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Abstract

Motivation: To increase the signal resolution for large-scale meta-analyses of genome-wide associ-

ation studies, genotypes at unmeasured single nucleotide polymorphisms (SNPs) are commonly

imputed using large multi-ethnic reference panels. However, the ever increasing size and ethnic di-

versity of both reference panels and cohorts makes genotype imputation computationally challeng-

ing for moderately sized computer clusters. Moreover, genotype imputation requires subject-level

genetic data, which unlike summary statistics provided by virtually all studies, is not publicly avail-

able. While there are much less demanding methods which avoid the genotype imputation step by

directly imputing SNP statistics, e.g. Directly Imputing summary STatistics (DIST) proposed by our

group, their implicit assumptions make them applicable only to ethnically homogeneous cohorts.

Results: To decrease computational and access requirements for the analysis of cosmopolitan co-

horts, we propose DISTMIX, which extends DIST capabilities to the analysis of mixed ethnicity co-

horts. The method uses a relevant reference panel to directly impute unmeasured SNP statistics

based only on statistics at measured SNPs and estimated/user-specified ethnic proportions.

Simulations show that the proposed method adequately controls the Type I error rates. The 1000

Genomes panel imputation of summary statistics from the ethnically diverse Psychiatric Genetic

Consortium Schizophrenia Phase 2 suggests that, when compared to genotype imputation methods,

DISTMIX offers comparable imputation accuracy for only a fraction of computational resources.

Availability and implementation: DISTMIX software, its reference population data, and usage ex-

amples are publicly available at http://code.google.com/p/distmix.

Contact: dlee4@vcu.edu

Supplementary information: Supplementary Data are available at Bioinformatics online.

1 Introduction

Genotype imputation methods (Browning and Browning, 2007;

Howie et al., 2009; Li et al., 2010; Nicolae, 2006; Servin and

Stephens, 2007) are commonly used to increase the genomic reso-

lution for large-scale multi-ethnic meta-analyses (Ripke et al., 2014;

Sklar et al., 2011; Sullivan et al., 2013) by predicting genotypes at
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unmeasured markers based on cosmopolitan reference panels (e.g.

1000 Genomes (1KG) (Altshuler et al., 2010)). While there have been

improvements (Delaneau et al., 2014; Howie et al., 2011; Liu et al.,

2013; O’Connell et al., 2014; Pasaniuc et al., 2010) in delivering more

accurate and reliable estimation in cosmopolitan cohorts, these

approaches still have two major limitations. The first is the computa-

tional burden—they are computationally very demanding due to i)

their requirement of estimating haplotypes (pre-phasing) of all sub-

jects in the study and ii) the use of large and diverse panels. For large

consortium meta-analyses [e.g. Psychiatric Genetic Consortium

Schizophrenia Phase 2 (PGC SCZ2) (Ripke et al., 2014) and Genetic

Investigation of ANthropometric Traits (Allen et al., 2010)], (multiple

iterations of) genotype imputation can be extremely burdensome com-

putationally. The second limitation is the requirement for individual-

level genotype data. Unlike freely available summary statistics, there is

a limited (or, at least, not timely) access to genotypic data that is

required by genotype imputation methods. This, in turn, might slow

the process of scientific discovery.

To overcome the above mentioned limitations associated with

genotype imputation methods, recently two summary statistics

based imputation methods, DIST (Lee et al., 2013) (developed by

our group) and ImpG (Pasaniuc et al., 2014), have been proposed.

Both methods can directly impute summary statistics (two-tailed Z-

scores) for unmeasured SNPs from genome-wide association studies

(GWASs) consisting of both family and independent cohorts. The

methods were shown to (i) substantially reduce the computational

burden and (ii) be practically as accurate as commonly used geno-

type imputation methods. These methods were successfully applied

in gene-level joint testing of functional variants using only summary

data (Lee et al., 2015) and functional enrichment analyses (Pickrell,

2014). However, in their present form, direct imputation methods

are only amenable for imputation in ethnically homogeneous

cohorts.

To extend methods like DIST to cosmopolitan cohorts additional

study information might be needed, e.g. as described in Methods,

cohort allele frequencies (AFs). However, it is possible to determine

whether an individual subject is a study member by using only the

subject’s genotypes and in-cohort study AFs (Homer et al., 2008).

Based on this finding, to protect privacy, funding agencies, besides

genotypic data, also restricted public access to GWAS AFs.

However, subsequently, it was shown (Visscher and Hill, 2009) that

the power of the subject identification is roughly proportional to the

ratio of the number of independent loci to the number of subjects in

a study cohort. Their simulations showed that even for the smaller

GWAS/meta-analyses with 10 000 subjects, the detection power falls

below 0.5. Even more, all these calculations assume homogeneous

populations. For mixed ethnicity cohorts the population stratifica-

tion encompassed in AFs estimates further confounds the subject

identification. Thus, for a large cosmopolitan meta-analysis, e.g.

PGC SCZ2 (>80 000 subjects), the identification power is practic-

ally negligible. Thus, for the ever increasing sizes and ethnic diver-

sities of genetic meta-analyses, the restrictions on AF can be lifted

without harming subject privacy.

In this article, we extend DIST imputation method/software to

Directly Imputing summary STatistics for unmeasured SNPs from

MIXed ethnicity cohorts (DISTMIX). DISTMIX inherits the main

advantages of DIST, i.e. speed, not requiring genetic data access and

applicability to pedigree data, while gaining the capability to accur-

ately impute association summary statistics from multi-ethnic

studies.

This is achieved by (i) predicting a study’s proportions

(weights) of ethnicities from a multi-ethnic reference panel based

only on (common) Single Nucleotide Polymorphisms (SNPs) AFs

from the studied cohort or taking, as the weights, user-specified

ethnic proportions drawn from one’s prior information on ethnic

composition of the study samples, (ii) computing ethnicity-

weighted correlation matrix based on the estimated/user-speci-

fied weights and genotypes of ethnicities from the reference panel

and then (iii) using the weighted correlation matrix in a DIST

procedure.

2 Methods

2.1 DISTMIX imputation
Assume that the reference panel consists of N ethnic groups and that

the vector G for individual genotypes in the study cohort is a mix-

ture of random genotypes from (not admixed from) the N ethnic

groups with weight vector W ¼ ½wi�N�1. The genotype vector G

then follows a mixture distribution pðGÞ ¼ RN
i¼1wipðGjiÞ, where

pðGjiÞ is the genotype distribution of the ith ethnic group, assumed

to have genotype mean li and variance-covariance matrix Ci. By the

law of total expectation and total variance/covariance, the uncondi-

tional expectation and variance-covariance matrix of G can be

derived as

l ¼ EðGÞ ¼ RN
i¼1wili (1)

and

C ¼ CovðGÞ ¼ RN
i¼1wiCi þ RN

i¼1wiðli � lÞðli � lÞT (2)

respectively.

Let S be the vector of the ‘estimated study population’ SNP refer-

ence allele frequencies (RAFs), e.g. the weighted mean of case and

control frequencies using the studied condition prevalence and its

complement as weights, respectively. Let P ¼ ½Pi�1�N be the RAF

matrix of the reference population ethnicities for the measured

SNPs, where Pi is the RAF vector of the ith ethnicity of the reference

panel. By dividing Equation (1) by a factor of 2, the study cohort

RAF vector can be expressed as a weighted sum of RAF vectors of

reference population ethnicities with W ¼ ½wi�N�1: S ¼ RN
i¼1wiPi.

After straightforward algebraic manipulations:

CovðP; SÞ ¼ CovðP;RN
i¼1wiPiÞ ¼ CovðP;PWÞ ¼ CovðPÞW:

Linear/quadratic programming methods can be employed to esti-

mate W subject to constraints RN
i¼1wi ¼ 1 and 0�wi�1. However,

due to the large number of SNPs, even simply solving the linear sys-

tem without constraints (Ŵ ¼ CovðPÞ�1CovðP; SÞ) and substituting

zero for the (very) few small negative proportions, can yield very ac-

curate results which practically meet the weight constraints. Not

using the linear/quadratic programming might even yield advantages

when the reference panel does not provide good proxies for all eth-

nic groups in the cohort. Under such a scenario, after setting to zero

negative weights, the sum of the resulting weights is likely to exceed

one. In turn, this acts as an extra ridge penalty for the correlation

matrix (see 3 paragraphs below), which help control DISTMIX false

positive rates.

Due to the strong LD among SNPs, the calculation of the correl-

ation using all SNPs in a genome might lead to a poor estimation.

To avoid this, we sequentially split GWAS SNPs into 1000 non-

overlapping SNP sets, e.g. first set consists of the 1st, 1001st,

2001st, etc. map ordered SNPs in the study. The large distances be-

tween SNPs in the same set, makes them quasi-independent which,

thus, improves the accuracy of the estimated correlation. Ŵ is
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subsequently estimated as the average of the weights obtained from

the 1000 SNP sets.

Typically, the study AF information is not publicly accessible.

Thus, to make DISTMIX applicable even to summary data sets lack-

ing AF information, we added an option for users to pre-specify the

weights based on their prior knowledge on ethnic composition of

the study cohort of interest. This option should be most useful when

(i) fairly accurate proportion information about ethnicities involved

in the cohort is available and (ii) all ethnicities in the cohort have

reasonably close proxies in the reference panels.

Based on estimated/pre-specified weights Ŵ ¼ ½ŵi�N�1, we esti-

mate the cohort genotype correlation matrix R in a three step pro-

cess. First, by using Equation (2), estimate the cohort genotype

covariance matrix C in the sliding window as

Ĉ ¼ RN
i¼1ŵiĈi þ RN

i¼1ŵiðl̂ i � l̂Þðl̂ i � l̂ÞT

where l̂i and Ĉi are the estimated genotype mean (twice the RAF)

vector and variance-covariance matrix for the ith ethnic group re-

spectively and l̂ is the estimated cohort genotype mean vector com-

puted as RN
i¼1ŵil̂i. Second, normalize C to obtain the correlation

matrix, R, by dividing each covariance by the product of the corres-

ponding SNP genotype standard deviations. Third, to avoid false

positive when cohort and panel ethnicities are not well matched

(and, thus, weights might not sum to one), add a ridge adjustment

by multiplying the diagonal elements of R with

max ðRN
i¼1ŵi; 1=RN

i¼1ŵiÞ.
To avoid ill-conditioned mixture correlation matrix due to the

highly correlated LD structure, we add a second ridge adjustment,

heuristically set to k ¼ 2=
ffiffiffi

n
p

(where n is the sample size of the refer-

ence population), to the diagonal elements of R (Lee et al., 2015;

Pasaniuc et al., 2014; Pickrell, 2014). R is subsequently used to im-

pute two-tailed Z-scores of unmeasured SNPs using the conditional

expectation formula for multivariate normal variates (Lee et al.,

2013). To obtain Z-scores, DISTMIX uses the square root of the im-

putation information to normalize (to a variance of one) the condi-

tional expectations (Lee et al., 2015; Pasaniuc et al., 2014).

2.2 Assessment of the type I error rate of DISTMIX
To assess the Type I error rate and the accuracy of ethnicity weight

estimation for the proposed method, we simulated, under the null

hypothesis of no association (H0), five sets of 100 summary data sets

of Ilumina 1 M autosomal SNPs from five different ethnicity com-

binations in 1KG: (i) 40% ASWþ60% GBR (Cohort 1), (ii) 60%

CHBþ40% MXL (Cohort 2), (iii) 20% ASWþ30% CHBþ30%

GBRþ20% MXL (Cohort 3), (iv) 30% CEUþ25% CHSþ5%

PURþ40% YRI (Cohort 4) and (v) 10% ASWþ15% CEUþ15%

CHBþ12.5% CHSþ15% GBRþ10% MXLþ2.5% PURþ20%

YRI (Cohort 5) (See Supplementary Table S1 for abbreviations for

ethnicities in 1KG and Section 1 in Supplementary Data for null

summary data set simulations).

Using DISTMIX at its default settings (Supplementary Table S2)

and 1KG (phase 1 release version 3 with 1092 subjects and minor

AF (MAF)�0.5%), we imputed each null GWAS summary data

from Cohorts 1-4. For summary data from Cohort 5, we only esti-

mated ethnicity proportions. To assess the robustness of DISTMIX

when the reference panel does not incorporate best-matching ethnic-

ities, we also imputed simulated data sets from Cohort 3 using a

subset of 1KG reference panel which excluded the relevant ethnic-

ities (GBR and MXL). Based the DISTMIX H0 results, we estimated

empirical Type I error rates across different nominal levels.

2.3 Comparison with genotype imputation method
We compared the performance of DISTMIX and the commonly

used IMPUTE2/SHAPEIT (Delaneau et al., 2012; Howie et al.,

2009) using all the 9 million autosomal SNPs summary statistics re-

ported for PGC SCZ2 discovery phase (Ripke et al., 2014), i.e.

IMPUTE2 imputation information score�0.6 and MAF�1%. (We

note that the filtering cutoff (0.6) on IMPUTE2 imputation informa-

tion used in PGC SCZ2 discovery phase is slightly higher than the

ones used in other studies.) From the combined discovery-replication

analysis, PGC SCZ2 identified 105 autosomal LD independent asso-

ciation regions, defined as the regions containing all SNPs in LD

(r2 > 0:6) with the PGC SCZ2 top SNPs. For a conservative com-

parison, from these 9 million SNPs, we first deemed as ‘measured’

675 K autosomal SNPs (hereafter referred to as PGC SCZ2 1 M)

consisting only of Ilumina 1 M SNPs with information scores�0.95.

On the basis of summary statistics for these 675 K SNPs, we re-

imputed the remaining SNPs using DISTMIX at its default settings

with the 1KG reference panel. To demonstrate the advantage of

DISTMIX’s weighting approach over simple selection of reference

populations, we re-imputed the PGC SCZ2 1 M SNPs using DIST at

the same default settings with two continental reference (European

(EUR) and Asian (ASN)) populations from 1KG. Subsequently, both

DISTMIX and DIST results were compared to PGC SCZ2 data. For

both sets of results, we do not apply any post-imputation filtering

based on imputation quality.

3 Results

3.1 Simulated data under the null hypothesis
Under the null hypothesis of no association, DISTMIX delivers ac-

curate and reliable estimates for the weights of ethnicities from 1KG

reference panel (Table 1). Mean values of the 100 estimated weight

sets for all 5 simulated cohorts are very close to actual values. Even

more, the accuracy of the weight estimates is remarkable, the stand-

ard deviation (SD) for any of these estimates falling below 0.2%.

The increased complexity of cohort (Cohorts 3–5 in Table 1) does

not diminish the estimation accuracy. When no perfectly matched

ethnicities exist in the reference population, the weight of next clos-

est ethnicities is increased (Cohort 3* in Table 1).

DISTMIX controls the Type I error rate at or below the nominal

level for all simulated cohorts (Fig. 1). While some increase in the

Type I error rates was observed when excluding two best-matching

ethnicities from the reference population (Cohort 3*) (compared to

Cohort 3 which used the reference panel containing all best-match-

ing ethnicities), DISTMIX still maintains the Type I errors at or

below the nominal level (Fig. 1).

3.2 Comparison with IMPUTE2 using PGC SCZ2 data
The estimated weights of 1KG ethnicities for PGC SCZ 1 M are also

realistic (last row of Table 1). The estimated proportions for

European (25.2% for CEU; 17.9% for FIN; 24.3% for GBR; 2.4%

for IBS; 15.4% for TSI) and Asian cohorts (0.5% for JPT; 2.1% for

CHB; 4% for CHS) are close to the actual proportion of European

(�91%) and Asian cohort subjects (�%1 for Japan; �5% for

Chinese ancestry (Singapore and China) in PGC SCZ2. Small non-

zero weights for ASW, CLM and PUR might capture some of the

European background from these heavily admixed American

populations.

The imputed DISTMIX and IMPUTE2 statistics for PGC SCZ2

discovery phase behave quite similarly (Fig. 2 and Supplementary

Fig. S1). The analysis of 7 425 593 markers imputed by DISTMIX
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shows that DISTMIX prediction is fairly comparable to IMPUTE2

(Fig. 2), the squared correlation coefficient (r2) between the two pre-

dictions being 83.9%. More importantly, for the reported 17 029

suggestive markers (IMPUTE2 P-value<1�10�6), r2 between the

two predictions increases to 99.5%. (When compared to DISTMIX,

DIST using EURþASN as a reference population performed poorly

(Supplementary Fig. S2): r2 between DIST and IMPUTE2 Z-scores

was 79.4% for all SNPs and 98.1% for suggestive signals. This re-

sult shows that for cosmopolitan cohorts like PGC SCZ2,

DISTMIX’s weighting approach outperforms approaches of simple

unweighted selection of reference populations.) Out of 995/1631

SNPs having significant (P-value<5�10�8)/suggestive (P-

value<1�10�6) signals for IMPUTE2 but not for DISTMIX

(Fig. 2), 975/1174 (98%/72%) SNPs are in or near (6250 Kb) the

105 LD independent autosomal association regions reported by

PGC SCZ2. Among them, 466/606 SNPs are from the extended

Table 1. Estimated weights (%) for 1KG ethnicities (see Supplementary Table S1 for abbreviations of ethnicities)

Cohort Estimated weights (%)

ASW CEU CHB CHS CLM FIN GBR IBS JPT LWK MXL PUR TSI YRI

Mean mixing proportions of null data sets (for all estimates SD< 0.2%)

Cohort 1

40% ASWþ 60% GBR

40 0 0 0 0 0 60 0 0 0 0 0 0 0

Cohort 2

60% CHBþ 40% MXL

0 0 60 0 0 0 0 0 0 0 39.9 0 0 0

Cohort 3

20% ASWþ 30% CHBþ 30%

GBRþ 20% MXL

20 0 29.9 0 0 0 29.9 0 0 0 20 0 0 0

Cohort 3*

20% ASWþ 30% CHBþ 30%

GBRþ 20% MXL

22.3 12.1 30.3 0 16.3 6.4 - 0.5 1.3 0 - 7.8 2.9 0

Cohort 4

30% CEUþ 25% CHSþ 5%

PURþ 40% YRI

0 30 0 25 0 0 0 0 0 0 0 5 0 40

Cohort 5

10% ASWþ 15% CEUþ 15%

CHBþ 12.5% CHSþ 15%

GBRþ 10% MXLþ 2.5%

PURþ 20% YRI

10 15 15 12.5 0 0 15 0 0 0 10 2.5 0 20

Mixing proportions of PGC SCZ2 data

PGC SCZ2 2 25.2 2.1 4 2.3 17.9 24.3 2.4 0.5 0 0 3.9 15.4 0

All cohorts use 1KG as the reference panel, except Cohort 3* which used 1KG without GBR and MXL.

Fig. 1. DISTMIX relative Type I error rate (the empirical Type I error rate div-

ided by the nominal Type I error rate) as a function of the nominal Type I error

rate and the null summary data used. Cohort 1, 40% ASWþ 60% GBR; Cohort

2, 60% CHBþ 40% MXL; Cohort 3, 20% ASWþ 30% CHBþ30% GBRþ20%

MXL; Cohort 4, 30% CEUþ25% CHSþ5% PURþ40% YRI. All cohorts use

1KG as the reference panel, except Cohort 3* which used 1KG without GBR

and MXL. The dashed line (at 1) denotes the nominal threshold for the rela-

tive Type I error rate
Fig. 2. DISTMIX Z-scores as a function of IMPUTE2 Z-scores from PGC SCZ2

discovery phase and DISTMIX imputation information. The vertical dotted

lines represent the suggestive thresholds for PGC SCZ2 discovery phase

(IMPUTE2 P-value<1�10�6). rs
2, the squared correlation coefficient (r2) be-

tween DISTMIX and IMPUTE2 Z-scores for the suggestive PGC SCZ2 SNPs;

ra
2, r2 between two predictions for all SNPs
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MHC association region (26–34 Mb). On the other hand, out of

1045/1916 SNPs with significant/suggestive association signals for

DISTMIX but not for IMPUTE2, 1010/1564 (96.7%/81.6%) SNPs

are from in or near the association locus and 398/445 SNPs are from

the MHC region.

For a more detailed performance assessment, we also compared

the top p-values of DISTMIX and IMPUTE2 for the 105 significant

autosomal association regions reported by PGC SCZ2 (Fig. 3 and

Supplementary Table S3). While IMPUTE2 applied to PGC SCZ2

discovery phase identified 88 (83.8%) statistically significant regions

out of these 105 regions, DISTMIX successfully detected 81

(77.1%) as significant, including two regions not identified by

IMPUTE2. However, the regions not detected by just one of the two

methods yielded, for the smaller signal, p-values just below the sig-

nificance threshold (Fig. 3). When compared to IMPUTE2, most of

the apparent conservativeness of DISTMIX is likely due to the LD

estimation using the ridge penalty (k ¼ 2=
ffiffiffi

n
p

) for the small 1KG ref-

erence panel used for imputation. We expect this difference to be-

come negligible when using the very large next generation reference

panels. (Note that the difference in signal detection is not technically

a power loss for DISTMIX, since we compare the results of each im-

putation method with PGC2 IMPUTE2 signals and not with the

true signals.)

On a Linux cluster with 24 computation nodes, each having 4 x

Intel Xeon 6 core 2.67 Ghz processor and 64 GB of RAM, the im-

putation of PGC SCZ2 1 M was performed in parallel using 40 cores

(one core per autosome chromosome arm). The running time and

peak memory usage were slightly under 12 hours and 1 GB, respect-

ively. Remarkably, the running time translates to a single core com-

putation time of less than one week.

4 Conclusions

DIST and ImpG assume that the genotypes and association statistics

have identical correlation structures. However, while the assump-

tion is reasonable for homogeneous cohorts, it might not be met

when there are relevant covariates which confound genotypes, e.g.

ancestry principal components in ethnically mixed studies. To ad-

equately analyze such cohorts, we propose DISTMIX, a very fast

and novel method/software for directly imputing summary statistics

of untyped makers from cosmopolitan cohorts without using sub-

ject-level genotype data. The proposed method (i) uses mixture pro-

portions for each ethnicity in a reference panel (e.g. 1KG) either (a)

provided by the user or (b) estimated based on the in-cohort esti-

mated AFs of common variants, (ii) uses these proportions to deter-

mine the cohort LD as a mixture of the LDs of the ethnicities from

the reference panel and (iii) uses the mixture LD in DIST procedure

to impute statistics at untyped variants.

As shown by our simulation and empirical studies, for cosmopol-

itan cohorts, DISTMIX (i) accurately estimates in-study weights of

ethnicities from a reference panel (when they are not provided by

the user), (ii) maintains the Type I error rate at or below the nominal

level, (iii) delivers comparable imputation accuracy to commonly

used genotype imputation methods while (iv) dramatically reducing

computational needs. Moreover, given that the relatedness between

subjects in a cohort does not affect the estimated mixture LD,

DISTMIX can be used ‘as-is’ for meta-analyses containing family

data.

Compared to summary statistics based imputation methods like

DISTMIX, genotype imputation methods offer more flexibility to

researchers; once haplotype phasing and genotype imputation are

done for a sample cohort, researchers can conduct different GWASs

using different phenotypes and covariates without re-imputation.

While the current DISTMIX version imputes only one set of sum-

mary values, given that the most computer intensive part is the esti-

mation of the correlation matrix, we believe that a future version

simultaneously imputing Z-score for multiple traits is attainable

with minimal effort.

Due to the emergence of very large reference populations such as

the Haplotype Reference Consortium (HRC) including more than

30 000 subjects at over 50 million SNPs (Kretzschmar et al., 2014)

(http://www.haplotype-reference-consortium.org), imputation pro-

cedures will be required to both impute new studies and re-impute

previously published GWASs. This process will require a sudden in-

crease in processing capabilities due to these larger panel sizes. For

example, even after an impressive �20� speed improvement, the

genotype imputation using the HRC panel, will still be around 2

times slower than the same imputation using present methods with

the 1KG panel (Fuchsberger et al., 2014). At these reference panel

sizes, DISTMIX will also have much longer running times. Given

that the most computer intensive part of DISTMIX imputation is

the reference panel-based computation of the correlation matrix, in

future DISTMIX versions we plan to pre-compute, and store in a

database, the local correlation matrix of genetic regions by each eth-

nic group (Pasaniuc et al., 2014). Thus, DISTMIX using the pre-

computed LD matrices will dramatically reduce the running time

associated with future large reference panels. Moreover, such an ap-

proach has the added advantage of making the computational bur-

den of summary statistic imputation practically invariant to the

sample size of the reference panel. This invariability will be a useful

feature with the likely increase in study sizes.

When compared to genotype imputation methods e.g. IMPUTE2

and MACH (Li et al., 2010), due to its sample size dependent ridge

estimate (k ¼ 2=
ffiffiffi

n
p

), DISTMIX might deliver somewhat conserva-

tive results for the rather small existing panels, such as 1KG used in

our paper (Fig. 3). (Its conservativeness is likely to be more pro-

nounced at lower imputation information). However, the ridge esti-

mate, and thus conservativeness, will be greatly diminished soon, as

the size of reference panels is increased by almost two orders of mag-

nitude (see the HRC panel above). To reduce the computational run-

time and the complexity of our implementation, DISTMIX is

written in Cþþ with open-source libraries and publicly available

online.
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