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Advances in understanding the role of the microbiome in physical and mental health are

at the forefront of medical research and hold potential to have a direct impact on precision

medicine approaches. In the past 7 years, we have studied the role of microbiota-brain

communication on behavior in mouse models using germ-free mice, mice exposed to

antibiotics, and healthy specific pathogen free mice. Through our work and that of others,

we have seen an amazing increase in our knowledge of how bacteria signal to the brain

and the implications this has for psychiatry. Gut microbiota composition and function are

influenced both by genetics, age, sex, diet, life experiences, and many other factors of

psychiatric and bodily disorders and thusmay act as potential biomarkers of the gut-brain

axis that could be used in psychiatry and co-morbid conditions. There is a particular

need in major depressive disorder and other mental illness to identify biomarkers

that can stratify patients into more homogeneous groups to provide better treatment

and for development of new therapeutic approaches. Peripheral outcome measures

of host-microbe bidirectional communication have significant translational value as

biomarkers. Enabling stratification of clinical populations, based on individual biological

differences, to predict treatment response to pharmacological and non-pharmacological

interventions. Here we consider the links between co-morbid metabolic syndrome and

depression, focusing on biomarkers including leptin and ghrelin in combination with

assessing gut microbiota composition, as a potential tool to help identify individual

differences in depressed population.
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Major depressive disorder (MDD) is a debilitating disorder that affects nearly 15% of the general
population and accounts for the greatest disability burden of any disease (1). One of the major
challenges in treating MDD is the lack of understanding of the underlying etiology of the disorder.
The clinical heterogeneity observed inMDDmakes it difficult to select the best treatment approach
for an individual (2). Additionally, upwards of 60% of MDD patients will experience at least some
form of treatment resistance over the course of the disease (3), with only one third of MDD
suffers achieving remission even with optimal pharmacological and patient treatment (4). The
onset and progression of depression is thought to result from a complex combination of genetic,
environmental and neurochemical factors that differ considerably across patient populations
such that the search for robust biomarkers to both characterize depression subtypes and predict
treatment response is at the forefront of clinical psychiatry (5, 6).
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Recent work over the last two decades has revealed the
bidirectional communication between the central nervous
system, enteric nervous system and the gastrointestinal tract,
often referred to as the gut brain axis (7–12). Emerging evidence
now supports the role of the gut microbiota in influencing
behavior with specific links to MDD. The diverse population
of the gut microbiota has been shown to be heterogeneous
between individuals (13, 14), with dominate factors, such as diet
(15), environment and host genetics (16–18) shaping the overall
composition and function. Heterogeneity of depression has
limited the success of efforts aimed at identifying clinical markers
of treatment response and clinical subtypes. Treatment and
diagnosis of MDD is also complicated by increasingly common
comorbidities, resulting in another layer of heterogeneity in
the MDD population. Therefore, the identification of robust
biomarkers to both identify individual differences within the
MDD population, as well as stratify patients into more
homogenous subgroups is of critical importance. This approach
is utilized by the Canadian Biomarker Integration Network in
Depression (www.canbind.ca) that aims to shorten the time that
it takes to match patients with the best treatment. By combining
multiple molecular markers that can be measured in blood
with clinical, imaging, or EEG researchers can identify and link
biomarkers to clinical presentation and help predict treatment
response (5).

Metabolic syndrome (MetS) is a well-documented in MDD
patients, with the risk of MetS in depressed patient at 1.5 times
higher than in the non-depressed population (19). Moreover,
the prevalence of MetS is 58% higher in psychiatric patients
than in the general population (20), with prominent anorexigenic
and orexigenic hormones leptin and ghrelin identified to be
associated with psychiatric disorders including schizophrenia,
bipolar disorder and major depression (21–23). A role for the
microbiome in metabolic syndrome has received attention, with
studies demonstrating a role for gut microbiota in features of
MetS, such as obesity, diabetes, dyslipidemia and hypertension
(24, 25). Here we consider the literature related to leptin
and ghrelin in MDD and how these molecular markers in
combination with gut microbiota have potential to identify
individual differences in patients and provide measures of the gut
brain axis in MDD.

MICROBIOTA-BRAIN INTERACTIONS ARE
IMPORTANT IN DEPRESSION

Research focused on the gut brain axis has gained momentum
in recent years and garnered attention from both the scientific
community, the public, and the media, with particular interest
in understanding how microbes may influence mood.
Accumulating evidence from preclinical work in rodents
supports a connection between stress, microbiota, and stress-
related behaviors (26–36), however, only a handful of studies
have examined gut bacteria in individuals with major depressive
disorder (7–9, 37–39). Using 16S rRNA gene sequencing, the
composition of fecal microbiota in depressed patients was shown
to be different from control samples (Table 1). The specific

taxa differences observed in these studies varied, in part related
to differences in sample size and analytical methods, but also
related to the heterogeneity in the clinical populations recruited
including age, BMI, smoking status, medication, clinical
features, and severity of disease (8, 9, 37, 38). Inter-individual
differences in microbiota composition in healthy individuals is
∼90% (13, 14). Understanding how individual differences in
microbiota influences individual differences in health and disease
including MDD and other psychiatric disorders is needed.

The compositional data gained from utilizing 16S rRNA gene
sequencing in the MDD population represents an accessible
biomarker, that provides both compositional data and, with
recent advances in bioinformatics, can contribute functional
information (40). The potential therapeutic benefits of treatments
that target the microbiome, including probiotic and prebiotic
administration, have begun to gain creditability for the treatment
of psychiatric disorders (41) and the term psychobiotics is
commonly used to classify products, such as probiotics and
prebiotics, that when given in adequate amounts produce
positive psychological effects (42, 43). Several studies show a
benefit of probiotic consumption in healthy individuals including
improvedmood (44), a beneficial effect on anxiety and depressive
measures as well as reduced stress hormone levels (45). Less
work has been conducted in MDD clinical populations (46), and
work to date has not utilized gut-brain biomarkers to identify
subgroups within MDD. Metabolism and metabolic markers are
of interest in the microbiome field. Here we selected two well-
known metabolic markers that have been well-studied in MDD
populations and consider their potential as biomarkers in MDD.

LEPTIN AS A POTENTIAL BIOMARKER OF
GUT-BRAIN INTERACTIONS IN MDD

Leptin is an adipocyte derived hormone, with a known role
in regulating fat mass storage and energy homeostasis. Leptin
circulates as a 16 kDa protein, where it crosses the blood brain
barrier (BBB) and interacts with multiple regions of the brain
including the hypothalamus and hippocampus (47, 48). Over the
last decade there has been increasing evidence of leptin’s role
in regulating mood (23). Work in animal models has revealed
a complex role of circulating leptin along with leptin’s receptor
(lepR) expression levels throughout the brain. Deletion of the
lepR in the hippocampus of rats results in depressive behavior
(49), as well as inhibits the behavioral effect of serotonin reuptake
inhibitor fluoxetine (50). Animal models of chronic stress have
been found to reduce circulating leptin, as well as reliably produce
depressive behavior. Systematic injection of leptin has been found
to have a dose dependent reduction in depressive behaviors in
chronically stress mice (51, 52). A study aimed at exploring
the relationship between obesity and depression found that, a
combination of diet induced obesity and chronic unpredictable
mild stress (CUMS) resulted in increased leptin levels but a
decrease in LepR expression, along with depressive behaviors
(53). The disparity in leptin serum level and receptor expression
may be more representative of what occurs in an obese human
andmay be contributing to the comorbidity of obesity andMDD.
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TABLE 1 | Bacterial taxa differences at the family and genus level observed in

individuals with major depressive disorder.

References Family Genus

Differences in relative abundance

Naseribafrouei et al.

(38)

Lacnopiraceae (down) Alistipes (up)

Oscillibacter (up)

Jiang et al. (37) Acidaminoccocaceae (up) Alistipes (up)

Mothur metastats Enterobacteriaceae (up) Blautia (up)

Fusobacteriaceae (up) Clostridibum XIX (up)

Porphyromonadaceae (up) Lachnospiacea (up)

Rikenellaceae (up) Megamonas (up)

Bacteroidaceae (down) Parabacteroides (up)

Erysipelotrichaceae (down) Parasutterella (up)

Lacnopiraceae (down) Phascolarctobacterium

(up)

Prevotellaceae (down) Oscillibacter (up)

Ruminococcaceae (down) Roseburia (up)

Veillonellaceae (down) Bacteroides (down)

Dialister (down)

Faecalibacterium (down)

Prevotella (down)

Ruminococcus (down)

Jiang et al. (37) Polphyromonadaceae (up) Alistipes (up)

LefSe LDA Eneterobacteriaceae (up) Parabacteroides (up)

Alpha leve = 0.05 Rikenellaceae (up) Butyricimonas (up)

Effect size

threshold = 2

Erysipelotrichaceae (up) Flavonifractor (up)

Peptostreptococcaceae

(down)

Haemophilus (down)

Pasterueliaceae (down) Dialister (down)

Ruminococcaceae (down) Faecalibacterium (down)

Escherichia shigella

(down)

Ruminococcus (down)

Kelly et al. (8) Prevoellaceae (down) Prevotella (down)

Mann-Whitney U test Thermoanaerobacteriaceae

(up)

Dialister (down)

FDR adjusted 10% Eggerthella (up)

Holdemania (up)

Gelria (up)

Turicibacter (up)

Paraprevotella (up)

Anaerofilum (up)

Lin et al. (9)

Wilcoxon’s sign rank

test

Prevotella

Steptococcus

Clostridibum XIX

Zheng et al. (39) Actinomycineae (up) Parvimonas (up)

Random forest

classifier

Coriobacterineae (up) Anerostipes (up)

Lactobacillaceae (up) Blautia (up)

Streptococcaceae (up) Dorea (up)

Clostridales incertae sedis

XI (up)

Lachnospiraceae incertae

sedis (up)

(Continued)

TABLE 1 | Continued

References Family Genus

Eubacteriaceae (up) Clostridium IV (up)

Lachnospiraceae (up) Alistipes (down)

Ruminococcaceae (up) Coproccus (down)

Erysipelotrichaceae in

certae sedis (up)

Clostridium XIVa (down)

Bacteroidaceae (down) Phascolarctobacterium

(down)

Rikenellaceae (down) Megamonas (down)

Lachnospiraceae (down) Lachnospiraceae incertae

sedis (down)

Acidaminococcaceae

(down)

Roseburia (down)

Vellonellaceae (down) Faecalibacterium (down)

Sutterellaceae (down)

Human studies examining leptin levels in MDD have been
mixed, some finding elevated leptin in MDD (54, 55) while
others finding decreased levels (56, 57). This may be due to the
varying role of leptin in lean verse obese conditions but also
represents how we expect a biomarker of individual differences
to present in a clinical population. Under lean conditions leptin
acts as an anti-obesity hormone, signaling through activation of
leptin receptors at the hypothalamus to reduce feeding behavior
(58). Obesity is characterized by an increase in circulating leptin
and a decrease in leptin receptor expression, leading to leptin
resistance and disrupted leptin signaling (59). Concurrently,
alterations to appetite, as well as weight changes are known
clinical features of MDD (2). Interestingly, two meta-analyses
have found a significant association of elevated leptin with
depression only when controlling for BMI (60, 61). There
is also evidence to support the association between atypical
features of depression, such as increase appetite and hyposomnia
with elevated leptin levels (62, 63). A recent study aimed at
identifying subgroups of depression, found that grouping un-
medicated patients by increases or decreases in appetite revealed
dramatic differences in metabolic signaling, immune signaling
and functional brain activity differences (64). Leptin levels
were significantly increased in MDD patients with increased
appetite, compared to healthy controls or when compared
to MDD individuals with decreased appetite, an observation
that was not related to BMI (64). The increased appetite
subgroup also had alteration to proinflammatory markers and
decreases in orexigenic gut hormone ghrelin, suggesting that
biological difference may contribute to differences in disease
symptomology. Based on the work to date, leptin may be a useful
biomarker in a particular subset of MDD patients and may aid in
identifying individual differences.

Leptin levels are related to gut microbiota. The secretion
of leptin by adipocytes is regulated by microbial-derived
metabolites, specifically short-chain fatty acids (SCFA) that signal
through GRP41/42 receptors (65). Studies have shown that
the gut microbiota can influence leptin levels independent of
food intake (66), and that prebiotic treatment can improve
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leptin sensitivity (67). Antibiotic use, which has been found
as a risk factor for the development of depression has
also been shown to reduce leptin levels in rodents (68).
In line with the predicted relationship between bacterial
populations and leptin levels, several studies have found
that certain bacterial taxa correlate with circulating leptin
levels. A study by Queipo-Ortuño et al. found that bacteria
genera Lactobacillus and Bifidobacterium positively correlate
with serum leptin levels, whereas Clostridium, Bacteroides, and
Prevotella were negatively correlated. In a different study, obese
and overweight pregnant women were found to have leptin
levels that positively correlated with the abundance of the
families Lachnospiraceae and Ruminococcaceae, highlighting
the association between leptin levels and energy homeostasis
(69). The impact of probiotic treatment on leptin levels
within the context of depression has recently been evaluated
(62). In mice, administration of Pseudocatenulatum reduced
depressive behavior and improved leptin serum levels and
receptor expression in the hippocampus and intestine of mice
(59). Considering circulating leptin as a link to both MDD,
metabolic disorders and the gut microbiota may advance its
use as a biomarker to identify individual differences in MDD
patients.

GHRELIN AS A POTENTIAL BIOMARKER
OF GUT-BRAIN INTERACTIONS IN MDD

Ghrelin is a gut peptide hormone that is produced by cholinergic
cells in the gastrointestinal tract found predominately in the
stomach (70). Acylated ghrelin circulates throughout the body
and crosses the BBB, where it interacts with acylated ghrelin
receptors (GHSR1), expressed by the hypothalamus (71). GHSR1
is also expressed in the dentate gyrus of the hippocampus, CA2
and CA3 regions, substratum nigria and ventral tegmental area
(72). Due to the wide spread expression of GHSR1, ghrelin has
been shown to play a role, in energy homeostasis, eating behavior,
sleeping behavior (73), cognition, reward mechanisms (74), and
mood (75), all of which can be altered in MDD. As with leptin,
a body of work now supports the role of ghrelin in regulating
mood, with close links to depression (73, 76). Ghrelin has a role
in response to acute stress in both animals and humans, with
acute stress resulting in elevated ghrelin levels and activation
of the hypothalamus-pituitary axis (HPA) (77, 78). Preclinical
work has shown that ghrelin inhibited the release of serotonin
(79), as well as increased serotonin turnover (80), providing
evidence of it potential role in serotonin imbalance observed in
MDD. Animal studies have found behavioral effects following
cerebral injection of ghrelin including decreased anxiety and
depressive behaviors (81). It is suggested that ghrelin acts as a
survival mechanism when animals are exposed to acute stress,
to induce feeding behavior. In support of this suggestion, a
study in 2012 showed the elevated ghrelin after acute stress
attenuated anxiety-like behaviors, whereas prolonged stress
led to chronic increased ghrelin levels, dysregulation of HPA
axis and serotonin signaling as well as increased depressive
behaviors (78).

Attempts to associate ghrelin levels in humans with MDD
has also shown mixed results, with older studies indicating
a decrease in ghrelin levels (82) while newer studies are
finding an elevation of ghrelin associated with MDD (83–
85). Ghrelin has been predicted to alter a number of genes
involved in depression with a ghrelin polymorphism found
to be associated with the development of depression (86).
Three previous studies have shown that ghrelin may act as a
measure of treatment response, finding elevated ghrelin levels
in MDD non-responders, and a decrease of serum ghrelin
levels associated with response to treatment (85, 87, 88). Serum
ghrelin has been recently shown to act as a persistent biomarker
for chronic stress exposure in both rodents and humans (89)
with exposure to chronic stressors resulting in elevated acyl-
ghrelin levels for at least 130 days in rats and 4.5 years in
adolescent humans. Indicating that those with elevated ghrelin
and MDD, may have a chronic stressor as an underlying
mechanism of disease progression. Exposure to both chronic
and acute stress results in elevated circulating cortisol levels.
The same study identified subgroups of MDD based on appetite
and found elevated ghrelin and cortisol levels in MDD patients
with decreased appetite (64). This finding indicates that in the
depressed population elevated ghrelin may have roles outside
of increasing eating behavior and may interact to influence the
HPA axis resulting in elevated stress response. Furthermore,
work by Algul et al. found both acylated and deacylated serum
ghrelin level were elevated in MDD patients and increases
in ghrelin concentration significantly correlated with disease
severity (84).

Ghrelin is primarily produced in the gut, with previous
work establishing the role of the vagus nerve in mediating the
communication of the peptide to the brain (90). Due to the
proximity of the gut microbiota to ghrelin’s central location,
work has begun to explore the relationship between the gut
microbiota and ghrelin expression. Notably, germ-free mice have
lower levels of circulating ghrelin, with levels increasing beyond
conventional mice after a period of fasting (91). Additionally,
serum ghrelin levels significantly negatively correlate to genera
Bifidobacterium, Lactobacillus, and B. coccoides-Eubacterium
rectale and positively correlate with Bacteroides and Prevotella
in rodents (92). Treatment with prebiotics has been found
to alter ghrelin levels, with lean and obese mice exhibiting a
positive response in ghrelin following prebiotic treatment (93).
Metabolism of prebiotics by gut bacteria leads to increased SCFAs
and, ghrelin production has been found to be regulated by SCFA
signaling (94, 95). Activation of the fatty acid receptor 3 by
butyrate reduced serum ghrelin levels (94) however; a recent
study identified the role of bacteria-derived acetate in activating
the parasympathetic nervous system and increasing ghrelin
secretion (95). Further, gastric infusion of acetate dramatically
increases ghrelin concentrations in plasma, but the effects were
lost in vagotomised mice (95), indicating potential bidirectional
communication from the gut to the brain in the control
of ghrelin secretion from cholinergic cells. Due to ghrelin’s
increasingly recognize role in mediate mood and potential
biomarker status for MDD, along with its connection to the gut
microbiota, it makes an optimal biomarker to identify treatment
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response to prebiotic and probiotic treatment in the MDD
population.

IMPLICATION AND FUTURE DIRECTIONS

While much excitement has been recently focused on the
role of the gut microbiota in psychiatric disorders, there is
a need to gain a better understand clinical heterogeneity in
depressed individuals. Research on gut the brain axis has been
rapidly progressing, by examining the relationship between the
gut microbiota and metabolic states in healthy and depressed
individuals, a better understanding of how microbes influence
mood will be determine. As MDD commonly occurs with co-
morbidities, it is important to evaluate how related factors
contribute to disease development or progression. As the
relationship between metabolic syndrome and depression is
bilateral and suggested that the development of one often leads
to the other (96) exploring metabolic endocrine signaling in the
context of depression and gut microbiota will enable researchers
and clinicians to gain a broader understanding of the underlying
biological factors that may be contributing to MDD.

As neuroscientists, psychologists, and psychiatrists are
starting to appreciate the importance of gut microbiota to
mental health, there is a great opportunity to identify biomarkers
associated with the gut-brain axis and thereby provide a
better understanding of the aspects that may be modifiable
with proper intervention in individuals with mental illness.

By measuring: leptin and ghrelin levels, both within context
of sex and BMI, and in conjunction with gut microbiota
composition and MDD symptomology, researchers will be
able to stratify the clinical population in more homogenous
subgroups. The ability to identify a subgroup of the clinical
MDD population based on metabolic status and gut microbiota
composition would aid clinical trials to predict treatment
response and for development of therapies that target the
microbiome.
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