUSSION

This study revealed that long-term exposure to DEP leads to 
increased airway responsiveness and inflammatory cell infiltra-
tion, cytokine changes, collagen deposition, and goblet cell hy-
perplasia, indicating that long-term exposure to DEPs may be 
associated with AHR, inflammation, and lung fibrosis. 

DEPs are the particulate component of diesel exhaust, which 

includes diesel soot and aerosols, such as ash particulates, me-
tallic abrasion particles, sulfates, and silicates.25 Exposure to 
DEPs has been associated with acute short-term symptoms, 
such as headache, dizziness, light-headedness, nausea, cough-
ing, difficult or labored breathing, chest tightness, and irritation 
of the eyes, nose, and throat.25 DEPs are related to allergic dis-
eases, including asthma and allergic rhinitis based on extensive 
epidemiological studies25-27 and act as an adjuvant during aller-
gen exposure and effect acute asthma exacerbations, bronchi-
tis, or chronic obstructive pulmonary disease.28-38 Previous re-
search has shown a strong link between particulate air pollu-
tion and detrimental health effects, including cardiopulmonary 
morbidity and mortality.39 In this study, AHR was higher in the 
low- and high-dose DEP groups than in the control group and 
higher in the high-dose DEP group than in the low-dose DEP 
group at 4, 8, and 12 weeks, suggesting that DEPs can induce 
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AHR in a dose-dependent manner.
DEP exposure is associated with asthma and airway cell 

apoptosis. DEPs may directly contribute to asthma by inducing 
epithelial cell death through the apoptotic pathway40 and in-
ducing inflammatory responses in human airway epithelial 
cells.41 DEPs activate intracellular signaling pathways that cul-
minate in the production of profibrotic cytokines and growth 
factors.38 DEPs activate T cells in asthmatics with a higher effect 
during exacerbations, suggesting that uncontrolled asthma is a 
risk factor for aggravation in individuals exposed to traffic pol-
lutants.42 DEPs also induce time-dependent increases in IL-8, 
granulocyte-macrophage colony-stimulating factor, and IL-1β 
in epithelial cell lines.42 DEPs affect dendritic cells (DCs), which 
results in increased production of TNF, IL-6, IFN-γ, IL-12, and 
VEGF.41 In costimulation assays of PM-exposed DCs and allore-
active CD4+ T cells, DEPs directed a Th2-like pattern of cyto-
kine production (e.g., enhanced production of IL-13 and IL-18, 

and suppressed of production IFN-γ).43 Pro-oxidative DEP 
chemicals can interfere with Th1-promoting response path-
ways in a homogeneous DC population and provide a novel ex-
planation for the adjuvant effect of DEPs on allergic inflamma-
tion, indicative of an adjuvant effect of particulate air pollutants 
in allergic inflammatory disease.44 DEPs induce antigen-inde-
pendent DC maturation via epithelial cell–DC interactions me-
diated by the human bronchial epithelial cell-derived granulo-
cyte-macrophage colony-stimulating factor.45 In our study, IL-6 
and TGF-β were increased in the DEP long-term exposure 
group, suggesting that Th17 cytokine may be involved in airway 
inflammation following DEP exposure. Alveolar macrophages 
play an important role in particle-induced lung inflammation 
via direct induction of IL-13 production, suggesting that alveo-
lar macrophages may act as major effectors of innate immunity 
to modulate immune and inflammatory responses toward a 
Th2-like condition via the production of IL-13, as observed in 
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Fig. 9. Lung fibrosis as shown by (A) Masson trichrome staining, (B) % area, and (C) collagen content. *P<0.05 vs the control group. 
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Fig. 10. Goblet cell hyperplasia in the lung based on periodic acid-Schiff staining. 

the adaptive immune response.46 In our study, IL-5, IL-13, INF-γ, 
and IL-10 were increased in the DEP long-term exposure group, 
suggesting that Th2, Th1, and regulatory cytokines are involved 
in airway inflammation following DEP exposure. In addition, 
DEP exposure has been associated with the upregulation of al-
lergic immune responses and airway remodeling in both ani-
mal and human studies.47,48 Long-term exposure can lead to se-
rious chronic health problems, such as cardiovascular disease, 
cardiopulmonary disease, and lung cancer.35 Fibrotic reactions 
are a component of these pulmonary diseases and are involved 
in the progressive deposition of collagen by pulmonary fibro-
blasts.38 In this study, lung fibrosis, the collagen content, and 
VEGF in mice lungs exposed to long-term DEPs in a dose-de-
pendent manner indicated that chronic exposure to DEPs can 
play a role in airway remodeling and angiogenesis. In addition, 
exposure to a higher dose of DEPs leads to increased airway in-
flammation, a higher cytokine response, and more severe lung 
fibrosis, suggesting that environmental reduction of DEP expo-
sure is important for patients with airway diseases. In conclu-
sion, chronic exposure to DEPs can cause AHR, inflammation, 
goblet cell hyperplasia, and lung fibrosis.
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