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Abstract: The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-
CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This
disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is
considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model
systems are available to understand the mechanism of action of this virus, which can be used for
testing of any drug efficacy against virus infectivity. COVID-19 induces tissue stem cell loss, resulting
inhibition of epithelial repair followed by inflammatory fibrotic consequences. Development of
clinically relevant models is important to examine the impact of the COVID-19 virus in tissue stem
cells among different organs. In this review, we discuss ex vivo experimental models available to
study the effect of COVID-19 on tissue stem cells.

Keywords: SARS-CoV-2; COVID-19; stem cells; organoid system

1. Introduction

Coronaviruses are a large group of viruses that can cause serious complications in
animals and humans. There are seven classes of coronaviruses that infect people, however,
three of these can cause serious, or lethal outcomes in humans. These include severe acute
respiratory syndrome or SARS coronavirus (SARS-CoV); Middle East respiratory syndrome
(MERS) (MERS-CoV); and, most recently, the new coronavirus severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2), which has resulted in a pandemic that has
infected more than 87 million people and approaching 1.9 million deaths worldwide as of
5 January 2021 (https://www.worldometers.info/coronavirus/), a statistic that is growing
daily. Coronaviruses are well known as the common cause of upper respiratory symptoms
such as a dry cough, sinusitis, loss of taste and smell, and labored breathing; however, for
SARS-CoV-2, a variety of other new and unusual symptoms have also been recognized in
both humans [1] and in animal models. This new virus strain emerged in 2019 and, hence,
as mentioned, is referred to as COVID-19.

COVID-19 significantly depletes tissue resident stem cell population [2], resulting in
impaired tissue regeneration and repair. Moreover, loss of stem progenitor cells triggers
the inflammatory and later fibrotic consequences [3–6]. Therefore, mitigation of tissue stem
cell loss should be an effective therapeutic strategy against COVID-19 pathogenesis. In this
review, we discuss ex vivo experimental models available to study the effect of COVID-19
on tissue stem cells.

2. Experimental Model System for Understanding COVID-19 Pathogenesis

The bulk of our knowledge about the pathogenesis of COVID-19 in humans is based on
available clinical trial data and case studies since the outbreak, as well as some preclinical
and cell-based testing. The preclinical models available include non-human primates [7]
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and murine models that express human ACE2 in genetically modified mice such as the K18-
hACE2 mice [8], among other tools [9,10], as well as genetically modified virus to recognize
murine ACEII [11]. However, there are very limited reports available on a suitable ex vivo
model system that can be used to understand the mechanism of action of the virus and
can also be used for testing of any drug efficacy against virus infectivity. Tissue-specific
stem cell-derived organoid systems could be a better model to understand the effect of
COVID-19 on stem cells in the human body (Figure 1).

Cells 2021, 10, x FOR PEER REVIEW 2 of 14 
 

 

2. Experimental Model System for Understanding COVID-19 Pathogenesis 
The bulk of our knowledge about the pathogenesis of COVID-19 in humans is based 

on available clinical trial data and case studies since the outbreak, as well as some preclin-
ical and cell-based testing. The preclinical models available include non-human primates 
[7] and murine models that express human ACE2 in genetically modified mice such as the 
K18-hACE2 mice [8], among other tools [9,10], as well as genetically modified virus to 
recognize murine ACEII [11]. However, there are very limited reports available on a suit-
able ex vivo model system that can be used to understand the mechanism of action of the 
virus and can also be used for testing of any drug efficacy against virus infectivity. Tissue-
specific stem cell-derived organoid systems could be a better model to understand the 
effect of COVID-19 on stem cells in the human body (Figure 1). 

 
Figure 1. Organoids containing tissue stem cells are an ex vivo model to study severe acute respir-
atory syndrome coronavirus type 2 (SARS-CoV-2) infection. (A) Schematic diagram illustrating the 
involvement of SARS-CoV-2-mediated stem cell loss. (B) Different organ-specific stem cell-derived 
organoid models to study SARS-CoV-2 infection. 

3. Tissue-Specific Stem Cells and COVID Pathogenesis 
There are several areas to study that are devoted to the antiviral approach by inhib-

iting replication (Remdesivir,), building immunity (vaccines), and their impact on the re-
mediation of illness caused by the virus such as acute respiratory distress syndrome 
(ARDS). Antiviral therapy with Remdesivir has shown promise for reducing recovery 
time but is not be sufficient to inhibit lethal consequences from infection [12]. Antibody 

Figure 1. Organoids containing tissue stem cells are an ex vivo model to study severe acute respiratory syndrome
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3. Tissue-Specific Stem Cells and COVID Pathogenesis

There are several areas to study that are devoted to the antiviral approach by inhibiting
replication (Remdesivir,), building immunity (vaccines), and their impact on the remedi-
ation of illness caused by the virus such as acute respiratory distress syndrome (ARDS).
Antiviral therapy with Remdesivir has shown promise for reducing recovery time but is
not be sufficient to inhibit lethal consequences from infection [12]. Antibody therapies also
look highly encouraging if used early in the infection cycle [13], as do vaccines to reduce
the spread and severity of the pandemic. Nevertheless, despite these advances, there is
legitimate concern that COVID-19 may be present at some level in the population, albeit at
a reduced rate, for a long period of time, and for those who contract the virus, long-term or
permanent tissue damage is a real possibility in a percentage of cases worldwide.
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Previous reports have indicated that in advanced COVID-19 cases, patients possess
structural damage in lung epithelium [14,15] and COVID-19 significantly depletes the
resident stem cell population [16]. The major pathological outcome due to COVID-19 is the
damage to epithelial cells. It is important to note that this is not unique to COVID-19 as it
has long been reported that SARS-CoV and H1N1 both propagate within type II cells where
a large number of viral particles are released, and the cells undergo apoptosis [17]. These
type II cells are presumed to function as progenitor cells that repair the injured alveolar
epithelium [18–20]. Moreover, damaged epithelial cells also become a major source of
inflammatory cytokines that not only can contribute to further damage to the tissue but
have systemic and lethal effects as well [21]. Restitution and activation of pulmonary
epithelial progenitor cells is critical to inhibit acute inflammation and suppression of pneu-
monitis/fibrosis (often referred to as ground glass in radiographic images). Loss of these
progenitor cells by pathogenic or genotoxic stress impairs the regenerative process, result-
ing in a reduction in number of healthy epithelial cells, which eventually creates empty
space for proliferation and repopulation of newly recruited inflammatory cells [22–24].
Moreover, damaged lung epithelial cells release inflammatory paracrine signals to promote
recruitment of inflammatory cells. This is also well characterized in early studies with
chemical injury as a model to demonstrate that loss of pulmonary stem progenitor cells
triggers the inflammatory and later fibrotic consequences [3–6]. Considering the extensive
epithelial damage from COVID-19 virus infiltrate and the impact on lung stem/progenitor
populations, further research is warranted and needed to gain a more complete understand-
ing of the pathophysiology of COVID-19 infection. Mitigation of resident lung stem cells
may be a key approach to minimize lung damage along with reduction in inflammation
and fibrosis. It should also be considered that lungs from recovered COVID-19-infected
patients may not regain full structural and functional integrity in severe cases since the
repair or rebuilding capacity primarily depends on existing stem/progenitor populations.
Early reports indicate lung epithelial stem cells may express SARS-CoV-2 entry factors
higher than previously thought [25,26]. Lung contains functionally distinct candidate
stem/progenitor cells such as basal cells [27], club cells [28,29], bronchoalveolar stem cells
(BASCs) [30], and type II pneumocytes [31] involved in repair and regeneration of injured
lungs. In addition to type II pneumocytes, several studies have revealed that a subset of
murine and human Oct4+ pulmonary stem cells expressing ACE2 are the prime target of
SARS-CoV infection [32,33], which leads to damage and loss of these cells [33].

As mentioned before, virulent forms of influenza viruses can infect various cell popu-
lations in the murine lung, but also display a strong tropism to an epithelial progenitor pop-
ulation defined by the signature EpCamhighCD24lowintegrin (α6β4)highCD200+expression.
Three-dimensional organoid cultures derived from these epithelial stem/progenitor cells
(EpiSPC), and in vivo infection models including transgenic mice, have shown that their
enlargement, barrier regeneration, and outcome after virus-induced injury are highly de-
pendent on Fgfr2b signaling. Importantly, virus-infected epithelial progenitor populations
exhibited severely impaired renewal capacity due to virus-induced blockade of β-catenin-
dependent Fgfr2b signaling, as evidenced by a loss of alveolar tissue repair capacity after
intrapulmonary EpiSPC transplantation in vivo [34]. Wnt signaling is essential for lung
epithelial stem cells repair and regeneration. The Wnt signaling pathway was downreg-
ulated in both in vivo-infected alveolar epithelial cells and in vitro-infected human lung
epithelial A549 cells [35]. These results suggest that the influenza viruses may affect the
host lung repair by regulating Wnt/β-catenin signaling. β- and γ-catenin regulate the
innate cellular immune response to viruses by activating virus-dependent induction of
the IFNB1 and downstream genes. Virulent viruses can suppress β-catenin-dependent
transcription by misusing the RIG-I/NF-κB signaling cascade that is induced in the course
of infection by viral RNA [36], and we hypothesize that COVID-19 is similar to other
viruses in this regard [37]. Therefore, activation of Wnt/β-catenin signaling could be a
major therapeutic intervention in the context of viral infection [38] if implemented early in
the infectious lifecycle (Figure 2) where the immediate check on viral spread can happen
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before the adaptive immune response has time to develop several days after infection.
More specifically, type I interferons are a critical part of our innate immune defense as
they induce an array of proteins that interfere with virus replication in order to restrict and
limit viral spread from cell to cell [39] in that early window before the adaptive immune
response can even take effect. Viral suppression of this system may lead to unchecked
and rapid spread, reaching very high viral loads in the lung and tissues. This, in turn
would improve the chances of aerosolization and communication along with extensive
tissue damage as the adaptive immune system takes over. While interferons have been
used to treat COVID-19 with little success [40], biologically, its expression is timed as an
immediate and early response rather than very late advanced disease where clinical trials
have focused.
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Figure 2. Early inhibition of interferons by SARS-CoV-2 and other viruses serve to suppress the innate immune response,
resulting in rapid increases in cellular infection and spread before the adaptive immune response can develop. The depletion
of resident stem cells by more virulent forms of viruses impedes the regenerative capacity of the tissue, and in turn increases
the inflammatory context (A). Virulent forms of influenza suppress β-catenin nuclear localization (B) and downstream
expression of interferons. Means of mitigating suppression of interferon and the innate immune response in the early phase
of infection may reduce viral spread and preserve resident stem cells in the tissue of interest.

In COVID-positive patients, symptoms are also noted in multiple other organs, most
notably the gastrointestinal tract and the kidney. Organoid-based studies demonstrated
that SARS-CoV-2 could damage stem cells in these organs. However, the effects of SARS-
CoV-2 in different type of stem cells such as intestinal quiescent stem cell populations
vs. Lgr5+ active stem cell population is not known. Similarly, effect of SARS-CoV-2 on
pancreatic and liver stem cells are predicted but further details are yet to be revealed.

4. Human Organoid Systems

The development of clinically relevant models is a critical step to examine the effect
of the COVID-19 virus in specific organs. Ex vivo organoid systems have been used
extensively to study tissue homeostasis and repair. Moreover, studies related to stem cell
homeostasis and/or regeneration are primarily performed in ex vivo organoid systems as
stem cells are the building block for organoid survival [41].

The organoid cultures are genetically stable and grow indefinitely [42], in contrast to
primary cells or tissue explant models that only offer short-term culture capabilities. These
multicellular structures recapitulate many properties of the individual organs, including
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the heterogeneity of the cellular composition, appropriate physiology, and region-specific
features. Additionally, these human tissue-derived cultures allow individual genetic
variability, disease status, and other demographic factors including age, gender, and
ethnicity. Organoids have also been used to study pathogenesis of micro-organisms [43,44]
including viruses [45,46].

Organoid cultures can be derived from either human embryonic stem cells or induced
human pluripotent stem cells, or adult stem cells derived from human tissue. RNA-seq
analysis demonstrated that organoids exposed to SARS-CoV-2 demonstrated chemokine
response such as what is observed in patients. Here, we discuss the relevance of pulmonary,
intestinal, neuronal, and kidney organoid system to perform COVID-19 research.

5. Pulmonary Organoid in COVID-19 Research

Lung 3D organoids derived from both healthy and diseased lung cells such as
bronchial epithelial cells (HBEC), induced pluripotent stem cells (iPSCs), or embryonic
stem cells (ESCs) [47–49] have been used to determine lung biology, diseases, and treat-
ment response. This model has also been used to study virus pathogenesis and pulmonary
fibrotic lung disease [50]. Although attempts have been made for long-term expansion of
pseudostratified airway organoids [51], the presence of the inner lumen (facing inwards)
makes stimulation and collection of the sample more challenging. The air–liquid interface
(ALI) model has been considered as an alternative to this system (Figure 3). In ALI models,
iPSC cells or lung epithelial cells are enlarged to merge into an inaccessible filter [52], and
therefore the media can be removed from the apical side of the filter. This system allows
cells in contact with air and enables the cells to divide into a mature phenotype including
pseudo-stratified epithelium, consisting of functional basal, ciliated, and secretory cells.
Several reports confirm that structure, function, and genetic profiles of ALI lung model
are very similar to nasal or bronchoscopically obtained tracheal and bronchial brushings
from human airways [53,54]. The ALI model consists of both apical (upper) and basal
(lower) chambers suitable for any treatment and sample collection. The ALI model is
also suitable for determining epithelium integrity, mucociliary clearance, and cilia beat
frequency [55,56]. SARS-CoV-2-mediated epithelial cell proinflammatory response as well
as therapeutic response of Remdesivir has been studied in ALI culture. Therefore, ALI
cultures can be considered as the most appropriate ex vivo model to study COVID-19
pathobiology and robust screening of potential anti- SARS-CoV-2 candidate agents.

However, the absence of stroma and immune cells are one of the major limitations of
the organoid system in SARS-CoV-2 research. SARS-CoV-2 infections result in a complex
respiratory disease including epithelial damage and a dramatic inflammatory response.
The lung-on-a-chip model provides a small dynamic living and biological environment,
consisting of a 3D cell culture system divided by a dense membrane, consisting of channels
that allow continuous perfusion to mimic circulation in the body carrying major immune
cell types, as well as cleansing chambers that mimic breathing in human lungs [57]. Various
microsensors within the microchip enable real-time data collection, such as barrier function,
surfactant production, protein production, fluid pressure, and cell migration [58]. Organ-
on-a-chip models have thus been able to replicate in vivo-like environments and can allow
for the comparison of biological responses under normal and disease conditions [59]. A list
of observations using the lung organoids to study SARS-CoV-2 are presented in Table 1.
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6. Intestinal Organoid Models

Patients with COVID-19 experience gastrointestinal symptoms, such as diarrhea,
nausea, vomiting, and loss of appetite [60,61]. ACE2 and TMPRSS2 were co-expressed in
esophageal, upper epithelial, and gland cells and in absorptive enterocytes from the ileum
and colon [61], therefore playing key role in viral entry possibly explaining why diarrhea
is one of the early symptoms of COVID-19 infection.

Intestinal organoid models derived from both mouse and human tissue have been
used extensively to study viral pathogenesis. Several human intestinal viruses, including
rotavirus, norovirus, enterovirus, adenovirus, and coronavirus, have now been demon-
strated to infect human intestinal organoid cultures [62–65]. The human organoid system
can be developed from both adult tissue stem cells and induced pluripotent stem cells.
High levels of ACE2 expression and viral RNA have been detected in anal swabs, stool, and
sewers, suggesting susceptibility of intestinal epithelium for significant COVID-19 infection.
Studies [65,66] using human multipotent adult tissue stem cell-derived intestinal organoids
reported that the most common cell type of the intestinal epithelium, the enterocyte, is
readily infected, suggesting that the intestinal epithelial cells are one of the highest infec-
tion locations for SARS-CoV-2 virus. Upregulation of viral response genes were observed
in infected enterocytes, possibly through cytoplasmic sensing of the viral RNA genome
(Table 1) [67]. In addition, the presence of membrane-bound serine proteases TMPRSS2
and TMPRSS4 in intestinal epithelial cell cleaves the SARS-CoV-2 spike protein to facilitate
viral entry [68]. Intestinal organoid survival, much like intestinal crypt architecture, is also
a stem cell-driven process and primarily depends on Wnt/beta catenin signaling. Intestinal
tissue consists of quiescent stem cells and active stem cells. ACE2 expression level in these
two types of stem cells and their susceptibility to COVID-19 infection are important to
examine in terms of the development of a potential therapeutic target. Involvement of beta
catenin signaling in inhibition of viral propagation makes it more important to investigate
the role of Wnt/beta catenin signaling in intestinal stem cell response against COVID-19
infection.
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7. Neuronal Organoid Models

Emerging case reports have shown that patients infected with SARS-CoV-2 suffered
severe neurological symptoms including sudden and complete loss of the olfactory function,
stroke, seizure, encephalopathy, encephalitis, Guillain–Barré syndrome, and Miller Fisher
syndrome [69–73], along with pathognomonic symptoms of anosmia (loss of smell) and
ageusia (loss of taste). All of these indicate that SARS-CoV-2 could infect the central
nervous system (CNS) and is therefore neurotropic [74,75]. Postmortem brain MRI analysis
has identified the presence of hemorrhagic and encephalopathy syndromes, suggesting
that SARS-CoV-2 infection could cause neuronal stress and inflammation [76]. SARS-CoV-2
has been reported to infect nerve cells, for example, neurons in the medulla oblongata,
which is part of the brain stem that serves as the control center for the heart and the
lungs, with the damage potentially contributing to “acute respiratory failure of patients
with COVID-19” [77]. These studies have shown that SARS-CoV-2 can infect neurons and
cause neuronal death in an ACE2-dependent manner [77]. In brain cells derived from
human pluripotent stem cells, microglia and cortical neurons were not infected, however,
dopaminergic neurons were highly susceptible to SARS-CoV-2 infection [78]. In humans,
however, viral load in neuronal tissue appeared to be at a low enough level to evade
detection, even if there was encephalitis or CSF inflammation [79–82]. Thus, further work
needs to be done to establish neural cell targets in humans, but the organoid studies may be
an informative model to enhance our understanding. Human neuron progenitor-derived
spheroids or organoid cultures have been used as a model for several years now to study
neuro-degenerative diseases and for screening potential therapeutic effects. Organoids
derived from iPSCs exhibiting a wide diversity of cell types could serve as a suitable model
system to test the neurotoxic effects of SARS-CoV-2 [68,83–86]. Organoid-based data have
revealed that SARS-CoV-2 exposure is associated with altered distribution of Tau from
axons to soma, hyperphosphorylation, and apparent neuronal death. A human brain
organoid study showed clear evidence of infection with accompanying metabolic changes
in the infected and neighboring neurons, which can be prevented either by blocking ACE2
with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. It has
been observed that cells dying within the organoids are sometimes a neighbor to the
infected cells, suggesting a possible bystander effect of COVID-19 infection. Compared to
other neurotropic viruses, SARS-CoV-2-infected brain organoid demonstrates modulation
of pathways related to cell division, organelle fission, and metabolic processes. Therefore,
it is very clear that more studies are required to determine the neurotrophic effect of SARS-
CoV-2 where organoids will be one of the most robust ex-vivo models due to its relevance
to COVID-19 infection in the human nervous system.

The major limitation of these neuronal organoid models is the absence of vasculariza-
tion as in adult brain. Blood vessels are critical for gas exchange, nutrient supply, and waste
removal, and may possibly present physical differences to organoid cultures. In addition,
introduction of mesenchymal cells or iPSC-derived endothelial cells will be more pertinent
to develop neuro organoids mimicking in vivo cerebral system. The presence of myeloids
such as microglia will be also very critical to reproduce the cerebral micro-environment.
Therefore, further improvements in organoid model system are also needed to resemble
the diversity of cell types and facilitate connectivity between different regions of the brain.
An important finding using the neuronal organoids model are summarize in Table 1.

8. COVID-19 and Kidney Injury

Kidney disease has been found to be associated with a worse outcome from COVID-19
infections [87], and this is attributed to a variety of conditions such as hypovolemia, acute
respiratory distress syndrome, cytokine storm, and direct viral invasion [88]. A detailed
study in the United Kingdom [89] looking at data from ICUs between 10 March and 31 July
2020 found that of the 372 patients studied, 216 (58%) had kidney impairment, 22% of
which was pre-existing chronic kidney disease and 78% of which developed during their
hospitalization from COVID-19. Importantly, it was found that patients with non-detectable
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kidney damage (21%) died, and those patients with kidney disease developed during their
hospitalization (48%) died, indicating the kidney is a prominent target of COVID-19.
Although still under investigation, it is important to point out the fact that according to
the Human Protein Atlas [90] (http://www.proteinatlas.org), for both entry factors, ACE2
and TMPRSS2, kidney represents one of the highest expression levels of any organ in the
body. Because the virus needs these entry factors to infect cells, it is conceivable that viral
invasion may be a significant contributor to kidney damage. These same receptors are on
cells of the lungs and heart where COVID-19 has been shown to cause tissue damage. In
kidney, tubule epithelial cells and podocytes are enriched in ACE2 and TMPRSS2 [91,92]. It
has been reported that pro-inflammatory and profibrotic processes in the kidney following
COVID-19 infection are primarily due to internalization of ACE2, resulting in imbalance in
the renin–angiotensin–aldosterone system, with increased Ang II signaling [93,94]. Electron
microscopy examination of autopsy samples from 26 patients demonstrated clusters of viral
particles in the tubular epithelium and podocytes, suggesting SARS-CoV-2 exerts tropism
in the kidney. In vitro studies using kidney organoids demonstrated that SARS-CoV-2
infection can be minimized by human recombinant soluble ACE2 [95].

From this study we can summarize the different organoid models used in SARS-CoV-2
study (Table 1).

Table 1. Summary of organoid models in SARS-CoV-2 study.

Organoid Model Observation/Findings References

Human adult tissue stem cell-derived
intestinal organoids

SARS-CoV-2 infects human gut enterocytes and replicates to
increase viral pool in intestine.

Mature enterocytes are susceptible to SARS-CoV-2 infection as
they are enriched in angiotensin-converting enzyme 2 (ACE2)

viral receptor.
Membrane-bound serine proteases, TMPRSS2 and TMPRSS4,

expressed in enterocytes and promote virus entry.

[65–67]

Lung organoid

Determinations of SARS COVID-2 pathology.
Lung stem cell response to SARS-CoV-2.

Androgen signaling regulates ACE2 expression in alveolar
epithelium.

Downregulation of lipid metabolism in lung epithelium with
SARS-COVID-2 infection.

Screening of SARS-COVID-2 inhibitors. Three entry inhibitors
were identified: imatinib, mycophenolic acid, and quinacrine

dihydrochloride.

[96–102]

Neuronal organoid models

Analysis of ACE2 and TMPRSS2 expression in brain organoid.
Neurotoxic effect of SARS-CoV-2.

SARS-CoV-2 damages the choroid plexus epithelium. Resulting
loss of barrier and allowing entry of pathogens, immune cells,

and cytokines into cerebrospinal fluid and the brain.
Sofosbuvir, an FDA-approved antiviral drug, protects brain

organoid from SARS-CoV-2.

[103–106]

Kidney organoid

SARS-CoV-2-associated acute kidney injury.
Combination therapy using Remdesivir with recombinant

soluble ACE2 (high/low dose) reduces virus entry and
replication.

Human recombinant soluble ACE2 inhibits SARS-CoV-2
infection and mitigates propagation.

[107–109]

9. Conclusions

The inflammatory response among other long-term consequences are a major topic
of research on COVID-19. However, the involvement of tissue stem cells in COVID-19
pathogenesis is very important to understand, and further research is needed to determine
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their role. This review highlights the current models available for SARS-CoV-2 effects as
it relates to stem cells. While SARS-CoV-2 infection can result in a complex multi-organ
syndrome, stem cell-based models from multiple impacted organs are essential and well
suited for the purpose, as ex vivo organoid models are widely accepted for stem cell
research in general. SARS-CoV-2 infection, however, involves multiple cell types and their
interactions with stem cells. Therefore, more complex multicellular organoids or organ-on-
a-chip technologies may be more advantageous in examining SARS-CoV-2 infection and
stem cell response.
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