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Abstract: Hierarchical support vector regression (HSVR) models a function from data as a linear
combination of SVR models at a range of scales, starting at a coarse scale and moving to finer scales
as the hierarchy continues. In the original formulation of HSVR, there were no rules for choosing
the depth of the model. In this paper, we observe in a number of models a phase transition in the
training error—the error remains relatively constant as layers are added, until a critical scale is passed,
at which point the training error drops close to zero and remains nearly constant for added layers.
We introduce a method to predict this critical scale a priori with the prediction based on the support
of either a Fourier transform of the data or the Dynamic Mode Decomposition (DMD) spectrum. This
allows us to determine the required number of layers prior to training any models.

Keywords: support vector regression; fourier transform; dynamic mode decomposition;

koopman operator

1. Introduction

Many of the machine learning algorithms require the correct choice of hyperparame-
ters to give the best description of the given data. One of the most popular methods for
choosing hyperparameters is doing grid-search. In grid search, the model is trained for
some points in hyperparameter space which are called a grid and then the model with the
lowest error on the validation set is chosen. Other methods use alternative optimization
algorithms, such as genetic algorithms. All these methods include training model and
calculating the error multiple times, which can be very expensive if the hyperparameter
space is large.

The purpose of this paper is to develop a method for determining hyperparameters
for Support Vector Regression (SVR) with Gaussian kernels from time-series data only.
Unlike other approaches for choosing hyperparameters, our method identifies a set of
hyperparameters without needing to train models and perform a grid search (or executing
some other hyperparameter optimization algorithm), thereby bypassing a potentially
costly step. The proposed method identifies the inherent scale and complexity of the
data and adapts the SVR accordingly. In particular, we give a method for determining
the scale of Gaussian kernel by connecting it to the most important frequencies of the
signal, as determined by either a Fourier transform or Dynamic Mode Decomposition.
Thus we leverage classical and generalized harmonic analysis to inform the choice of
hyperparameters in modern machine learning algorithms. A pertinent question is why not
just use FFT? The answer is that HSVR are better suited to model strongly locally varying
data whereas, for FFT to be efficient, the data need to possess some symmetry such as
space or time translation.
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Previous Work

There are many different approaches in tuning SVR hyperparameters for reducing
the generalization error. Some popular methods of estimating generalization error are
Leave-one-out (LOO) score and k cross-validation score. They are easy to implement,
but for calculating those measures more models have to be trained for each combination
of hyperparameters that need to be tested. This can be prohibitively expensive, so other
error estimates, which are easier to calculate, were developed. These methods include the
Xi-Alpha bound [1], the generalized approximate cross-validation [2], the approximate
span bound [3], the VC bound [3], the radius-margin bound [3] or the quality functional of
the kernel [4].

For choosing hyperparameters, the simplest method is to perform grid search over
the space of hyperparameters and then choose the ones with the lowest error estimation.
However, grid search suffers from the curse of dimensionality, scaling exponentially with
the dimension of the hyperparameter configuration space. Other work in hyperparameter
optimization (HPO) seek to mitigate this problem. Random search samples the configura-
tion space and can serve as a good baseline [5,6]. Bayesian optimization techniques to find
optimal hyperparameters, often using Gaussian processes as surrogate functions, offers a
more more computational efficient algorithm than grid search or random search requiring
fewer attempts to find the optimal parameters [6]. However, Bayesian optimization in this
form requires more computational resources [6].

There are also gradient-based approaches [7-9]. There are also several derivative-free
optimization methods. For example, in [10], a pattern search methodology for hyperpa-
rameters, the parameter optimization method based on simulated annealing [11], Bayesian
method based on MCMC for estimating kernel parameters [12], and also methods based
on Genetic algorithms [13-15].

What all of these methods have in common is that they require training a model
and evaluating the error for each parameter set that needs to be tried. This can be quite
expensive, both in time and computational resources, if there are a lot of data or we want
to train multiple models at the same time. They are iterative, which means that we usually
do not know how many models will be trained before getting an estimation of the best
hyperparameters. There are methods, such as early cutoff, that try to reduce these burdens,
but fundamentally a model needs to be trained for each set of candidate hyperparameters.

In contrast, our approach gives a set of hypeparameters without ever computing a
single model. Specifically, in this paper, we are interested in modeling multiscale signals
with a linear combination of SVRs. Two fundamental questions are (1) how many SVR
models are going to be used? and (2) what should the scale be for each SVR model. Clearly
the dimension of the configuration space for the scale parameters is conditional on the
number of layers. Our methods are built off fast spectral methods like fast Fourier transform
and Dynamic Mode Decomposition and return both the number of layers (number of SVR
models) and the scales for each SVR without ever having to train a model. Bypassing the
expensive step of computing a model for each candidate set of hyperparameters can lead
to dramatic savings in computational time and resources.

2. Methods
2.1. Support Vector Regression

Support Vector Machines (SVM) have been introduced in [16] as a method for clas-
sification. The goal was to set hyperplane between classes, where hyperplane is defined
by linear combination of a subset of a training set, called Support Vectors. The problem is
formulated as a quadratic optimization problem that is convex so it has a unique solution.
The problem with SVM is that it can only find a linear boundary between classes which is
often not possible. The trick is to map the training data to a higher dimensional space and
then use kernel functions to represent the inner product of two data vectors projected onto
this space. Then only inner products are needed for finding the best parameters. The ad-
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vantage of this approach is that we can implicitly map data onto infinite dimensional space.
One of the most used kernels is Gaussian function defined by

lx — '3
o2

k(x,x') = exp <— ) = exp(—7|x = ¥'|3), ¢y

where x and x are n-dimensional feature vectors, 02 is the variance of the Gaussian function,
and v = 1/0? is the scale parameter that is usually specified as an input parameter to
SVR toolboxes.

The SVM approach has been extended in [17] to regression problems and it is called
Support Vector Regression (SVR). Let S = {(x1,y1), ..., (xn, yn) } be the training set, where
x; is vector in input space X C RP and y; € R desired output. The aim of SVR is to find a
regression function f : X — R:

f(x) = w'®(x) +b, @)

where w is the weight vector and ® is a mapping of the data points to a higher-dimensional
space and b is threshold constant. w and b can be found by solving following optimiza-
tion problem:

1
1’2151 S Tw+CE! L Ef + CE! L E;, (©)
st yi—w dx)—b<e+ES 4)
T@(x)—l—b—yige—i-E; ()
Ef,E >0, (i=1,...,n). (6)

The parameter € determines width of tube around the regression curve and points
inside it do not contribute to the loss function. Parameter C adjusts the trade off between
the regression error and regularization, E™ and E~ are slack variables for relaxing approxi-
mation constraints and measure the distance of each data point from the € tube. In practice,
the dual problem is solved, which can be written as:

IS SO SR
at,a— i=1
s.t i;(oci+ —ua;)=0 (8)

—_

o, €[0,C], (i=1,...,n). ©)

1

where at,a2~ € R" are the dual variables and K € R"*" is the kernel matrix evaluated
from a kernel function, Kj; = k(x;, x;) where k(x, x') is the kernel function. Solving that
problem, the regression function becomes:

f(x) = i(zx;f —a; )k(x,x;) +b. (10)

Coefficients satisfy following conditions:

0 lyi = f(x)ll <e
o =i | =€ (0,C) lyi—flx)ll=e
C lyi = f(xi)ll > €

Data points for which |ocl.+ — «; | is non-zero are called Support Vectors.
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2.2. Dynamic Mode Decomposition (Dmd)

Dynamic Mode Decomposition (DMD) was introduced in [18] as a method for ex-
tracting dynamic information from flow fields that are either generated by numerical
simulation or measured in physical experiment. Rowley et al. connected DMD with
Koopman operator theory [19].

Let the data be expressed in a series of snapshots, given by matrix V}\:

V¥ = {vo,v1,- -+ ,oN}, (11)

where v; € R™ stands for the i-th snapshot of the flow field. We assume there exists a linear
mapping A which relates each snapshot v; to next one v; 1,

viy1 = Avj, (12)

and that this mapping is approximately same during each sampling interval, so we approx-
imately have
VY = {vg,Avg, - -, ANvp}. (13)

We assume that characteristics of the system can be described by the spectral infor-
mation in A. This information is extracted in a data-driven manner using V). The idea is
to use VI to construct an approximation of A. In [18], this was done as follows. Define
X = Vh"1and Y = V. Let the singular value decomposition of X be X = UZV*. Then
the representation of a compression of A is defined as

A =U*YVZT (14)

where £ is the Moore-Penrose pseudo-inverse of ¥. Note that (14) is analytically equiva-
lent to U*AU, the compression of A to the subspace spanned by the columns of X, if Y = AX.
Eigenvectors and eigenvalues of A are approximations of eigenvectors and eigenvalues of
the Koopman operator.

The Koopman operator is an infinite dimensional, linear operator K that acts on all
scalar functions g on M as

Kg(x) = g(f(x)), (15)

where f is a dynamical system such that x; 1 = f(xi). Let A; and ¢; be eigenvalues and
eigenfunctions, i.e.,

Koj(x) = Ajgj(x). (16)

Let g(x): M — RP be vector of any quantities of interest. If ¢ lies in span of ¢;, then it
can be written as

g(x) =Y ¢j(x)v;. (17)
j=1
Then we can express g(xx) as
g(xp) = K*g(x0) = KX Y~ ¢i(x0)v; = Y Afghj(x0) 0y (18)
j=1 j=1

The Koopman eigenvalues, A; characterize the temporal behaviour of the correspond-
ing Koopman mode v;, the phase of A; determines its frequency, and the magnitude
determines the growth rate.

2.3. Hierarchical Support Vector Regression

Classical SVR models which use kernels of a single scale have difficulties approx-
imating multiscale signals. For example, consider the function f(x) = x + sin(27x%),
for x € [0,2], whose graph is given in Figure 1. This function has a continuum of scales.
Figure 2 highlights the difficulties that classical single-scale SVR has in modeling such
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signals. Using too large a scale o, the detailed behavior of the data set is not captured [20];
such a model may, however, be useful for a coarse-scale extrapolation outside the training
set. Models employing a very small scale ¢ can capture the training set in detail. However,
this makes them very sensitive to noise in the training and severely limits the model’s
ability to generalize outside the training set [20].

x+sin(2mx~4) on [0,2]

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 150 175 2.00

Figure 1. Multiscale example function: f(x) = x + sin(27rx*).
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L e
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( 15 (I
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1.0 1 1.0 1
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000 025 050 075 100 125 150 175 2.00 000 025 050 075 100 125 150 175 2.00
(@)oc =05 (b) o = 0.05

307 — svRr (o =0.005) 3.0 1 — SvR (¢ =0.0005)

—— target function —— target function
2.5 4 N 2.5 4
2.0 1 \H\ 2.0 1 n |

| }
1.5 4 ( 1.5 1
1.0 4 “ 104
U 1 [
0.0 4 0.0
‘ . : ‘ ‘ ‘ . ‘ ‘
000 025 050 075 1.00 125 150 175 2.00 000 025 050 075 100 125 150 175 2.00

(c) o = 0.005 (d) o = 0.0005

Figure 2. SVR results with different scale of Gaussian kernel o = 0.5, 0.05, 0.005, 0.0005. A large kernel provides smooth
regression, but cannot reconstruct the details. A small kernel overfits, is unable to generalize, and can be sensitive to noise.
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In [20], the authors introduced a multiscale variant of Support Vector Regression
which they termed Hierarchical Support Vector Regression (HSVR). The idea behind HSVR
is to train multiple SVR models, organized as a hierarchy of layers, each with different
scale 0. The HSVR model is then a sum of those individual models, which we write as

L
S(x) =Y ai(x;00,€), (19)
=0

where L is number of layers and a,(x; 0, €) is SVR model on layer ¢ with Gaussian kernel
with parameter 0y. Each SVR layer realizes a reconstruction of the target function at a
certain scale. Training the HSVR model precedes from coarser scales to finer scales as
follows. Let 0y > o7 > o7 > 0 be specified. For 0y, an SVR model ay(x; 0p, €) is trained on
the signal f(x) (the 0-th residual) and the residual 71 (x) = f(x) — ag(x; 09, €) is computed.
We then proceed inductively for ¢ > 1. Given the residual 7,(x), train a model a,(x; 0y, €)
to approximate it and compute new residual ry 1 (x) = ry(x) —ay(x;04,€). The (L 4+ 1)-th
residual is then

ree1(x) = f(x) —ao(x;00,€) —--- —ar(x;01,€) = f(x) = S(x). (20)
Graphically, the process looks like Figure 3.

Multiscale Signal

il
2 e
v
I
1 | 40 EAAREA
I

‘
{[{/H e 30 o smato er
(i rediction

(It 3 = Sinpred
[ 25
L /[
[ ‘ SVR: Layer 0 * ) [
00 | Y > 5 —_— 1M —_— @
o o% om0 o 1w 15 1k 17 7% l Y =1/0§ 10 I
o — residual
00
B0 o35 obo 075 teo 13 1% 175 2ho A/V\/V\N\AWNM

000 025 050 075 100 125 150 175 200

v
( Determine \ ( SVR: Layer 1
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;

R ——
2
k M =1/07 @ 1
)
=
FFT or DMD . .
.
support = {wo,...,w} °
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. . ° .
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[ ] [ )
[ ] [ ] ° °
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(e - ——

HSVR 000 025 050 075 100 125 150 175 200

-3
000 025 050 075 100 125 150 175 200

Figure 3. Flowchart of the HSVR modeling process. The input data is first used to compute the scales used for the HSVR
model (see Algorithms 1, 2 and 4). At layer 0, an SVR model is trained at the coarsest scale (. The residual is computed
by taking the difference between the signal and the model. This residual is then modeled with an SVR model at the next
coarsest scale 1. A new residual is computed by taking the difference of the old residual and the 7y; SVR model. This
process is repeated until the pre-computed scales are exhausted.
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The HSVR model contains a number of hyperparmeters that need to be specified,
namely, €, C;, the number of layers L to take, and the specific scales oy for those layers.
In [20], the authors chose to use exponential decay relationship between the scales, such as
0¢11 = 0/ +/decay. This, however, still leaves the critical choices of 0y and L unspecified.
In all of our experiments that follow, we choose € to be 1 percent of the variation of
the signal

€ = 0.01(max f(x) — min f(x)). (21)

For each layer, C; was specified as
Cy = 5(maxryq(x;) —minreq(x;)). (22)

which was the choice given in [20]. Additionally, the decay variable was chosen to be 2 so
that oy 1 = 04/ +/decay. Python’s scikit-learn library [21] was used throughout this paper.
Its implementation of SVR requires the input parameter <, rather than ¢ from (1). These
two parameters are related as 7 = 1/c2. Thus, the equivalent decay rate of the input
parameter is

Yeq1 =Yg x decay = vy * 2. (23)

In the next sections, we take up the task of efficiently determining the hyperparameters
L and oy without the expensive step of performing grid search or training any models.

3. Predicting the Depth of Models

In this section, we will describe how error changes while training HSVR and we will
provide methods of estimating the number of layers of such hierarchical model.

3.1. Phase Transition of the Training Error

For the rest of the paper, we have training data set {(Xy14in, Yirain) } and testing data
set {(Xtest, Ytest) } and the model S(x) = 25:1 ag(x;07),asin (19). Let S;(x) = Yy_q as(x; 07)
fori =1,...,L. For each layer, the HSVR (prediction) error is calculated as

ri= _ max |Veest — Si(xpred)| = max |Yeest — yi,pred|r (24)
{(xtest/ytest (xtestzytest)

where we have denoted y; res = Si(xpred). Therefore, r; denotes the maximum error
between the true signal at the test points x,,,; and an HSVR model with i layers. By exam-
ining the change of the values r;, it can be seen that there is a sudden drop in error, almost
until tolerance ¢, so that adding additional layers cannot reduce error any more. We will
call that value the critical-sigma and denote it with oc. The drop in error can be seen in
Figure 4.

Residual

Residuals after training on x + sin{2md*) Residuals after training on sin{20mx?)
12§ *
s s s 9
? 10
_ 08
3
bl
{06
(=
04 -
02
@
L =
020 015 010 005 030 025 020 015 0l0o D005
@ @
(a) f(x) = x + sin(27tx*) (b) f(x) = sin(2071x?)

Figure 4. Residuals while training HSVR model with decreasing o as shown on x-axis. Both HSVR models exhibit a phase
transition in their approximation error.
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3.2. Critical Scales: Intuition and the Fourier Transform

Since the SVR models are fitting the data with Gaussians, a heuristic for choosing the
scale will be shown on basic examples of periodic function and then expanded on more
general cases in next sections.

Let f(x) = sin(27rfx), where x is in meters and f is the frequency in cycles per meter.
The frequency will be related to the scale, o, of the Gaussian:

a2
Go(x,c) = exp <_||xc||2> (25)

o2

To relate the maximum frequency, f, to the scale, o, we use the heuristic that we want
3 standard deviations of the gaussian to be half of the period. That is we want

T
30 - E, (26)
Since T = %, then
1
30 = —. 27
2 @7)
Figure 5 justifies this heuristic.
Fitting Gaussian with ¢ =0.125 and f= 20 to 100sin{20mx) Fitting Gaussian with ¢ =0.125 and f= 20 to 100sin{20mx)
100 — 100sin(20mx) 100 :
| —— 100sini20m)
Galx, C) ﬂ n F W ﬂ
075 s W H F n H galx,
050 50 “
0.25 5 {
0.00 ]
_0.25 =25
—0.50 =50
TV
—1.00 =100 u H v u u v
~loo 075 -0’50 —025 000 025 050 075 100 -100 -075 —050 -025 000 025 050 075 100

(a) Gaussian with mean 0.25 and standard deviationo =1/6  (b) 100 times a Gaussian with mean 0.125 and deviation

compared with sin(27x)

o = 1/20 compared with 100 sin(207x)

Figure 5. Fitting Gaussians to half-periods of sinusoids using the heuristic (27).

3.3. Determining Scales with FFT

We assume that we can learn HSVR model with scales ¢ corresponding to important
frequencies in the FFT of the signal. The assumption is that these will give an information
how to train the model. If in the FFT of the signal, there are a lot of frequencies, we assume
that we need more HSVR layers and each will learn the most dominant scale at this level.

Our assumption is that required number of scales in the HSVR model can be deter-
mined by the data. If there are a lot of frequencies in FFT of the signal related to relatively
big coefficients, we can assume that signal is more challenging for single SVR to model it.
As in [20], we refine the scales. Here we use exponential decay and use only frequencies for
which corresponding coefficients in FFT are large enough in order to avoid numerical prob-
lems and adding insignificant frequencies. The procedure is summarized in Algorithm 1.
The Filtering scales algorithm is summarized in Algorithm 2. The model building is outlined
in Algorithm 3.
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Algorithm 1 Determining scales of HSVR model

Input: (x;,y;),i = 0,---n — 1, where x; are equidistant points in domain and y; values of
function we want to model

1: dx = x[1] — x[0]

2: freq = FFT frequencies of the signal

3: C=FFT(y)

4: C = C/ max(|C|) # normalize coefficients respect to L1-norm
5: freqsupport = freq[|C| > 0.01]

6: scales = dx /(6 * freqsupport)

7: scales = sort scales in descending order

8: scales = filter(scales)

9: return scales

Algorithm 2 Filtering scales

Input:

scales = vector of scales determined from FFT,
decay

1: scalesijereq = [scales[0]]

2: n = len(scales)

3: foriin range(1,n):

4 if scalesijjereq|—1]/scalesi] >= decay:

5: scales ijerea-append (scalesli])

6: return: scales fijereq

Algorithm 3 Train HSVR
Input: (x;,y;),i=0,---n—1
scales (output of Algorithm 1)
1: € = 0.01(max;(y;) — min;(y;))
2ro=y=[yo,--- Yn-1]
3: model = [ ] # comment: empty list to hold the SVR model at each layer
4: m = len(scales) # comment: number of HSVR layers
5: for i in range(0, m):
. 0; = scales]i]
C; = 5(max(r;) — min(r;))
sur; = fitted SVR on (x, r;) with parameters 0;, C; and tolerance e
9: predictions = svr;.predict(x)
10:  rj11 = r; — predictions
11:  model.append(svr;)
12: return: model

PN

3.4. Determining Scales with Dynamic Mode Decomposition

Let (x;,y;),i =0,...,n be training set. Output data y; is organized into Hankel matrix
Y with M rows and N columns (M > N). We will extract relevant frequencies with Hankel
DMD, described in [22], using the DMD_RRR described in [23]. The DMD_RRR algorithm
returns the residuals (rez) which determine how accurately the eigenvalues are computed,
the eigenvalues (1), and the eigenvectors (Vin). As before, suppose we have a signal

f(xy) = f(néx), (n=0,...,N—1). (28)
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We map this scalar-valued functions into a higher-dimensional space by delay-
embedding. We choose M < N. The delay-embedding of the signal is the matrix

flxo)  f(x1) ... flxn-m)

o f(J:fl) f(icz) f(xNTM—l) ’ 29)

(o) fGa) oo Flrner)

so thatforj=0,..., N—-M
f(x))

f(xj+1)

H[,j] = (30)

f(xM.Jrjfl)'

We define a generalized Hankel matrix as an m X n rectangular matrix whose entries
H; ; satisty
Hij = Hitkjk (31)

for all indices such that 0 < i,i+k < m—1and 0 < j,j—k < n—1, where k € Z.
In simpler terms, a generalized Hankel matrix is a rectangular matrix that is constant on
anti-diagonals. A generalized Hankel matrix can also be thought of a submatrix of a larger,
regular Hankel matrix. Clearly, the delay-embedding of the scalar signal, Equaion (29), is
an example of a generalized Hankel matrix which is why it was denoted as H.

The input matrices for DMD algorithms will be X and Y, where X is the first N — M
columns of H and Y is the last N — M columns. Frequencies are calculated as follows:

1 A
= ——1In( 2L ); 2
“i= o “(m)' (2

i.e., we just scale the DMD eigenvalues so that they are on the unit circle and then extract
frequency of the resulting complex exponential, exp(i27t(fyAx)) = A/|A|. Let Q) contain
the values w) = f)Ax. These are directly analogous to the frequencies computed using FFT.

We replace the support of the FFT with the support of the DMD frequency as follows.
We will take all the values of () whose corresponding residual is less than some specified
tolerance, tol, and whose corresponding mode’s norm is greater than some percentage, 7,
of the total power of the modes. In other words, we only consider the frequencies which
were calculated accurately enough and whose modes give a significant contribution to the
signal; ||modelj]|| is analogous to the modulus of a FFT coefficient.

For each mode V'tn[:, i] the energy is ¢; for which ||Y[:,0] — ¢ * Vitn[:, i]||2 is minimal.
Total power is defined as

1
2
T = <2c§> . (33)
;i
Like in determining o, using FFT, the frequency support of Spyp is defined as
Spmp = {w; : rez[i] < tol,|c;| > nT}, (34)

where rez[i] is residual corresponding to the i-th mode. These considerations can be
summarized in Algorithm 4.
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Algorithm 4 Estimating scales from data using Hankel DMD

Input:

time step: Ax,

time series f: f[n] = f(Axn),

length of time series vector: N,

tolerance for support: tol, 7, M: number of rows of Hankel matrix
: H = Hankel matrix made from f with M rows and N-M columns
:rez, A, Vin = DMD_RRR(H)

@ = zan(gh)

:T=0

:fori=0toN-1:

E[i] = [{Y[;, 0], Vin:,i])|

T =T+ E[i)?

:T=+T

: Spmp = ]

10: fori=0 to N-1:

11:  if rez[i] < tol and energy[i] > nT

12: Spmp-append(wli])

13: return oppp = 65%%

—_

4. Results

In this section, results of our methods are provided. We demonstrate our methods
on explicitly defined function, system of ODEs, and finally on vorticity data from a fluid
mechanics simulations. In all cases,

€ =0.01| max Yippip — Min Yergin (35)
{Ytrain} Wtrain }

and the error is calculated as in (24).

4.1. Explicitly Defined Functions

We model explicitly defined functions f(x) on [0,2]. The dataset consists of 2001
equidistant points in that interval, where every other point is used for the training set.
The error is calculated as the maximum absolute value of difference between prediction
and actual value (Equation (24)). Results are summarized in Table 1. The parameter € is
specified as above. Each method predicts a certain number of layers required to push the
model error close to €. As seen in the table, both the FFT and DMD approaches produce
models that give similar errors (near €). Although the DMD approach results in models
with less layers in general, it fails for polynomials and the exponential function. This is
because we normalize eigenvalues to the unit circle. An extension of this could use the
modulus |A| as well as w in M.

4.2. ODE’s

We will demonstrate the methods on modeling solutions of the Lorenz system of ODE

x(t) = —10x + 10y, (36)
y(t) =28x —y —xz, (37)
z(t) = xy — gz, (38)

with initial conditions x1(0) = 1.0, x3(t) = 1.0, x3(t) = 1.0, on [0, 10]. The system evolved
solved for 500 equidistant time steps which was used for training set. A solution consisting
of 2000 equidistant time steps is then used for test set. Each x(t), y(t), z(t) were regarded
as separate signals to model. All hyperparameters are determined as before. Results are
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summarized in Table 2. For both systems, we can see that error drops nearly to €, but the
DMD approach results in models with less layers.

Table 1. Results for explicitly defined functions, when using scales determined from FFT with decay 2 and € given by (35), for e* DMD
did not output frequencies different from 0 (entries denoted by * in the corresponding row).

Predicted # Predicted #

Function € of Layers Error (FFT) of Layers (113511'\1;1(;;)
(FFT) (DMD)
sin(277x) 0.02 1 0.02 1 0.02
sin(207tx) 0.0199 1 0.021 1 0.02
sin(20077x) 0.019 1 0.093 1 0.097
100 sin(2077x) 1.99 1 2 1 2.01
40 cos(27x) 0.8 1 0.8 1 0.8
100 cos(207tx) 2 1 2.03 1 2
sin(27tx?) 0.0199 5 0.02 1 0.02
x4+ x2 43 0.14 2 0.14 1 8
er 0.063 1 0.064 * *
x + sin(27tx*) 0.03 7 0.037 1 0.034
cos(271x) + sin(2077x) 0.0397 2 0.0404 2 0.042
cos(207tx) sin(157Tx) 0.02 2 0.021 2 0.022
cos(327x)3 0.0199 1 0.022 2 0.022
sin(137x) + sin(177tx)+ 0.076 1 0.077 1 0.077
sin(197tx) + sin(237x)
sin(507x) sin(2077x) cos(157x) 0.0187 3 0.02 2 0.02
sin(407tx) cos(107tx )+ 0.064 5 0.065 3 0.066
3sin(20x) sin(40x)
sin(2x) cos(32x) 0.0198 5 0.02 1 0.02

Table 2. Results of training HSVR with scales used from FFT and DMD on Lorenz system.

Predicted # Predicted #
Function € of Layers Error (FFT) of Layers Error (DMD)
(FFT) (DMD)
x(t) 0.314 6 0.325 2 0.324
y(t) 0.408 6 0.469 2 0.469
z(t) 0.468 5 0.485 2 0.494

4.3. Vorticity Data

This data was provided by Georgia Institute of Technology [24,25]. It contains infor-
mation about vorticity of a fluid field is some computational box. For each point in space,
we want to model vorticity at that point as time evolves. Vorticity in every other time step
is used for training and we test our models on rest of the time steps. We analyzed doubly
periodic and non periodic data.

4.3.1. Doubly Periodic Data

This data was generated assuming doubly periodic boundary conditions. The dataset
contains information about the vorticity on 128 x 128 equidistant space-grid on [0, 0.1016]2.
There are in total 1201 snapshots with time step dt = 0.03125. This results in a tensor of
dimensions 128 x 128 x 1201. For each fixed point in space, there is a signal with 1201 time

steps. A few examples of such signals are shown in Figure 6.
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Figure 6. Examples of vorticity at 3 different space-points for fluid simulations with doubly periodic boundary conditions.
For each of these signals, every other point in time is used for training the HSVR
model, which results in total of 128 x 128 models. Results are summarized in Table 3.
For each model, the error is calculated as in (24) with i = L, where L is number of layers.
Since € is given by (35), i.e., 1% of the range of the training data, the ratio error/e gives
a measure of error in percentages of range of signal. A ratio of 2 would imply that the
maximum error of the model over the test set was only 2% of the range of the test data; i.e.,
error .
2= <= error = 2€ = 0.02( max Yygipy — MiN Yepgin |- (39)
€ {Yerain} {Yirain}
Histograms of these ratios for both FFT and DMD are shown in Figure 7. Most models
produced on error close the € threshold (a perfect match would give a ratio of 1).
Table 3. Results after training HSVR on doubly periodic vorticity data.
Predicted # Predicted #
€ of Layers Error (FFT) of Layers Error (DMD)
(FFT) (DMD)
min 0.0199 6 0.038 1 0.0399
mean 0.0354 8 0.082 3 0.148
max 0.0488 9 0.284 5 2.463
Errors in percentage of range of signal Errors in percentage of range of signal
after training with scales determined by FFT after training with scales determined by KMD
10000 14000
12000
BOOO
10000
B E
3 6000 S o000
000 6000
4000
2000
2000
0 ; ; . : . 0 ; : ; . . .
2 4 6 8 10 0 10 Pl n 40 50 &0
error € error €

(a) Scales determined by FFT

(b) Scales determined by DMD

Figure 7. Histograms of error /e for models trained on vorticity data with doubly periodic boundary conditions. error is the

model error given by (24) (with i = L) and € is given by (35). There were 128% = 16,384 total models trained. The count on

the vertical axis is the number of models that fell into the corresponding bin.
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4.3.2. Non Periodic Data

The data contains information about vorticity on 359 x 279 equidistant space-grid on
with step dx = dy = 0.05. No assumption of periodicity of boundary condition was made.
There are in total 1000 snapshots with time step d¢t = 1 ms. This results in tensor 359 x
279 x 1000. Similar to the dataset with periodic boundary conditions, the HSVR model is
trained for each fixed point in space, which results in 359 x 279 models. The error’s and €’s
are calculated as before. A few examples of such signals are in Figure 8. Results are summa-
rized in Table 4 and a histogram of ratios error/e for FFT and DMD are shown in Figure 9.
For both doubly periodic and non periodic data, we can see that a large majority of the mod-
els have a ratio between 1 and 2 which means the maximum error of a majority models is
error < 2e = 0.02(max (Yirain} Ytrain — min Wirain} Ytrain) Which is less than 2% of the range of
the training data. For DMD approach, the majority of models have ratios less 10 which
corresponds to a maximum error of error < 10e = 0.01(max (Yirain} Yirain — min (Yirain} Ytrain ),
which is less than 10% of the range of the training data. From Tables 3 and 4 we can see
that DMD estimates less layers, but with bigger error after training.

vorticity
~
=

o 200 400 600 800 1000 o 200 400 600 800 1000 o 200 400 600 800 1000
time of simulation time of simulation time of simulation

Figure 8. Examples of vorticity in 3 space-points for non periodic data.

Table 4. Results after training HSVR on non periodic vorticity data.

Predicted # Predicted #
€ of Layers Error (FFT) of Layers Error (DMD)
(FFT) (DMD)
min 0.019 5 0.0006 2 0.0006
mean 0.035 7 0.0975 3 0.197
max 0.048 9 0.667 7 6.137
Errors in percentage of range of signal Errors in percentage of range of signal
after training with scales determined by FFT after training with scales determined by KMD
70000
60000 80000
50000
E & 60000
§ 40000 §
30000 40000
20000
20000
10000
0 : . : ; 01 : . . .
2 4 6 8 0 20 40 60 80
error € error €
(a) Scales determined by FFT (b) Scales determined by DMD

Figure 9. Histograms of error/e for models trained on vorticity data with non-periodic boundary conditions. error is
the model error given by (24) (with i = L) and € is given by (35). There were 359 x 279 = 100,161 total models trained.
The count on the vertical axis is the number of models that fell into the corresponding bin.
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5. Discussion

Both approaches (FFT and DMD) to estimating the number of layers required by HSVR
to push the modeling error close to the € threshold show promise and allow computation
of the HSVR depth a priori. While the DMD approach often predicted a smaller number of
layers, usually with comparable error, our choice of unit circle normalization prevented it
from performing well on functions without oscillation. Furthermore, the DMD algorithm
itself comes from the dynamical systems community and requires that the domain of
the signal (the x variables) be strictly ordered. For the explicitly defined functions we
considered, there was a strict spatial ordering since the domains of the functions were
intervals on the real line. For the vorticity data, the time signals at each spatial point were
to be modeled and therefore the data points could be strictly ordered in time. For functions
whose domain is multi-dimensional, say R2, there is no strict ordering and the DMD
approach, as formulated here, would break down. The method based on the Fourier
transform seems to have more promise in analyzing multivariable, multiscale signals, as it
can compute multidimensional wave vectors.

A recent paper [26] also deals with the number of layers of a model and “scales”.
However, in the mentioned paper, the authors are concerned with how far a signal or
gradients will propagate through a network before dying. The scales they compute control
how many layers the gradient or signal can propagate before they die. If the network is too
deep the gradients go to zero before fully backpropagating through the network, resulting
in an untrainable network. The result they compute is a fundamental characteristic of
the network and is independent of the dataset. It does not matter what the input data is:
constant, single scale, multiscale, etc, the scale parameters they compute are not affected.

Conversely, we are most focused on multiscale signals and tailoring the architecture
to best represent such signals. The scales we compute are inherent properties of the dataset,
not inherent properties of the network model. The length of the network adapts to the
scales contained in the dataset.

It would be interesting in the future to combine the two methodologies, with the
methods in [26] giving bounds on the number of layers and then adapting our techniques
to analyze the inherent scales in the dataset. This could tell us whether a simple, fully,
connected, feedforward network could adequately represent the signal or if something
more complex was needed.

6. Conclusions

In this work we presented method for choosing hyperparameters for HSVR from time-
series data only. We described two approaches, using FFT or DMD. We saw that estimating
hyperaparameters with FFT results in a model with more layers and smaller error, whereas
the DMD approach gave models that had less layers (and thus more efficient models).
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