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Abstract: RGB-D cameras have been commercialized, and many applications using them have been
proposed. In this paper, we propose a robust registration method of multiple RGB-D cameras. We use
a human body tracking system provided by Azure Kinect SDK to estimate a coarse global registration
between cameras. As this coarse global registration has some error, we refine it using feature matching.
However, the matched feature pairs include mismatches, hindering good performance. Therefore,
we propose a registration refinement procedure that removes these mismatches and uses the global
registration. In an experiment, the ratio of inliers among the matched features is greater than 95% for
all tested feature matchers. Thus, we experimentally confirm that mismatches can be eliminated via
the proposed method even in difficult situations and that a more precise global registration of RGB-D
cameras can be obtained.

Keywords: RGB-D sensor; Azure Kinect; feature matching; computer vision; image processing;
calibration; signal processing

1. Introduction

Recently, RGB-D cameras such as Azure Kinect DK [1–3] and RealSense D400
series [4,5], have been commercialized. In addition, applications using RGB-D cameras
including object pose estimation, 3D reconstruction, and camera localization have been
actively investigated. Among RGB-D cameras, Azure Kinect DK [1–3] shows excellent
performance suitable for Kinect series. Azure Kinect DK [1–3] operates based on time
of flight, which is a method to calculate the depth between a camera and an object by
measuring the round-trip time of a light signal provided by a laser, such as LIDAR. It is
possible to obtain good depth information though Azure Kinect DK [1–3] and use it in
various applications.

However, the global registration between RGB-D cameras is still a challenging task.
The global registration is the type of pose estimation using cameras. As the distance or
the rotation between cameras is increased, the pose estimation becomes more difficult.
There are many reasons behind this problem. The main reason is mismatches within
matched pairs. In order to apply the global registration, feature points are generally
matched between cameras. However, there are many mismatches within matched pairs.
In order to remove these mismatches, post-processing, such as random sample consensus
(RANSAC) [6,7], is required. This type of post-processing shows lower performance when
the number of mismatches is high. In this paper, we propose a global registration method
using body tracking and refinement registration with geometrical information. The rest of
the paper is organized as follows. We describe the related works and the proposed method
in Sections 2 and 3, respectively, and experimental results and conclusions are presented in
Sections 4 and 5, respectively.
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2. Related Works

There are a large number of methods, which implement point cloud registration. The
previous methods usually use a global registration and registration refinement, which
is called a local registration. Go-ICP [8] is based on a branch-and-bound (BnB) scheme
that searches the entire 3D motion space SE(3). By exploiting the special structure of
SE(3) geometry, novel upper and lower bounds are derived for the registration error
function. Fast global registration [9] operates on candidate matches that cover the surfaces.
The objective is optimized to align the surfaces and disable false matches. It is more
than an order of magnitude faster than prior global registration algorithms and is much
more robust to noise. In this paper, we use human body tracking for global registration.
Human body tracking, also known as human pose estimation, is a method of detecting
and tracking human skeletons. It is applied to game and human action recognition, and
so on. OpenPose [10] uses part affinity fields (PAFs) to learn to associate body parts with
individuals in the image. The bottom-up system achieves high accuracy and real-time
performance, regardless of the number of people in an image. DensePose [11] establishes
dense correspondences between a surface-based representation of the human body and an
RGB image. There has been a method to detect 3D poses of closely interative humans from
multi-view RGB images [12]. The method provided by Azure Kinect DK [13] detects 3D
human skeleton from a depth image. It provides the 3d position and orientation of each
joint. Thus, it is possible to transform a camera coordinate system into each joint coordinate
system. Similarly, Garau et al. [14] proposed an unsupervised automatic framework for
calibration outside the camera. It uses an optimized 3D human mesh recovery from a
single image.

There are several techniques of camera extrinsic calibration in computer vision.
Su et al. [15] proposed a method to calibrate the RGB-D camera networks by using a
spherical calibration object. It shows that the approach outperforms other techniques
based on planar calibration objects. Kwon et al. [16] use a circular region detection for a
spherical calibration. It is used to reduce errors caused by incorrect sphere centers. Iterative
k-closest point algorithms [17] consist of two algorithms for calibrating RGB-D cameras.
The first algorithm refines the pose parameters to minimize the cost function. The second
algorithm regards the measured depth values as variables and minimizes the cost function
to obtain refined depth values. Methods based on RGB images usually operate based
on feature points. In general, feature detection algorithms detect feature points in RGB
images [18]. Feature points are usually detected at the prominent parts such as corners,
edges, and so on. The feature points detected though the feature detection procedures
are described in logically different ways based on the unique patterns represented by the
neighboring pixels. There are various methods of feature detection. The feature detector
of the scale-invariant feature transform (SIFT) [19] is based on the difference of Gaussians
(DoG) operator, which is an approximation of the Laplacian of Gaussians (LoG) filter. Fea-
ture points are detected by searching local maxima with DoG at various scales of images.
Additionally, it uses Taylor series expansion of scale-space to obtain more precise locations
of extrema, and if the intensity at an extremum is lower than a threshold value, it is rejected.
Therein, a 2× 2 Hessian matrix is used to compute the principal curvature. A STAR feature
detector is derived from a center surround extrema (CenSurE) feature detector [20]. It
uses an approximation of the LoG filter. The circular shape of the mask is replaced by an
approximation that preserves rotation invariance and uses integral images for efficient
computation. It operates scale-space by applying masks of different size. Recently, as
deep learning has been actively studied, feature detection methods based on deep learning
have been proposed [21–23]. They have better performance than computer-vision-based
methods. TILDE [22] proposed a learning-based approach to detect repeatable keypoints
under drastically changing weather and lighting conditions. Superpoint [23] proposed
a homographic adaptation which is a multi-homography approach for boosting interest
point detection repeatability and performing cross-domain adaptation.
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After the feature detection, the feature points should be matched between two cameras
to analyze the relation. This is called feature matching. Feature matching is processed by
calculating a feature descriptor on a feature point and by comparing similarities of each
feature point between two cameras. The feature descriptor encodes the feature point into a
series of numbers and acts as a sort of numerical fingerprint that can be used to differentiate
one feature from another. Ideally, the feature descriptor should be invariant under scale,
rotation, brightness, and so on. There are many methods of feature descriptor calculation.
The descriptor of the SIFT [19] extracts a 16 × 16 neighborhood around the feature point,
representing a total of 128 binary values. The SIFT [19] is robustly invariant to rotation,
scale, and so on, but it requires high computational cost. The speed up robust features
(SURF) method [24] is inspired by the SIFT [19]. Generally, its descriptor is represented
by a total of 64 binary values. However, it can be expanded to a total of 64 binary values.
The main goal of the SURF [24] is to overcome the main weakness of the SIFT [19] though
the use of the Haar wavelet approximation. The binary robust invariant scalable (BRISK)
method [25] detects feature points with the adaptive and generic corner detection based on
the accelerated segment test (AGAST) algorithm and the FAST [26,27]. Additionally, the
descriptor of the BRISK [25] identifies the characteristic direction of the feature point for
the rotation invariance. It is represented by a binary string and uses the hamming distance
to match the feature points. The oriented FAST and rotated BRIEF (ORB) method [28]
detects feature points with the FAST [26,27] similar to the BRISK [25]. As the descriptor of
the binary robust independent elementary features (BRIEF) [29] is highly unstable against
rotation, a modified BRIEF descriptor has been employed. It is a very fast recognizer with
good viewpoint invariance. Thus, it has been widely applied to simultaneous localization
and mapping (SLAM) [30–32]. There are also descriptors based on deep learning that
show good performance [21,23,33]. There are a plenty of methods that apply a registration
refinement to RGB-D images. The point-to-plane ICP [34] uses a new variant based on
uniform sampling of the space of normals. Colored point cloud alignment [35] is a method
to optimize a joint photometric and geometric objective that locks the alignment along
both the normal direction and the tangent plane. They extend a photometric objective for
aligning RGB-D images to point clouds, by locally parameterizing the point cloud with
a virtual camera. As 3D features have more mismatches than 2D feature points, they are
usually mixed with 2D feature points, e.g., in the SIFT [19] or ORB [28]. However, no matter
how well feature matching works, mismatches will be present. A mismatch causes bad
registration. Many methods of mismatch removal have been proposed. Among them, the
most widely used method is based on the RANSAC [6,7]. Despite its effectiveness in terms
of low noise and low number of mismatches, the RANSAC exhibits slow convergence
and low accuracy, making it more difficult to sample a good set generated during feature
matching. Other approaches are based on the M-estimation, which replaces the least square
problem with robust costs that are less sensitive to mismatches [36–38]. Methods of robust
rotation search based on the RANSAC or M-estimation do not guarantee good performance.
In this paper, we propose a method of mismatch removal in a set generated during feature
matching in order to improve the registration. This method uses the global registration
information to unify a pair of features matched between two cameras into the same 3D
coordinate system. Thereafter, mismatches are eliminated when the L2 distance between a
pair of the matched features is larger than the threshold.

3. Proposed Methods

In this paper, we propose a global registration method based on feature matching
between RGB-D images. We use Azure Kinect DK released by Microsoft. The proposed
method consists of two modules. A flowchart of the method is shown in Figure 1.

In the first module, the global registration is performed by using a human body
tracking system; we use the body tracking API provided by Azure Kinect SDK. The body
tracking API is based on a deep learning network. It provides us with a rough estimation



Sensors 2021, 21, 1013 4 of 14

of the position between two RGB-D cameras. In this module, we evaluate the global
registration information between two cameras with some errors.

In the second module, a registration refinement procedure is performed by using
feature matching to reduce the error of the global registration information. This is described
in detail in Sections 3.1–3.3.

Figure 1. Flowchart of the proposed method.

3.1. System Setup

In order to process the proposed method, the following steps are performed. First,
because processing is based on multiple cameras, the RGB-D cameras should be synchro-
nized. The 3.5 mm synchronization in/out plugs are used to synchronize other Azure
Kinect DK cameras. In this study, we use a daisy-chain configuration for hardware syn-
chronization. An example of daisy-chain configuration for hardware synchronization is
shown in Figure 2.

Figure 2. Example of daisy-chain configuration for hardware synchronization.

In Figure 2, the daisy-chain configuration for hardware synchronization is a wiring
scheme in which multiple Azure Kinect DK cameras are wired together in sequence or
in a ring. In this configuration, two factors affect the synchronized cameras. One is the
exposure considerations. It is recommended to use a manual exposure setting because
under the automatic exposure setting, each color camera can dynamically change the actual
exposure. Because the exposure affects the timing, such changes quickly push the cameras
out of the synchronization. Therefore, the same exposure setting should be used. Another
is avoiding interference between multiple depth cameras. When multiple depth cameras
are imaging overlapping fields of view, each camera must image its own associated laser.
To prevent the lasers from interfering with one another, the image acquisitions by the
cameras should be offset from one another by 160 µs or more. Second, the color and depth
images should be aligned. There are color and depth cameras in Azure Kinect DK. As
these two cameras are in different positions, the viewpoint of the image acquired by each
camera is different. In order to solve this problem, the color-to-depth or depth-to-color
alignment should be performed using the intrinsic parameter of each cameras and the
extrinsic parameter between the color and depth cameras. The alignment aims to find a one-
to-one correspondence between pixels of color and depth images. In order to implement
this, three transforms are required: reconstruction, transformation of coordinates and re-
projection. The reconstruction transforms 2d pixels into 3d points about the depth camera
using intrinsic and distortion parameters of the camera. The transformation of coordinates
transforms coordinates of depth camera into coordinates of color camera using extrinsic
parameter between depth and color cameras. The re-projection projects 3D points onto
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2D pixels about the color camera using intrinsic and distortion parameters of the camera.
After all of these transforms, we can find a one-to-one correspondence between pixels of
color and depth images. All of these parameters are provided by Azure kinect DK. An
example of color–depth alignment is shown in Figure 3.

Figure 3. Example of color-depth alignment.

In Figure 3, the viewpoint of the original color and depth images does not match
per pixel. Through the alignment, this problem is solved. However, the depth-to-color
alignment causes depth information loss. In this study, we use the color-to-depth alignment
to solve this problem. In addition, we apply a bilateral filter to remove the noise from the
depth image.

3.2. Global Registration Using Human Body Tracking

After the system setup, we process the global registration using deep-learning-model-
based human body tracking provided by Azure Kinect SDK. An example of human body
tracking is shown in Figure 4. The human body tracking system tracks multiple human
bodies simultaneously in the depth image. Each body includes the ID information for
temporal correlation between frames and the skeleton. The skeleton contains 32 joints with
a joint hierarchy that flows from the center of the body to the extremities. The configuration
of the joints and are shown in Figure 5.

Figure 4. Example of human body tracking. (source: Microsoft).
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(a) (b)

Figure 5. Configuration of the joints. (a) Name of each joints, (b) Axis orientation of each joint
(source: Microsoft).

Each joint includes the position, (px, py, pz), and the axis orientation, (qx, qy, qz, qw).
The joint position and axis orientation are estimated relative to the depth camera. The
axis orientation is expressed as a normalized quaternion. In this study, we collect 100 axis
orientations and joint positions of the head and chest. This is because the confidence of
the head and chest is more precise than others. After collecting the data, we average each
item to calculate the global registration. Figures 6 and 7 show an explanation and example
of the proposed global registration. In Figure 6, Pre f erence

joint , Rre f erence
joint , Tre f erence

joint are rigid
transform, rotation and translation matrix from the joint to reference, respectively, while
Ptarget

joint , Rtarget
joint , Ttarget

joint represent one from the joint to target. In Figure 7, we can observe
that the global registration is obtained with some error. This error should be reduced for
a more precise result. In the next section, we propose an iterative method of registration
refinement of the global information using feature matching to reduce this error.

Figure 6. Illustration of proposed global registration.
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Figure 7. Example of the proposed global registration.

3.3. Registration Refinement Using Feature Matching

After the global registration, we perform registration refinement using feature match-
ing. The flowchart of the registration refinement procedure is shown in Figure 8.

Figure 8. Flowchart of the registration refinement procedure.

The registration refinement system consists of three modules: feature matching, mis-
match removal, and refinement registration with singular value decomposition (SVD). In
the feature matching module, feature points are matched between each camera. There
are many features like SIFT [19] , SURF [24] , ORB [28] , BRISK [25] , and so on. In this
module, we use BRISK [25], ORB [28], SIFT [19], and SURF [24] features for feature
matching between each camera. However, there are mismatches in the set of the matched
features. To obtain a more accurate refinement, the mismatches should be removed. The
mismatch removal module removes the mismatches generated during feature matching. In
order to remove the mismatches, we use the registration to check if features are mismatched.
A comparison of the results before and after using the matching pair collection module is
shown in Figure 9.

In Figure 9, we process BRISK, ORB, SIFT, and SURF features. As can be seen,
there are many matched pairs including good matches and mismatches. The criterion
for distinguishing good matches from mismatches is how close the matching points are.
Equation (1) is used for removing the mismatches.

‖Xre f erence − (Rre f erence
target · Xtarget + Tre f erence

target )‖ ≤ Threshold (1)

Xre f erence and Xtarget are 3D pointcloud of the reference and target camera, respectively.

Rre f erence
target and Tre f erence

target are rotation and translation matrix from the target to reference.
Threshold indicates a distance threshold for checking mismatches. Using the global regis-
tration, matched feature pairs can be transformed into the same coordinate system. After
this transformation, we can calculate the L2 distance between each matched pair. There-
after, if the distance is greater than the threshold, the matched pair is considered to be a
mismatch and is eliminated. In this step, the matched pairs consist of good matches. After
this step, the refinement registration with SVD module calculates the global registration
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using the good matches. In this module, we use Umeyama’s method [39] for calculating
the global registration between a reference and a target. In [39], the authors infer that it is
possible to resolve the least-squares problem between the two point sets by using SVD of a
covariance matrix of the data. In this paper, we process this iterative step to obtain more
precise global registration results. Equations (2)–(7) represent Umeyama’s method [39]. In
Equations (2)–(7), Cre f erence and Ctarget are the centroids of the point sets of each camera, H
is the covariance matrix between the reference and the target.

Cre f erence =
1
N

N

∑
i=1

Xi
re f erence (2)

Ctarget =
1
N

N

∑
i=1

Xi
target (3)

H = (Xtarget − Ctarget)(Xre f erence − Cre f erence)
T (4)

[U, S, V] = SVD(H) (5)

Rre f erence
target = V ·UT (6)

Tre f erence
target = Cre f erence − Rre f erence

target · Ctarget (7)

Figure 9. Comparison of the results before and after using the matching pair collection module,
(a) BRISK, (b) ORB, (c) SIFT, (d) SURF .

4. Experimental Results

In this study, we evaluate the proposed method in the experimental environment. We
analyze two cases. In the first case, the angle is 30◦, and the distance is 190 cm between
two cameras. In the second case, the angle is 60◦, and the distance is 270 cm between two
cameras. The experimental environment and the views of the three cameras used in the
experiment are shown in Figures 10 and 11, respectively.
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Figure 10. Structure of the experimental environment.

Figure 11. Views of the three cameras used in the experiment.

In this environment, a fine global registration is difficult to realize. In this section,
we apply the proposed method of the global registration using the human body tracking
system and the registration refinement procedure using feature matching to this experi-
mental environment and evaluate the quality though 3D data fusion. There are various
methods of 3D data fusion. In this study, we used the truncated signed distance function
(TSDF) volume to integrate multiple 3D data. The TSDF volume is the type of volumetric
representation of a scene for integrating depth maps. It has the advantages of time and
space efficiencies. Several widely used approaches such as KinectFusion [40], fusion4D [41]
and Motion2fusion [42] are based on the TSDF volume. The result of the global registration
of human body tracking is shown in Figure 12.

As can be seen in Figure 12, the global registration using human body tracking has
some error. This error can be reduced with the registration refinement procedure proposed
herein. In this study, the proposed method is implemented in several stages. The strategy
of the registration refinement is shown in Table 1.
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Figure 12. Result of the global registration using human body tracking.

Table 1. Strategy of the registration refinement.

Order of the Stage Distance Threshold (mm) Number of the Pairs of the
Matched Features

Stage 1 50 200
Stage 2 50 200
Stage 3 20 200
Stage 4 20 100
Stage 5 10 100
Stage 6 10 50

The strategy is composed of six stages. We selected the threshold in each stage based
on our experience and figured out that the proposed global registration showed an error
of approximately 5 cm. Therefore, we performed the experiments with the threshold
decreasing from 5 to 1 cm as shown in Table 1, based on the observation. Stages 1 and 2 are
designed with the aim of finding the global rotation and translation, but they contain some
mismatches. Stages 3–6 are designed to obtain more details than in the previous stages.
By tightening the mismatch removal condition, a more precise inlier can be obtained. For
each stage, we implemented feature matching using ORB [28], BRISK [25], SURF [24], and
SIFT [19] provided by the OpenCV library. Afterwards, we tested the proposed method
with different distance thresholds for each matched feature by counting the inliers among
the pairs of the matched features. The test environment was an angle of 30◦ and a distance
of 190 cm between two cameras for 20 nonconsecutive frames. The result of the proposed
registration refinement procedure is shown in Table 2.

In Table 2, the total number of the pairs, number of the adopted pairs used in the
proposed method, and ratio of the inliers after utilizing the registration refinement strategy
described in Table 1 are shown.

The ratio o f the inliers = 1.0− adopted pair o f the f eature matching
total pair o f the matched f eatures

(8)

In Equation (8), the ratio of the inliers is calculated by directly counting the inliers
and the mismatches. The numbers of all pairs and adopted pairs used in the proposed
method with the SIFT [19] and SURF [24] are lower than in other cases. In addition, the
ratio of the inliers for the SIFT [19] is the highest for all distance thresholds. This shows that
the SIFT [19] expresses the features within the image well even in difficult situations with
considerable rotations and translations. The other features also show inlier ratios of greater
than 97% with a distance threshold of 1 mm. This indicates that the proposed method
works well for all tested features. The result of the TSDF fusion using the registration
refinement of these features is shown in Figure 13.
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Table 2. Result of the proposed registration refinement procedure.

Distance
Threshold (mm)

Total Pair of
the Matched Features

Adopted Pair of
the Feature Matching

with the Proposed Method

Ratio of
the Inliers

SIFT [19]
50

1785
387 0.8733

20 346 0.9768
10 341 0.9912

SURF [24]
50

1460
313 0.8594

20 285 0.9438
10 271 0.9926

BRISK [25]
50

2117
456 0.8333

20 405 0.9382
10 386 0.9844

ORB [28]
50

4213
679 0.8600

20 621 0.9404
10 597 0.9782

(a) (b) (c) (d)

Figure 13. Result of the TSDF fusion using the registration refinement. (a) ORB, (b) BRISK, (c) SIFT,
(d) SURF.

The result of the TSDF fusion is constructed using the RGB-D information of the three
cameras, as shown in Figures 10 and 11. In Figure 13, it is shown that all of the result of the
TSDF fusion is clear, as compared to the global registration using human body tracking
shown in Figure 12. By using the proposed registration refinement procedure, a more
precise global registration of RGB-D cameras can be obtained.

We compare the proposed global registration to other methods. Other methods are
fast global registration [9] and global registration based on fast point feature histograms
(FPFH) and RANSAC [43]. The experimental environment for global registration is shown
in Figure 14. The angle is set to 30◦, and the distance is set to 80 cm between the two
cameras. The test data consist of scenes, in which an individual poses in various poses.
The number of the poses is approximately twenty. The comparison of the proposed global
registration to other methods is shown in Figure 15. In Figure 15, the left part of each
element represents data fused by using the global registration. Meanwhile, the right part of
each element shows data visualized in green by a reference camera, and in red by a target
camera, respectively. Fast global registration [9] and global registration based on FPFH
and RANSAC [43] show the results, which contain a number of error. The proposed global
registration has some error, but it shows better performance than other methods.
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Figure 14. Experimental environment for global registration.

(a) (b) (c)

Figure 15. Comparison of the proposed global registration and other methods, (a) proposed global
registration, (b) FPFH and RANSAC, (c) fast global registration.

5. Conclusions

In this paper, we proposed a method to fine the global registration between multiple
RGB-D cameras. In the first module of the proposed method, a human body tracking
system based on deep learning provided by Azure Kinect SDK is used in order to find
the global registration between two cameras. This global registration has some error. In
the second module of the proposed method, a registration refinement procedure using
feature matching is performed. In order to obtain a more precise result, the number of
mismatches in the total number of pairs of the matched features should be estimated. In
this step, we used the global registration to eliminate mismatches. From the experimental
result, we confirmed that mismatches can be eliminated through the proposed method
even in difficult situations. By using the proposed method, the global registration between
the RGB-D cameras can be obtained effectively. However, this method has the limitation
that the initial global registration must be obtained somewhat well. Thus, if we can find an
initial global registration that is robust to rotation and translation between two cameras,
we can more easily find a more precise global registration.
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