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Abstract

Background: Abnormal lipid profiles in adolescents predict metabolic and cardiovascular 

diseases in adulthood. While seafood consumption is the primary source of mercury exposure, 

it also provides beneficial nutrients such as omega-3 fatty acids (O3FA). Prior studies indicate that 

blood total mercury (TBHg) has endocrine disrupting effects and may be associated with abnormal 

lipid profiles in adolescents. However, the impact of beneficial nutrients on this relationship has 

not been examined. Our study investigated the relationship of TBHg with dyslipidemia and lipid 

profiles and potential confounding and modification of these relationships by sex, body mass index 

(BMI), selenium and O3FA from seafood consumption.

Methods: We examined 1,390 National Health and Nutrition Examination Survey participants 

12-19 years of age from the 2011-2018 cycles. Using logistic and linear regression adjusted for 

survey design variables and stratified by sex a priori, we estimated the associations of TBHg and 

methylmercury with dyslipidemia, and with total cholesterol (TC), high (HDL-C) and low-density 

lipoprotein cholesterol (LDL-C) and triglycerides.

Results: The geometric mean of TBHg in this adolescent population was 0.44 μg/L. After 

controlling for socio-demographic covariates, BMI, serum selenium, age at menarche (females 

only) and average daily intake of O3FA; TBHg was significantly associated with higher TC 

levels (β=3.34, 95% CI: 0.19, 6.50; p<0.05) in females but not males. Methyl Hg was also 

associated with increased TC, as well as decreased HDL-C in females but not males. We did not 

find significant associations of Hg exposure with dyslipidemia, LDL-C or triglycerides levels in 

either male or female adolescents. However, we observed evidence of effect modification by BMI 

and serum selenium for associations of TBHg with TC levels in male and female adolescents, 

respectively.
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Conclusion: Our findings of elevated TC levels in females but not males necessitates further 

research to better understand the underlying mechanisms driving these sex-specific associations.
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1. Introduction

Abnormal lipid profiles and dyslipidemia are related to a variety of cardiovascular risk 

factors including obesity, socio-economic factors, and environmental exposures (Kit et al., 

2015; Lozano et al., 2016; Jackson et al., 2018; Fan et al., 2017). Fish contain a wide 

variety of constituents with positive and negative health effects, including effects on lipids 

(Abdelhamid et al., 2020). While intake of long chain omega-3-fatty acids is linked to 

reduced triglyceride levels, evidence remains weak for beneficial effects of omega-3-fatty 

acids on total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-

density lipoprotein cholesterol (HDL-C) levels (Abdelhamid et al., 2020). Selenium is an 

essential micronutrient and antioxidant linked to chelation of heavy metals such as mercury 

and alterations in lipid levels (Rayman, 2012). Most studies of the US population using 

the National Health and Nutrition Examination Survey (NHANES) databases found positive 

associations of selenium with TC, LDL-C, and triglycerides (Christensen et al., 2015; Bleys 

et al., 2008; Laclaustra et al., 2010).

Heavy metals such as lead, cadmium, and mercury (Hg) are endocrine disrupting chemicals 

that are linked to hormone dysregulation (Pollack et al., 2011; Kresovich et al., 2015), as 

well as cardiovascular and metabolic diseases across the life course (Thurston et al., 2007; 

Guallar et al., 2002; Poursafa et al., 2014). Adolescents in the U.S. are primarily exposed 

to Hg in the form of methylmercury through consumption of fish, shellfish, or marine 

mammals (United States Agency for Toxic Substances and Disease Registry, 1999; Karagas 

et al., 2012), with the highest mercury intake in the U.S. demonstrated in Asian populations 

with high seafood intake (Liu et al., 2018; Buchanan et al., 2015). Approximately 95% 

of methylmercury ingested after a fish meal is absorbed into the blood stream (Clarkson 

and Magos, 2006) and can be measured as total blood mercury (Buchanan et al., 2015). 

Health benefits vs risks of seafood vary by type of seafood. Beneficial nutrients such as 

selenium and omega-3 fatty acids (Nordgren et al., 2017) contrast with the negative effects 

of contaminants such as Hg (Sanders et al., 2019; Cho, 2021; Guallar et al., 2002).

Past studies of the US adolescent population using NHANES demonstrated overall linear 

associations of blood total mercury (TBHg) and methylmercury with TC, with the highest 

quartile of methylmercury associated with TC in one study in girls but not boys (Zhang 

et al., 2018). Another study showed positive associations between TBHg and TC among 

both male and female adolescents (Fan et al., 2017), while data from the Korean NHANES, 

showed positive associations for TBHg with TC and LDL-C in male but not in female 

adolescents (Cho et al., 2020; Jin et al., 2021). Studies in the adult population have 

also shown linear associations between TBHg and TC (Buhari et al., 2020), and positive 

associations of TBHg with TC, HDL-C, and LDL-C (Cho, 2017; Sohn et al., 2020). 
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However, the majority of past studies using NHANES examined the relationship of Hg with 

individual lipid profiles but not with dyslipidemia. In the few available studies examining the 

relationship of Hg with individual lipids in adolescents, evidence for sex related differences 

is not consistent. Likewise, the impact of beneficial nutrients in seafood on the association of 

Hg with lipids has not been explored in many investigations.

Mechanisms driving the association of Hg exposure with dyslipidemia and abnormal lipid 

profiles are not fully understood with multiple pathways possibly involved. Hg exposure 

is linked to hormonal dysregulation and the activation of estrogen receptors (Krieg, 

2007; Zhang et al., 2008), oxidative stress and inflammation (Gump et al., 2012), lipid 

peroxidation (Salonen et al., 1995; Lin et al., 1996; Kobal et al., 2004) and the development 

of obesity related metabolic disorders. Hg exposure was inversely associated with BMI and 

obesity in adults and children (Rothenberg et al., 2015; Buchanan et al., 2015; Bulka et al., 

2019). Obesity influences lipid metabolism in the liver (Feingold, 2020) and is hypothesized 

to impact Hg metabolism, elimination and accumulation in the blood through changes in 

liver enzymes (Koeck et al., 2011). However, the role of obesity, which is increasing in 

U.S. adolescents and children (Cook and Kavey, 2011), on the relationship of Hg exposure 

with dyslipidemia and lipid profiles has not been well studied. The present study extends 

the analysis done by Zhang et al. (2018), which utilized only the 2011-2012 NHANES 

cycle. We utilized a sample of adolescents participating in the NHANES 2011-2018 cycles 

to substantially increase the sample size and examine associations in subgroups of this 

population. The objectives of our study were to 1) examine the relationship of Hg exposure 

with lipid profiles and dyslipidemia, 2) assess the impact of beneficial nutrients and age 

at menarche on this relationship, and 3) explore the biologic pathways by which BMI, 

selenium and omega-3-fatty acid intake might act as confounders and effect modifiers.

2. Materials and methods

2.1. Study Population

NHANES is a nationally representative cross-sectional survey conducted by the U.S. 

National Center for Health Statistics, Centers for Disease Control and Prevention, Atlanta, 

GA, USA (Centers for Disease Control and Prevention, 2021). Our study included only 

participants between 12-19 years of age from the NHANES 2011-2018 cycles. Excluded 

were 33,941 participants outside this age range, 2 participants who reported current use of 

anti-lipid medication, 3 participants with elevated LDL-C > 190 mg/dL which commonly 

presents in individuals with familial hypercholesterolemia, 1,863 persons with missing 

TBHg measurements, and 1,957 with missing data on lipids or covariates (Figure 1). The 

final study population included 1,390 participants 12-19 years of age.

2.2. Blood Total Mercury

TBHg was measured from whole blood specimens using inductively coupled plasma-

dynamic reaction cell-mass spectrometry (ICP-DRC-MS). Measurements were obtained 

during the physical examination for participants aged 1 year and older for the 2011-2012 and 

2017-2018 cycles. For the 2013-2016 cycles, TBHg was measured in all participants aged 

1-11 years old, and a one-half sample of participants aged 12 years and older. The lower 
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detection limits for TBHg were 0.16 μg/L and 0.28 μg/L for the 2011-2012 and 2013-2018 

cycles, respectively. Samples in our analysis with TBHg analytic results below the lower 

detection limit were imputed by NHANES with a fill value of the lower detection limit 

divided by the square root of 2. Overall, the detection rate for TBHg used in our analysis 

was greater than 74%. We also conducted a sensitivity analysis using methyl Hg measured 

from whole blood specimens. Measurements for methyl Hg were performed similar to blood 

total mercury measurements as described above. The lower detection limits for methyl Hg 

were 0.12 μg/L and 0.26 μg/L for the 2011-2016 and 2017-2018 cycles, respectively. The 

detection rate for methyl Hg used in our analysis was greater than 80%.

2.3. Lipid Profiles & Dyslipidemia

Outcome measures for our analysis include lipid levels (TC, HDL-C, LDL-C, and 

triglycerides) and dyslipidemia defined as meeting one or more of the following criteria: 

LDL-C levels ≥ 130 mg/dL, TC levels ≥ 200 mg/dL, triglyceride levels ≥ 130 mg/dL and 

HDL-C levels < 40 (United States Department of Health & Human Services, National Heart 

Lung and Blood Institute, expert panel, 2011). TC, HDL-C, and triglycerides were measured 

on the Roche modular P chemistry analyzer for the 2011-2012 cycle. For the 2013-2018 

cycles, TC, HDL-C, and triglycerides were measured on the Roche modular P and Roche 

Cobas 6000 chemistry analyzers. LDL-C was assessed using the Friedewald calculation 

as [total cholesterol – HDL-cholesterol – triglycerides/5] and is valid only for triglyceride 

measurements ≤ 400 mg/dL (Friedewald et al., 1972). HDL-C and TC were measured in 

participants 6 years and older while LDL-C and triglycerides were measured in participants 

aged 12 years and older who fasted for 8 hours or more but less than 24 hours. The lower 

limits of detection for TC, HDL-C and triglycerides were 4 mg/dL, 3 mg/dL and 9 mg/dL 

respectively for the 2013-2018 cycles. Lower limits of detection were not provided by 

NHANES for lipid profiles in the 2011-2012 cycle. Overall, no values were below the lower 

limits of detection for lipid profiles included in our analysis.

2.4. Covariates

Using a directed acyclic graph and prior literature, we identified and included information 

on a wide range of potential confounders (Appendix Figure 1) (Greenland et al., 1999; 

Textor et al., 2016). Our analysis included the following demographic characteristics: age 

in years, sex (male vs female), poverty to income ratio (categorized as < 1 for participants 

with family income below the official definition of poverty level vs ≥ 1 for participants with 

family income above the official definition of poverty level), race/ethnicity (non-Hispanic 

white, non-Hispanic black, Hispanic, non-Hispanic Asian or other race), and country of birth 

(native-born, vs foreign-born and < 5 years in the US, vs foreign born and > 5 years in the 

US). Furthermore, we included BMI for children/adolescents which was calculated based 

on percentiles and Z-scores of the child’s sex and age for BMI and defined as underweight/

normal weight (<85th percentile) vs overweight (85th to <95th percentile) vs obese (≥ 95th 

percentile) (United States Centers for Disease Control and Prevention, 2014).

We included information on fish and shellfish meals assessed for participants 1 year and 

older following the 24-hour dietary recall interview. We examined the average daily intake 

of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from all fish and shellfish 
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included in the NHANES dietary database (categorized as no quantified average daily 

intake, vs < median average daily intake, vs > median average daily intake). Average daily 

intake of DHA & EPA (mg/d) from fish and shellfish was calculated as (DHA & EPA 
(g/100g fish) * 1000 mg/g) * number of seafood meals in the last 30 days * meal size 
(g fish)]/30 days. Our calculation used 1) estimates of DHA & EPA (g/100g fish) from 

the study by Mahaffey et al. (2008), 2) number of fish and shellfish meals as reported in 

the NHANES dietary database and 3) a median fish meal size of 89 g for males and 67g 

for females (United States Environmental Protection Agency, 2021). Finally, we included 

information on blood selenium measurement (ug/L), and age in years for attainment of 

menarche to control for puberty in female participants (categorized as < 12 years or ≥ 12 

years). All female participants in our analysis had reached puberty.

2.5. Analytical Strategy

TBHg (μg/L) and triglyceride (mg/dL) measurements, were transformed to the natural 

log scale based on examined distributions. All statistical analyses were performed using 

SAS (9.4; SAS Institute Inc., Cary, NC) and plots were created using STATA (version 

17, StataCorp, College Station, TX; Jann, 2014). For the descriptive analyses, we assessed 

means and 95% CI for continuous variables and frequencies and percentages for categorical 

variables. To examine significant differences in bivariate analyses, we used T-tests and 

X2 tests for continuous and categorical variables, respectively. We adjusted for sampling 

clusters and strata in both descriptive and multivariable analysis. In the multivariable 

analysis assessing associations of TBHg with TC and HDL-C, our analytical sample 

(N=2,948) included individuals who were excluded from the NHANES fasting subsample 

and were missing triglyceride and LDL-cholesterol measurements. For this sub-analysis we 

constructed new 8-year weights calculated as one-fourth of WTMEC2YR for the 2011-2012 

and 2017-2018 cycles and one-fourth of WTSH2YR for the 2013-2014 and 2015-2016 

cycles (Centers for Disease Control and Prevention 2018). The remainder of our analysis 

(N=1,390) excluded individuals missing triglyceride and LDL-cholesterol measurements 

and did not utilize sampling weights due to the partial overlap in the fasting blood 

lipid subsample and mercury subsample. Instead, demographic variables were included as 

covariates in multivariable models (Schreinemachers et al., 2015; Korn and Graubard, 1991). 

We examined TBHg (μg/L) as a log transformed continuous measure and in quartiles.

Using multivariable linear and logistic regression, we examined associations of TBHg with 

average change in lipid levels and with the prevalence odds of dyslipidemia, respectively. 

Our analysis was stratified by sex a priori to assess sex related differences in the associations 

of TBHg with lipid levels and dyslipidemia. We constructed sequentially nested models with 

level 1 models controlling for age, survey cycles, poverty income ratio, country of birth 

and race; level 2 models controlled for covariates in level 1 plus BMI, serum selenium 

concentration and age at menarche (females only) while level 3 models controlled for 

covariates in level 2 plus average daily intake of DHA & EPA from fish and shellfish in 

the past 30 days. We also tested effect modification by BMI, serum selenium and average 

daily intake of DHA & EPA from fish and shellfish by including a product term to models 

and controlling for covariates specified in level 3 models. Subsequently, we performed 

stratified analysis to evaluate effect modification when the p-value for the product term was 
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≤ 0.1 (Mickey and Greenland, 1989). We also conducted a sensitivity analysis assessing 

associations of methyl Hg with dyslipidemia and lipid profiles using level 3 models which 

controlled for socio-demographic covariates, BMI, serum selenium, age at menarche and 

intake of DHA & EPA from fish and shellfish. Our analytical sample was N=2,944 for the 

analysis assessing associations with TC and HDL-C and N=1,387 for the analysis assessing 

associations with dyslipidemia, triglycerides and LDL-C.

3. Results

Our analysis included 1,390 adolescents among whom 709 (51.0%) were male, 681 

(49.0%) were female; 861 (61.9%) were underweight or normal weight, 223 (16.0%) were 

overweight and 306 (22.0%) were obese. The prevalence of dyslipidemia in this population 

was 24.3%, with male participants demonstrating higher prevalence of dyslipidemia 

compared to females (25.7% vs 22.9%, p=0.22). Overall, males demonstrated significantly 

lower levels of HDL-C compared to females (50.7 mg/dL vs 55.0 mg/dL; p=<0.0001) while 

females showed significantly higher levels of TC (158.9 mg/dL vs 152.4 mg/dL; p=0.001) 

compared to males. Male participants had higher TBHg concentrations and ingested more 

DHA & EPA from fish and shellfish while female participants had higher BMI (Table 1). 

The correlation coefficients of BMI percentiles and Z-scores for age and sex with lipids in 

our sample of adolescents aged 12-19 years were: males - TC (r=0.13; p= <.0001), HDL-C 

(r= −0.35; p= <.0001), triglyceride (r=0.33; p= <.0001), LDLC-C (r=0.17; p= <.0001); 

females - TC (r=0.009; p=0.74), HDL-C (r= −0.37; p= <.0001), triglycerides (r=0.18; p= 

<.0001), LDL-C (r=0.07; p=0.06) (not shown in tables). Table 2 presents mean (95% CI) 

of TBHg and lipid profiles for selected characteristics. The geometric mean (GM) of TBHg 

in this population was 0.44 μg/L. Mean TC, HDL-C, and LDL-C levels were 155.6 mg/dL, 

52.8 mg/dL and 87.9 mg/dL respectively while GM for triglyceride was 64.0 mg/dL. Among 

racial/ethnic groups, we observed the highest TBHg GM in Asian participants and the 

lowest GM in white non-Hispanic participants (1.05 μg/L vs 0.34 μg/L; p=<0.0001). TBHg 

concentrations differed by country of birth/years lived in the US with the highest levels 

observed in foreign born participants residing less than 5 years in the U.S. (Table 2). TBHg 

concentrations increased with daily intake of DHA & EPA from fish and shellfish (Table 

2) and was moderately correlated with average daily intake of DHA & EPA from fish and 

shellfish (r=0.43; p= <.0001; not shown in tables). Mean TC, LDL-C and triglycerides 

were significantly higher in participants with serum selenium levels above the median value 

(Table 2).

The results of multivariable linear regression analyses demonstrated sex-related differences 

in the association of TBHg with TC. In linear regression models controlling for socio-

demographic covariates, BMI, serum selenium and age at menarche, TBHg was significantly 

associated with increased TC (β=4.15, 95% CI: 1.27, 7.03; p<0.05) levels in female 

participants. Controlling for average daily intake of DHA & EPA from fish and shellfish 

resulted in attenuated and significant estimates (β=3.34, 95% CI: 0.19, 6.50; p<0.05; (Table 

3)). TBHg was not significantly associated with TC in males nor with HDL-C, LDL-C, 

and triglyceride levels in both males and females. In quartile exposure models stratified 

by sex and controlling for socio-demographic covariates, BMI, serum selenium, age at 

menarche and DHA & EPA from fish and shellfish, we observed significantly higher TC 
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levels (β=7.54 mg/dL, 95% CI: 0.76, 14.32; p <0.05) in female participants with TBHg 

concentrations >0.70 μg/L (quartile 4) compared to those with TBHg concentrations of 

<0.20 μg/L (quartile 1) (Table 3).

Table 4 presents the results of multivariable logistic regression analyses for the association 

between TBHg concentration and dyslipidemia stratified by sex. We observed decreased 

prevalence odds of dyslipidemia in male participants and increased prevalence odds of 

dyslipidemia in females; however, our findings were not statistically significant (Table 4). 

In our analyses of effect modification, p-values were <0.1 for product terms for TBHg 

and BMI with TC levels in males and for TBHg and serum selenium with TC levels in 

females. This was further evaluated in stratified models, which indicated that in obese 

males (β=−3.56; 95% CI: −8.88, 1.75), TBHg was associated with decreased TC levels. 

In contrast, in underweight/normal weight males, TBHg was associated with increased TC 

levels (β=2.89; 95% CI: −0.21, 5.98) and in overweight, but not obese, males, TBHg was 

not associated with TC levels (β=0.40; 95% CI:−5.70, 6.51; Figure 2). TBHg was associated 

with increased TC levels in females with serum selenium levels above the median value 

(β=5.67; 95% CI: 0.39, 10.9) but not in those with serum selenium levels below the median 

value (β=0.29; 95% CI: −2.85, 3.42; Figure 2). Product terms for average daily intake of 

DHA & EPA from fish and shellfish were greater than 0.1, which did not support effect 

modification.

In sensitivity analysis models, controlling for socio-demographic covariates, BMI, serum 

selenium, age at menarche and DHA & EPA from fish and shellfish, methyl Hg was 

significantly associated with increased TC (β=3.71, 95% CI: 0.99, 6.42; p<0.05) levels in 

female participants (Appendix Table 1). We also observed significantly higher TC levels 

in females having methyl Hg concentrations of 0.23 μg/L - 0.51 μg/L (quartile 3) and 

concentrations >0.51 μg/L (quartile 4) compared to those with methyl Hg concentrations of 

<0.16 μg/L (quartile 1). Females having methyl Hg concentrations of 0.16 μg/L - 0.22 μg/L 

(quartile 2) in addition demonstrated significantly lower HDL-C levels compared to those in 

quartile 1 (Appendix Table 1).

4. Discussion

Our multivariable analysis of an adolescent sample in the NHANES 2011-2018 datasets 

found significant positive associations of TBHg and methyl Hg with TC in female but not 

male adolescents. We did not find any significant associations of TBHg with dyslipidemia, 

LDL-cholesterol, HDL-cholesterol, and triglycerides in either male or female participants. 

Controlling for the average daily intake of DHA & EPA from fish and shellfish also 

attenuated estimates of the association between TBHg exposure and lipids. While our 

sensitivity analysis using methyl Hg was generally consistent with the primary analysis, the 

second quartile of methyl Hg, which is derived almost entirely by fish consumption, was 

also associated with decreased HDL-C levels in female adolescents. Our findings support 

literature demonstrating associations of TBHg and methyl Hg with TC in US adolescents. 

Zhang et al. (2018) found positive associations of TC with TBHg and methyl mercury in US 

adolescents as well as significant associations with the highest quartile versus lowest quartile 

of methyl mercury with TC in female but not male adolescents. Fan et al. (2017) reported 
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positive associations between TBHg and TC in US male and female adolescents while a 

study of Korean adolescents found positive associations between TBHg and high LDL-C 

and between hypercholesterolemia and the highest quartile of TBHg exposure in male but 

not female adolescents (Cho et al., 2020). Studies in the adult population demonstrated 

mixed findings on associations of TBHg with HDL-C (Cho, 2017; Sohn et al., 2020). 

The findings from our sensitivity models of decreased HDL-C levels in female adolescents 

warrants further investigation in future studies.

Elevated levels of TC with Hg exposure observed in our study are biologically plausible. 

While the relationship of Hg exposure with lipid profiles and dyslipidemia is not fully 

understood, relevant mechanisms have been implicated in experimental, animal, and human 

studies. Hg exposure may increase TC and the risk of dyslipidemia through sex specific 

genetic susceptibility to altered mercury metabolism, plasma lipid peroxidation, autoimmune 

dysfunction, endoplasmic reticulum stress, or other effects related to oxidative stress (Austin 

et al., 2014; Chauhan et al., 2019; Bjørklund et al., 2020; Kobal et al., 2004; Andreoli et 

al., 2017; McSorley et al., 2020). Hg exposure increases plasma levels of proinflammatory 

cytokines such as interleukin 1 beta and tumor necrosis factor alpha (Nyland et al., 2012) 

and decreases activity of paraoxonase 1 (Genchi et al., 2017) – an anti-oxidative enzyme 

which has been demonstrated to inhibit HDL and LDL oxidation and decrease the risk of 

cardiometabolic disease (Ayotte et al., 2011; Drescher et al.; 2014). Animal studies have 

demonstrated evidence of alteration in genetic activity and damage to genes responsible for 

lipid metabolism and energy regulation following mercury chloride (HgCl2) exposure, with 

the expression of adipocyte gene mRNA for peroxisome proliferator-activated receptor alpha 

(PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ) declining after 

HgCl2 exposure (Shi et al., 2018; Kawakami et al., 2012). Glutamate dehydrogenase enzyme 

(GDH), glucose transporter 2 (GLUT2) protein and glucokinase (GCK) gene, which control 

lipid and glucose metabolism, and oxidative balance in the pancreatic islets cells of mice, 

have also been altered by methyl mercury exposure (Maqbool et al., 2016).

While the mechanisms outlined above support the association between Hg exposure and 

lipids, current evidence on pathways involved in sex related differences are unclear and 

may be linked to toxicokinetics of mercury, sex hormone related differences, and differing 

vulnerability to mercury toxicity (Nielsen, 1992; Nielsen and Hultman, 2002; Tan et al., 

2009). Epidemiologic studies on these mechanisms and other interconnected pathways are 

limited. Methylmercury is potentially estrogenic and has been linked to breast cancer in 

women through calcium mobilization, impairment of endoplasmic reticulum and activation 

of estrogen receptors (Sukocheva et al., 2005). Paraoxonase 1 levels and estrogens which 

peak in levels during puberty and childbearing years (Walsh et al., 1999; Baker et al., 2003) 

provide cardioprotective effects and are higher in females (Ahmad et al., 2010; Winnier et 

al., 2007). Therefore, our findings demonstrating significantly higher TC and lower HDL-C 

levels in females may be linked to the disruption of these mechanisms by Hg exposure.

We also found evidence of sex specific effect modification by BMI and serum selenium 

in male and female adolescents, respectively. While these relationships are not fully 

understood, higher BMI is associated with abnormal lipid profiles in adolescents (Cook 

and Kavey, 2011), and inverse associations of Hg exposure with BMI and abdominal obesity 
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in adults and with BMI Z-scores in children have been reported (Rothenberg et al., 2015; 

Buchanan et al., 2015; Bulka et al., 2019). Obesity influences lipid metabolism in the liver 

(Feingold, 2020) and may impact Hg elimination and accumulation in the blood through 

changes in hepatic enzymes such as glutathione (Koeck et al., 2011; Clarkson and Magos, 

2006). Thus, obesity related change in hepatic secretion of Hg (Rothenberg et al., 2015) 

may result in metabolic disorders including impaired lipid metabolism. Estrogens are also 

involved in the regulation of hepatic lipid homeostasis (Savva and Korach-André, 2020), 

fatty acid metabolism and adipocyte differentiation (Rubinow, 2017). The estrogenic effect 

of Hg exposure may impact these mechanisms and can help explain our findings of effect 

modification by BMI in male adolescents.

In addition to our findings, other studies using the NHANES population found positive 

associations between selenium and TC (Christensen et al., 2015; Bleys et al., 2008; 

Laclaustra et al., 2010). The mechanisms involved in the sex specific relationship between 

serum selenium and lipids is also unclear. Hypothesized mechanisms may be related to 

lipoprotein metabolism and sex differences in estrogen activity, Hg elimination through the 

glutathione pathway and selenium metabolism (Spiller, 2018). Mercury binds the selenium 

sites in proteins which disrupts intracellular homeostasis and inhibits selenoprotein function 

(Spiller, 2018). In one animal study, impairment in selenoprotein synthesis was linked 

to alterations in genes responsible for metabolism, transport and synthesis of cholesterol 

(Sengupta et al., 2008). Some studies have also demonstrated sex differences in selenium 

activity and have linked estrogens with alterations to selenium distribution and metabolism 

(Choe, 2003; Lee, 2005; Seale, 2018; Hybsier, 2017).

Our study used a robust sample of US adolescents to explore biologically plausible pathways 

of sex, selenium and BMI on the relationship of TBHg with dyslipidemia and lipid profiles. 

We also controlled for a wide range of confounding variables, particularly key factors 

affecting both mercury metabolism and dyslipidemia. However, our study has limitations 

which should be considered in interpreting findings. First, we could not readily examine 

the role of sex hormones in the relationship of TBHg with dyslipidemia in our sample of 

adolescents due to the hormonal changes of puberty. However, we control for reproductive 

health and initiation of puberty among female participants using age at menarche as a proxy. 

Our analysis also employed a single pollutant model which does not account for possible co-

exposure effects of other metals or pollutants in seafood such as polychlorinated biphenyls 

(PCBs). We also utilized 30-day dietary recall from NHANES to assess the frequency of 

consumption of fish and shellfish which may be subject to recall limitation and may not 

accurately reflect habitual consumption. In addition, due to the cross-sectional design of our 

study, we cannot establish temporality based on the observed associations.

4.1. Conclusion

We found significantly higher TC levels with increasing TBHg and methyl Hg 

concentrations in females but not male adolescents. Methyl Hg was also associated 

with decreased HDL-C levels in female adolescents. We also found evidence of effect 

modification by BMI and serum selenium in male and female adolescents, respectively. 

Since abnormal lipid profiles and dyslipidemia in adolescents may predict metabolic 
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and cardiovascular disease in adulthood, additional studies are warranted to evaluate our 

findings. Future studies incorporating inflammatory markers and genetic biomarkers may 

improve our understanding of potential causal mechanisms.
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Figure 1. 
Eligible participants and participants included in the analyses of the relationship 

between blood total mercury and dyslipidemia, NHANES: 2011-2018 HDL, High density 

lipoproteins; LDL, Low density lipoproteins; BMI, body mass index; PIR, poverty to family 

income ratio.
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Figure 2. 
Modification of the effect of blood total mercury (μg/L) on total cholesterol levels in male 

and female participants
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