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Abstract

Background—Observational studies suggest that even minor variations in thyroid function are 

associated with the risk of mood disorders, including major depressive disorder (MDD) and 

bipolar disorder (BD). However, it is unknown whether these associations are causal or not. We 

used a Mendelian Randomization (MR) approach to investigate causal effects of minor variations 

in TSH and FT4 levels on MDD and BD risk.

Methods—We performed two-sample MR analyses using data from the largest publicly available 

genome-wide association studies on normal-range TSH (N=54,288) and FT4 (N=49,269) levels, 

MDD (170,756 cases, 329,443 controls) and BD (20,352 cases, 31,358 controls). Secondary MR 

analyses investigated the effects of TSH and FT4 levels on specific MDD and BD subtypes. 

Reverse MR was also performed to assess the effects of MDD and BD on TSH and FT4 levels.

Results—There were no associations between genetically predicted TSH and FT4 levels and 

MDD risk, nor MDD subtypes and minor depressive symptoms. A one standard deviation 

increase in FT4 levels was nominally associated with an 11% decrease in the overall BD risk 

(OR=0.89, 95%CI=0.80-0.98, P=0.022) and a 13% decrease in the BD type 1 risk (OR=0.87, 

95%CI=0.75-1.00, P=0.047). In the reverse direction, genetic predisposition to MDD and BD was 

not associated with TSH nor FT4 levels.

Conclusions—Variations in normal-range TSH and FT4 levels have no effects on the risk of 

MDD and its subtypes, and neither on minor depressive symptoms. This indicates that depressive 

symptoms should not be attributed to minor variations in thyroid function. Borderline associations 

with BD and BD type 1 risks suggest that further clinical studies should investigate the effect of 

thyroid hormone treatment in BD.

Kuś et al. Page 2

Thyroid. Author manuscript; available in PMC 2022 July 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Keywords

Mendelian randomization study; normal-range thyroid function; thyroid; depression; bipolar 
disorder; mood disorders

Introduction

Mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD), 

have a global lifetime prevalence of up to 20% (1–3). It has been suggested that a complex 

interaction of social, psychological and biological factors is involved in the pathogenesis 

of MDD and BD (4), but a better understanding of the underlying mechanisms is still 

crucial for a further improvement in their prevention and treatment (5). Thyroid hormones 

are essential for neurocognitive development and function, and therefore the association 

between thyroid dysfunction and mood disorders has been extensively studied over the last 

decades (6, 7). Indeed, both hypo- and hyperthyroidism have been associated with MDD 

and/or BD in observational studies (8–11). More recently, even variation in normal-range 

thyroid function has been associated with MDD risk in large cohort studies (12–14). 

Vice versa, it has also been suggested that mood disorders affect the functioning of the 

hypothalamic-pituitary-thyroid (HPT) axis, as illustrated by a blunted thyrotropin (TSH) 

response to thyrotropin-releasing hormone (TRH) stimulation, and a decreased amplitude of 

the nocturnal TSH surge in patients with MDD (15–17). However, it is not clear whether the 

observed associations are causal, as observational studies are often prone to selection bias, 

residual confounding and reverse causality (18, 19). Several experimental studies reported 

beneficial effects of adjunct treatment with thyroid hormones in euthyroid patients with 

refractory mood disorders, including both MDD and BD (20–22). It has been suggested that 

thyroid hormones may accelerate the effect of antidepressant treatment as well as induce the 

response in those who do not respond to standard treatment (23, 24). However, the available 

randomized controlled trials (RCTs) on such treatments provided conflicting results, and 

none of them can be considered definitive due to their small sample sizes and/or short 

follow-up periods (25–28).

Taken together, the above studies suggest that thyroid function and mood disorders are 

closely related, but it is essential to clarify whether the observed associations are causal 

or not. Mendelian randomization (MR) is a commonly used approach that can provide the 

information on causality when RCTs are not feasible or lacking (29–34). This approach 

uses genetic variants as proxies to evaluate the causal effect of an exposure (e.g. thyroid 

function) on the outcome of interest (e.g. MDD or BD) (29). It draws from the fact that 

genetic variants segregate randomly from parents to offspring, which can be compared to 

randomization used in RCTs. As genetic variants can affect the outcome of interest but not 

the other way around, an association between the genetically predicted exposure and the 

tested outcome can provide evidence for causality (29).

In this novel study, we performed a two-sample MR to investigate the causal effects of 

variation in normal-range TSH and free thyroxine (FT4) levels on MDD and BD risk. In 

secondary analyses, we analyzed the effects of thyroid function on specific MDD and BD 
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subtypes, while reverse MR analyses were performed to assess the effects of MDD and BD 

on TSH and FT4 levels.

Materials and Methods

Two-sample Mendelian randomization

We performed two-sample MR analyses using the data from the most recent genome-wide 

association study (GWAS) on thyroid function (35) as exposures, and summary-level 

statistics from the largest publicly available GWAS meta-analyses on MDD and BD (36, 37) 

as outcomes (Figure 1). For secondary MR analyses we used the summary-level statistics 

from the GWAS on specific MDD and BD subtypes (detailed in the sections below and in 

Supplementary Tables 1 and 2; (37, 38)). For the reverse MR, the assignment of exposures 

and outcomes was switched for the analyses. No ethical approval was required as all data 

were extracted from publicly available summary statistics.

Exposures (thyroid hormone levels) datasets

The exposures of interest were normal-range TSH and FT4 levels. Based on the results of 

a recent GWAS on thyroid function in the ThyroidOmics Consortium (35), we identified 

61 and 31 independent (r2≤0.01 within windows of ±1 Mb for variants in the same locus) 

single nucleotide polymorphisms (SNPs) associated at a genome-wide significant level 

(P<5x10-8) with normal-range TSH and FT4 levels, respectively. Only individuals with TSH 

levels within their cohort-specific reference ranges were included in the GWAS on TSH 

(N=54,288) and FT4 (N=49,269) levels, and subjects using thyroid medications or after 

thyroid surgery were excluded from these GWAS, while no screening for mood disorders 

was performed among the participants in that study (35). We used the identified variants as 

instruments to investigate the causal relationship between normal-range thyroid function and 

the outcomes of interest. Two variants associated with TSH levels were a priori excluded 

from all analyses as they were highly pleiotropic (ABO-rs8176645, identified using the 

PhenoScanner v2 database available at: http://www.phenoscanner.medschl.cam.ac.uk/) or 

had the same effect allele associated (P<0.05) with both higher TSH levels and higher FT4 

levels within the normal range (BCAS3- rs1157994). Detailed data on variants used as 

instruments are presented in Supplementary Tables 3 and 4.

Outcomes (mood disorders) datasets

The primary outcomes of interest included MDD and BD. For the primary MDD analyses, 

we used the largest publicly available summary-level data derived from the GWAS 

meta-analysis by Howard et al. (36), including 33 cohorts of the Psychiatric Genomics 

Consortium (PGC) and UK Biobank (UKBB). This meta-analysis combined results of 

500,199 individuals (170,756 cases and 329,443 controls). Case and control status for the 

broad depression phenotype in the UKBB cohort was defined by the primary or secondary 

diagnosis of a depressive mood disorder from linked hospital admission records or the 

participants' positive response to the questions “Have you ever seen a general practitioner 

for nerves, anxiety, tension or depression?” or “Have you ever seen a psychiatrist for nerves, 

anxiety, tension or depression?” in the online mental health questionnaire, with exclusions 

applied to participants who were identified with BD, schizophrenia, or personality disorder 
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using self-declared data as well as those with prescriptions for antipsychotic medications 

(see Supplementary Table 2A) (36). The detailed inclusion/exclusion criteria for cases and 

controls for each of the PGC cohorts are available in the original manuscript by Wray et al. 
(39).

As the data on MDD subtypes were not available in the study by Howard et al. (36), we used 

the summary-level data derived from the GWAS on MDD in UKBB provided by Coleman et 
al. (38) for the secondary analyses with specific MDD subtypes. This study included 29,475 

MDD cases and 63,482 controls identified based on the online mental health questionnaire. 

The definition of MDD in this cohort was based on DSM-5, as described in Supplementary 

Table 2B and in full elsewhere (40). Individuals meeting criteria for MDD were classified 

as “recurrent” if they reported multiple depressed periods across their lifetime (rMDD, 

N=17,451), and “single-episode” otherwise (sMDD, N=12,024; Supplementary Table 2B). 

Individuals reporting depressive symptoms but not meeting MDD case criteria were used as 

a “sub-threshold depression” subtype to examine the continuity of associations with MDD 

below clinical thresholds (subMDD, N=21,596).

For the MR analyses with BD and BD subtypes (including BD type 1, BD1; BD type 

2, BD2; and schizoaffective BD, SABD), we used the summary-level data derived from 

the GWAS meta-analysis by Stahl et al. (37). This study meta-analyzed the results of 32 

GWAS, totaling 20,352 cases and 31,358 controls of European descent (37). Cases were 

required to meet international consensus criteria (DSM-IV, ICD-9, or ICD-10) for a lifetime 

diagnosis of BD established using structured diagnostic instruments from assessments by 

trained interviewers, clinician-administered checklists, or medical record review. Controls 

in most samples were screened for the absence of lifetime psychiatric disorders. The 

detailed inclusion/exclusion criteria for cases and controls for each study included in the 

metaanalysis are available in the original manuscript by Stahl et al. (37).

All datasets used in this study are publicly available at the PGC website (https://

www.med.unc.edu/pgc/download-results/). Data on the effect/other alleles, beta coefficients 

(β), standard errors (SE) and P-values for the variants associated with TSH and FT4 levels 

were extracted from each study for MR analyses and presented in Supplementary Tables 3 

and 4.

Statistical analyses

Main analyses—The main analyses included two-sample MR analyses performed 

using the inverse-variance weighted (IVW) method (41). This approach requires several 

assumptions as described in the Supplementary Materials and Methods. To control for false 

positive findings due to multiple testing, a conservative Bonferroni correction adjusted for 

the number of exposures and primary outcomes analyzed in the study was applied, and 

P-values less than 0.05/4=0.0125 were considered statistically significant in all analyses. A 

P-value less than 0.05 was considered as evidence for nominal significance. All analyses 

evaluate the causal effects of a one standard deviation (SD) increase in genetically predicted 

TSH or FT4 levels, approximately corresponding to a 1.0 mU/L and 2.2 pmol/L increase in 

TSH and FT4, respectively (42).
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Sensitivity analyses and power calculations—We performed sensitivity analyses, 

reverse MR analyses and power calculations as described in detail in Supplementary 

Materials and Methods. In brief, sensitivity analyses using various statistical MR methods 

(including MR Egger (43), weighted median (WM) (44), and MR-PRESSO (45)) were 

performed in order to account for potential pleiotropy in the associations between thyroid 

function and the outcomes of interest. Moreover, as autoimmunity in general has been 

associated with mood disorders (46–49), we repeated the analyses using as instruments 

two separate subsets of TSH associated variants (i.e. variants associated with autoimmunity 

thyroid disease (AITD) and variants not associated with AITD analyzed separately) in 

order to separate potential thyroid from autoimmunity mediated effects. Similarly, we also 

identified two separate subsets of FT4 associated variants, specifically including: (i) variants 

within the deiodinases loci (i.e. DIO1 and DIO2), and (ii) other (non-deiodinase) genetic 

variants associated with FT4 levels in the GWAS by Teumer et al. (35). Furthermore, reverse 

MR analyses on TSH and FT4 levels and MDD and BD were performed to gain insight 

into the complex and potentially bidirectional associations between thyroid function and 

mood disorders, and power analysis was performed using a non-centrality parameter-based 

approach (50). The results of power calculations are provided in Supplementary Table 5.

Results

The results of MR analyses investigating the associations between genetically predicted 

normal-range TSH and FT4 levels and MDD and BD risk are presented in Supplementary 

Tables 6-11 and summarized in Figures 2 and 3 and below.

Major depressive disorder and subtypes

No associations were found between TSH and FT4 levels and MDD (OR=1.00, 

95%CI=0.98-1.03, P= 0.68, and OR=0.99, 95%CI=0.95-1.03, P=0.56, respectively) or any 

of the MDD subtypes. Sensitivity analyses using the MR Egger and WM methods provided 

similar results (Figure 2). No evidence of directional pleiotropy was found based on the 

Egger intercept while exclusion of potentially pleiotropic variants identified using the MR-

PRESSO method did not change the results (Supplementary Tables 7-8).

Bipolar disorder and subtypes

A one SD increase in FT4 levels was nominally associated with a 11% decrease in the 

overall BD risk (OR=0.89, 95%CI=0.80-0.98, P=0.022) and a 13% decrease in the BD 

type 1 risk (OR=0.87, 95%CI=0.75-1.00, P=0.047; Figure 2), but these findings were 

not statistically significant after multiple testing correction. No associations were found 

between TSH levels and BD (OR=0.97, 95%CI=0.90-1.03, P=0.31) or any of the specific 

BD subtypes. Sensitivity analyses using the MR Egger, WM and MR-PRESSO methods 

provided similar results (Figure 2 and Supplementary Tables 6-8).

Secondary analyses

MR analyses with specific subsets of TSH and FT4 instruments—No significant 

associations were found when the above analyses were stratified for specific subsets of TSH 

instruments (i.e. variants associated with AITD and variants not associated with AITD) and 
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FT4 instruments (i.e. variants within the deiodinase loci and other (non-deiodinase) loci), as 

shown in Supplementary Tables 9 and 10. Neither did we find any associations when DIO2 
variants were analyzed separately (data not shown).

Causal effects of mood disorders on TSH and FT4 levels—To further investigate 

the relationship between thyroid function and mood disorders, we performed bidirectional 

MR analyses assessing the effects of mood disorders on TSH and FT4 levels. As shown in 

Figure 3, we observed no causal effects of genetic predisposition to MDD and BD on TSH 

and FT4 levels after conducting the reverse MR. Sensitivity analyses using the MR Egger 

and WM methods provided similar results. No evidence of directional pleiotropy was found 

based on the Egger intercept or using the MR-PRESSO method (Supplementary Table 11).

Discussion

This is the first study using the MR approach to investigate the causal relationship between 

thyroid function and mood disorders. Given the availability of large GWAS datasets on 

thyroid function, MDD and BD, it was now the optimal moment to perform well-powered 

MR analyses on these endpoints (51). We found no evidence of causal effects of variation 

in normal-range thyroid function on MDD risk. Conversely, we observed a nominally 

significant inverse association between normal-range FT4 levels and BD risk.

Although the epidemiological association between variation in normal-range thyroid 

function and MDD risk has been reported in several population-based studies (12–14), 

we found no evidence of causal effects of variation in normal-range TSH or FT4 levels 

on MDD risk in our study. Due to availability of large datasets, we had sufficient power 

to even detect a 2.7% and 3.8% change in MDD risk per one SD change in TSH and 

FT4 levels, respectively. Therefore, the negative results of our study show that variation 

in normal-range thyroid function either does not affect MDD risk at all or, if present, the 

causal effects are much smaller than those reported in observational studies (12–14). As 

thyroid function might also affect the risk of minor forms of depression, we also tested 

the risk of depressive symptoms in subjects not meeting formal MDD criteria in order 

to cover the entire spectrum of depressive disorders, but neither found any associations. 

Importantly, there is strong evidence for associations between various autoimmune disorders 

and MDD (46–49). As AITD is the most common cause of thyroid dysfunction in the 

general population, the association between thyroid function tests and MDD reported in 

observational studies could be driven by the underlying autoimmunity or association with 

other autoimmune diseases instead of by thyroid function itself. Nonetheless, analyzing the 

two subsets of TSH associated variants (i.e. AITD and non-AITD associated variants) to 

separate thyroid from potential autoimmunity-mediated effects, resulted in no associations 

with MDD for any of the two subsets of instruments. We neither found any evidence 

of causal effects of MDD on TSH and FT4 levels to support reverse causality. Finally, 

potential non-linear associations between normal-range thyroid function and MDD risk 

could explain the absence of associations in our MR analyses. However, this is also unlikely 

since two large population-based studies investigated the association between normal-range 

TSH levels and MDD and did not find evidence for a U-shaped association (13, 14). Taken 

Kuś et al. Page 7

Thyroid. Author manuscript; available in PMC 2022 July 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



together, our results strongly indicate that variation in normal-range thyroid function does 

not have any noteworthy causal effect on the risk of MDD.

In our study, we observed a nominally significant inverse association between FT4 

levels and BD risk, as well as BD1 risk. Although these findings were not statistically 

significant after multiple testing correction, they are in line with the results of observational 

and experimental studies suggesting beneficial effects of adjunct treatment with thyroid 

hormones in euthyroid patients with refractory BD (25, 26, 52, 53). Several underlying 

mechanisms may explain these findings, including increased serotonin neurotransmission 

(54), and modulation of the β-adrenergic receptor response to catecholamines in the 

brain (55). Interestingly, it has also been hypothesized that high dose levothyroxine (LT4) 

therapy may correct for cellular hypothyroidism in brain tissue in patients with BD (56). 

This hypothesis is based on an observation that BD is associated with mitochondrial 

dysfunction which results in low cellular adenosine triphosphate (ATP) levels (57, 58). 

As the cellular uptake of thyroid hormones is a transporter-mediated and energy-dependent 

process, inadequate ATP levels may disturb the intracellular transport of thyroid hormones, 

leading to cellular hypothyroidism (59). However, it has been shown that chronic energy 

depravation does not decrease the uptake of thyroid hormones by the anterior pituitary, 

as it does in the liver and other tissues (60, 61). This may result in a condition where 

the blood and pituitary levels of thyroid hormones are normal but they are low in other 

tissues, including neuron cells. In such a situation, high dose thyroid hormone therapy may 

facilitate the intracellular transport of thyroid hormones and correct cellular hypothyroidism 

(56). Indeed, next to the clinical studies showing beneficial effects of LT4 supplementation 

on depressive symptoms in BD, also functional imaging studies show that LT4 therapy 

corrects abnormal brain physiology in BD (26, 52). Thus, genetically determined higher 

FT4 levels could act in a similar way as LT4 supplementation, resulting in decreased BD 

risk. In line with this hypothesis, we found no evidence of association between genetically 

predicted TSH levels and BD risk, which suggests that the observed effects of genetically 

determined higher FT4 levels within the normal range on BD risk result from altered local 

FT4 bioavailability rather than a classical hyperthyroid-like state, which would coincide 

with decreased TSH levels. Although the described underlying mechanism for the observed 

associations seems plausible, further research is needed to confirm this hypothesis. Finally, 

BD patients are often treated with lithium, which can affect thyroid function (62). However, 

as the prevalence of lithium treatment in the general population is low, its effects on the 

results of GWAS on TSH and FT4 levels used in our MR study are negligible and therefore 

cannot explain the observed association between genetically predicted FT4 levels and BD.

Thyroid function tests are the first-line laboratory examinations in patients diagnosed with 

MDD, since symptoms of overt thyroid disease can mimic depression (63). However, it is 

still currently unknown if subclinical thyroid dysfunction in MDD patients should be treated 

or not, which is a common clinical problem in daily psychiatric practice, as subclinical 

hypo- and hyperthyroidism are prevalent, affecting 5-15% of the general population (64). 

As our genetic variants do not only associate with normal-range thyroid function, but a 

genetic risk score based on our TSH-associated variants also strongly associates with both 

subclinical hypo- and hyperthyroidism (35), the results of the current study suggest that 

there is neither any noteworthy causal effect of subclinical thyroid dysfunction on MDD 
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risk. While in contrast to some previous observational studies (8), this is in line with the 

results of a recent large-scale (N=23,038) analysis of individual-level data from several 

prospective cohorts (65).

Up to a third of BD patients do not respond adequately to standard treatments (66). While 

LT4 therapy in BD patients remains controversial (24), our study provides novel evidence 

that supports the rationale for such a treatment. This is important, since LT4 treatment could 

be a valuable, low-cost and well-titratable therapeutic option for patients with treatment 

resistant BD. Therefore, our results should encourage further clinical studies on thyroid 

hormone therapy in BD.

This is a well-powered study that could detect even smaller effects of variation in normal-

range thyroid function on the tested outcomes than those reported in current literature 

(12–14). As we used the MR approach and tested the robustness of our findings with 

several complementary statistical methods aimed to account for any pleiotropic instruments, 

the associations observed in our study are not affected by any residual confounders (29). 

We used genetic instruments which have in previous MR studies proven to be able to 

successfully identify causal associations between thyroid function and various classical 

thyroid hormone dependent endpoints including cholesterol levels, blood pressure, atrial 

fibrillation and stroke (30–32). In our secondary analyses, we assessed the associations 

between thyroid function and specific MDD and BD subtypes as well as minor depressive 

symptoms, thereby testing the entire spectrum of depressive disorders. We also performed 

a comprehensive assessment of complex relations between thyroid function and mood 

disorders, as we investigated the reverse causation in bidirectional MR analyses, and we 

took the potential autoimmunity-mediated effects of the used instruments in our sensitivity 

analyses into account.

A potential limitation of our study is the restriction to individuals of European ancestry, 

which means that our findings should not be directly extrapolated to other populations. 

Finally, since a well-powered GWAS on triiodothyronine (T3) levels is still lacking, we did 

not perform MR analyses with T3 as the exposure, which could have provided additional 

insight into the observed causal association between FT4 levels and BD.

In conclusion, we show that minor variations in TSH and FT4 levels have no effects on the 

risk of MDD and its subtypes, and neither on minor depressive symptoms. This is clinically 

relevant as it also suggests that depressive symptoms in patients with MDD should not be 

attributed to minor alterations in their thyroid function. In contrast, we show that higher FT4 

levels within the normal range might be associated with lower BD risk, which is in line 

with the results of observational and experimental studies suggesting beneficial effects of 

FT4 treatment in patients with BD. These results should encourage further studies on thyroid 

hormone therapy in BD, including a large and well-powered RCT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic diagram illustrating the study design.
Two-sample Mendelian Randomization (MR) approach based on the summary-level data 

from large-scale meta-analyses of the genome-wide association studies (GWAS) was used 

to investigate the causal effects of thyroid function on mood disorders. Genetic variants 

associated with normal-range TSH and FT4 levels (genetic instruments, represented by the 

solid line) and their corresponding effect estimates were established in the GWAS by the 

ThyroidOmics Consortium (35). Effect estimates on major depressive disorder (MDD) and 

bipolar disorder (BD) for these genetic variants were derived from the GWAS in the UK 

Biobank (UKBB) and/or the Psychiatric Genomics Consortium (PGC) (36–38). All datasets 

used in this study are publicly available at the ThyroidOmics Consortium and the PGC 

websites.
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Figure 2. Causal effects of variation in normal-ranged thyrotropin (TSH) and free thyroxine 
(FT4) levels on major depressive disorder (A) and bipolar disorder (B) overall and specific 
subtypes risk.
Presented odds ratios (OR) and confidence intervals (CI) correspond to the effects of a one 

standard deviation change in TSH and FT4 levels. The results of Mendelian Randomization 

(MR) analyses using various analysis methods (inverse variance weighted [IVW], MR-

Egger, weighted median [WM], MR Pleiotropy RESidual Sum and Outlier [MR-PRESSO]) 

are presented for comparison. The number of Single Nucleotide Polymorphisms (SNPs) 

indicates the number of genetic variants used as instruments for MR analysis. rMDD - 

recurrent major depressive disorder; sMDD - single-episode major depressive disorder; 

subMDD - sub-threshold depression (i.e. individuals reporting depressive symptoms but not 

meeting formal major depressive disorder criteria); BD1 - bipolar disorder type 1; BD2 - 

bipolar disorder type 2; SABD - schizoaffective bipolar disorder.
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Figure 3. Causal effects of major depressive disorder and bipolar disorder on thyrotropin (TSH) 
and free thyroxine (FT4) levels.
The results of Mendelian Randomization (MR) analyses using various analysis methods 

(inverse variance weighted [IVW], MR-Egger, weighted median [WM], MR Pleiotropy 

RESidual Sum and Outlier [MR-PRESSO]) are presented for comparison. The number of 

Single Nucleotide Polymorphisms (SNPs) indicates the number of genetic variants used as 

instruments for MR analysis.
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