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Abstract: This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid
brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility
of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter
bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF)
selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a
feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink
switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton.
Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects
successfully completed a gait task by wearing the lower-limb exoskeleton through the developed
real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual
smartwatch controller. The developed system can potentially be benefit people with neurological
disorders who may have difficulties operating manual control.
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1. Introduction

Brain–computer interface (BCI) technology benefits people suffering from neurological disorders
on account of its characteristics of various computer-controlled applications using brain signals [1,2].
The recent development of a lower-limb exoskeleton is significant, considering the fact it effectively
bridges between brain signals and a motor output of extremities to improve the quality of life
of the gait disabilities [3–5]. Among the various electroencephalogram (EEG) neural features,
three distinguishable ones have been adopted notably for decoding lower-limb movement intentions,
namely movement-related cortical potential (MRCP), steady-state visual evoked potential (SSVEP),
and event-related desynchronization (ERD). However, utilizing the MRCP for the exoskeleton control
requires the BCI system to discern a movement onset time [6]. In the case of the SSVEP [7], subjects
have to continuously focus on a flickering light until the evoked potential exceeds a threshold. Thereby,
it is difficult for the exoskeleton drivers to deal with an unexpected outer situation. Fundamentally,
the ERD is another representative EEG neural feature for the exoskeleton BCI controller, usually
induced by motor imagery (MI). An asynchronous MI-based ERD indicates both spectral and spatial
features. Hence, the BCI controller can match various commands related to distinctive MI strategies
with separable scalp topographic patterns [8].
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In the very beginning, project DARPA tried to move prosthetics based on the sensorimotor signals
of the cortical activity [9,10]. Additionally, the former EU project named MINDWALKER proceeded
lower-limb exoskeleton for clinical use with EEG and various biological and kinematic control signals
through advanced algorithms [11,12]. The underlying studies adopted MRCP, SSVEP, and evoked
potential (EP) to control robotic devices. Lately, several research groups have reported tenable results
in operating an overground lower-limb exoskeleton with the MI-based BCI [13–16] Gordleeva et al.
developed an exoskeleton control system utilizing three MI tasks (left, right hand MI, and rest) and
subsequently captured the ERD of sensorimotor rhythms (SMR) for 14 subjects [13]. Lee et al. captured
an EEG power spectral density during the hand MI and rest and performed exoskeleton mounted
navigation tasks with five subjects [14]. Wang et al. compared an SSVEP and an MI-based BCI controller
to move the lower-limb exoskeleton with four subjects and revealed that both controllers achieved
about 80% accuracy [15]. Yu et al. developed an MI-based ERD decoder that could control the walking
speed of a rehabilitation exoskeleton on the treadmill [16]. However, the aforementioned studies
still adopted the left and right (or both) hand MI to generate a corresponding command output for
controlling the lower-limb exoskeleton. To our knowledge, there were a few pieces of research inducing
a gait-related MI [17–19]. Firstly, Do et al. adopted a kinesthetic MI (KMI) to refine motor skills in sports
science and cognitive neurophysiology [17]. Lopez et al. considered it as a motor-attempt to move
subjects’ right leg as if they have started walking [18]. Finally, Donati et al. trained spinal cord injury
(SCI) patients with kick imagery during a rehabilitation program [19]. Notably, it is still considered
that previously mentioned MI protocols focused on the fragments of gait motions. Hence, presenting
a limited correlation between the imagery and the execution, and only utilized a neural mechanism
that is discriminative at a cortical level. Therefore, MIs for operating the overground lower-limb
exoskeleton throughout an entire ‘sit-to-sit’ scenario should be more intuitive and associated with
stand-up, gait-forward, and sit-down, which may reduce a cognitive load and increase decoding
accuracies [20].

A real-life MI-based BCI controller for the lower-limb exoskeleton should maintain a low false
activation rate in order to ensure the reliability of a control system. A ‘brain switch’ is a representative
concept necessary for the asynchronous BCI to determine whether an ongoing continuous EEG signal
implies the user’s intention or not [21–25]. Pfurtscheller et al. demonstrated that the on/off switch
utilizing a foot MI-induced beta Event-related Synchronization (ERS) rebound measured from a single
vertex channel prevents the false activation of an SSVEP interface [26]. Yu et al. extracted a subject’s
voluntary successive eye-blink signal from an ongoing EEG signal from two prefrontal channels to
activate/deactivate a P300-based speller [24]. Notably, Ortiz et al. recently introduced an attention
level monitor parallel with an MI gamma-band SMR, which detects a subject’s presence or absence
of an MI intention [25]. Based on previous researches, this study monitored EEG artifact from an
electrooculogram (EOG) signal to extract a user’s intentional triple eye-blink (TEB) signals to turn
on and off the MI decoder under a concept of a sequentially processed hybrid BCI for improving
reliabilities of the control system [27].

Thus, in this study, we developed an MI-based BCI controller for a lower-limb exoskeleton to
perform stand-up, gait, and sit-down, sequentially combined with an eye-blink switch considering
a real-life scenario. The feasibility of the developed BCI exoskeleton system was tested with ten
healthy subjects to explore the potentiality of its application to people with neurological impairments.
This study mainly aimed to reduce a variation between the MI manner and motor output of the
mounted exoskeleton. To accomplish this, we designed intuitive MI protocols, which correspond with
the lower-limb exoskeleton operation.
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2. Methods

2.1. System Overview

The developed MI-based BCI exoskeleton control system consists of three parts, namely data
acquisition, EEG signal processing, and exoskeleton control (Figure 1). While the subject performs MI
tasks (i.e., the kinesthetic feeling of gait and sit), a signal processing algorithm extracts features and
trains the offline classifier. A decoded control command is sent to the exoskeleton via a real-time online
control interface. We employed a lower-limb exoskeleton robot (RoboWear P10, NT Robot, Seoul,
Korea) to integrate the developed BCI controller. The exoskeleton robot was primarily designed to
assist people with SCI gait impairments (Class III Medical Device Certification, Ministry of Food and
Drug Safety of Korea) to stand-up, sit-down, and gait-forward with two crutches on both hands [28].
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Figure 1. A diagram of the motor imagery (MI)-based brain-computer interface (BCI) exoskeleton
control system.

2.2. Data Acquisition

2.2.1. EEG System

Throughout the entire experiment, brain activity was monitored by a wireless wet-type 31
electrodes according to the international 10–20 system (FP1, FP2, F7, F3, F4, F8, FC5, FC3, FC1, FC2,
FC4, FC6, C3, C1, Cz, C2, C4, CP5, CP3, CP1, CP2, CP4, CP6, P3, P1, Pz, P2, P4, O1, Oz, and O2.
The reference electrode is FCz and the ground is AFz). Each electrode collected brain signal at a 500 Hz
sampling rate through an EEG amplifier (actiCHamp and MOVE, BrainProducts GmbH, Gilching,
Germany). The impedance level was set below 20 KΩ, and a notch filter cleared 60 Hz line noise.

Ten healthy subjects (age: 26.6 ± 3.06 years.) with no history of neurological disorders participated
in this study. The subjects were all male and right-handed. All subjects gave written informed consent,
which was approved by the Institutional Review Board of Korea Institute of Science and Technology
(KIST IRB number 2019-032). Eight out of 10 subjects had no prior experience in BCI or wearing a
powered gait assistive device. We allowed the subjects a one-hour adaptation period to familiarize
themselves with operating the wearable exoskeleton.
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2.2.2. MI Protocol

To minimize external interference, the MIs were performed in an isolated room. The subjects
are standing with their hands-on crutches without wearing the lower-limb exoskeleton and facing a
monitor, which displayed MI procedures (Figure 1). The subjects were to press a hand-held button
attached to the crutch when they were ready to begin each trial. Following the notification of a beep
sound, the monitor displayed a gray fixation cross and randomly presented a symbol (‘upward arrow,’
‘downward arrow,’ or ‘box’) after 3–5 s, which denotes ‘Gait MI,’ ‘Sit MI,’ or ‘Do-nothing,’ respectively.
Once the subjects identified the cue, they started the corresponding MI (‘Gait’ or ‘Sit’) for 8 s or
‘Do-nothing’ for 4 s. When the subjects heard a second beep sound, they stopped the task and prepared
for the subsequent trial. Figure 2 shows the MI procedure.
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Figure 2. The offline MI procedure.

Each subject executed two types of MI tasks (‘Gait’ and ‘Sit’) along with a ‘Do-nothing’ task.
In the ‘Do-nothing’ task, we let subjects rest with their eyes open without performing MI or other
mental tasks. The subjects were instructed during the MI tasks to perform a mental rehearsal of gait
or sit. The limbs were to remain still and they were to focus on the kinesthetic feelings, including
a somatosensory sensation and experience of motor execution with the exoskeleton. Furthermore,
we forbade subjects from visualizing themselves from the viewpoint of an external observer to limit
stimulating their visual cortex. The details of the comments were listed in Table 1.

Table 1. Detail of motor imagery (MI) instructions.

Operator’s Instructions

Before MI

“Be familiar with consistent locomotion of the robot trajectory with your
pair of crutches.”
“While practicing ‘sit’, please pay attention to your upper limb
movement which plays an important role in lowering the body down to
the chair with the exoskeleton.”

During MI

“Pay attention to the kinesthetic sensation that just before your limb
about to execute the movement.”
“Do mental rehearsal in a slow movement phase, for example, heel
strike, weight shift, and toe-off.”
“We also recommend you to perceive the input sensation of foot sole and
hand grip.”
“For ‘Do-nothing’, please ignore the somatosensory or visual input
sensation, rather stay unfocused eyes with an absent-minded.”

Prohibited “Do not picture the scene of observing yourselves or other person’s
movement execution.”

The offline MI procedure consisted of randomly mixed 90 trials, which constituted 30 repetitions
for three tasks; Gait MI, Sit MI, and Do-nothing. The whole process was organized and presented on
the monitor by a managing software (E-prime3, Psychology Software Tools, Sharpsburg, PA, USA)
with an event marking module (BBTK USB TTL, The Black Box ToolKit Ltd., Sheffield, UK).
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2.3. EEG Signal Processing

EEG signal processing was conducted using MATLAB software (2017a, MathWorks, Natick, MA,
USA), which received data through a TCP/IP connection from Remote Data Access host (Recorder,
BrainProducts, Gilching, Germany). The offline MI data features were extracted through a Filter Bank
Common Spatial Pattern (FBCSP) algorithm. Through a mutual information-based best individual
feature (MIBIF) selection method, we sort contributing features as training input to a linear support
vector machine (SVM) classifier.

2.3.1. Feature Extraction

Since we focused on the gait-related SMR feature, we monitored ERD from low mu to high beta
EEG frequency bands. EEG signals were passed through the zero-phase Butterworth infinite impulse
response (IIR) bandpass filter between high Theta to low Gamma frequency (7–34 Hz). The signals
were divided into 6 ranges (filter bank; 7–9, 10–12, 13–15, 16–20, 21–25, and 26–34 Hz) considering the
subject-dependent dominant frequency features. Next, six bandpass-filtered EEG data were prepared
to derive six different CSP transformation matrices.

The single-trial EEG input signal matrix E (where N × T; N is the number of channels; T the
number of samples in time per channel) is linearly transformed by projection matrix W. The spatially
filtered signal Z given as

Z = WE (1)

We have decided to choose the first and last two rows of signal Z, which differentiate the
most [29]. Therefore, the modified transformation matrix has four rows of six frequency bands
and channel columns (24 × 31). Finally, the variance difference maximized EEG signals were then
log-normalized [30].

2.3.2. Feature Selection

The 24 features then sorted in descending order following the MIBIF method [30], which
determined the priority of the signal contributions of well differentiating the two classes. The mutual
information of two random variables defined as,

M(X; Y) =
∑
y∈Y

∑
x∈X

p(X,Y)(x, y) log

 p(X,Y)(x, y)

p(X)(x) p(Y)(y)

 (2)

where p(X,Y) is a joint probability mass function of X and Y, and p(X) and p(Y) are a marginal probability
mass function of X and Y, respectively. Here, X is each of 24 features, and Y is the corresponding
classifier label Y ∈

{
Gait MI vs. Do− nothihg

}
or {Gait MI vs. Sit MI}. The first k features are empirically

selected according to each subject (k = 4 ∼ 10). Finally, the resulting feature matrix was adopted for
training the linear SVM classifier.

2.3.3. Real-Time Decoder

The online and offline decoders were synced in signal processing steps. The real-time input EEG
signals were sent to the online decoder in every single packet of 31 channels by 10 data points (500 Hz
sampling rate). The decoding algorithm ran every 250 data points (window shift). The pre-trained
linear SVM classifier outputted a single control command every 0.5 s with a signal processing window
size of 2 s. Then, the control interface received the commands to control the exoskeleton.

2.4. BCI Controller

To describe an online system logic flow, we illustrate a finite state machine (FSM) of the control
interface (Figure 3). The system should be started and terminated from the sit state for safety purposes.
The state transitions were represented by arrows corresponding to methods (MI, Do-nothing, or
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TEB), denoted beside the arrow. Notably, a recurrent arrow indicated that the system remains in the
current state.Sensors 2020, 20, x FOR PEER REVIEW 6 of 15 
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We designed two binary classifiers. In the state of ‘Decoder On (GvN)’, the ‘classifier_GvN’
decodes Gait MI vs. Do-nothing EEG signal. In the ‘Decoder On (GvS)’ state, the ‘classifier_GvS’
separates Gait MI vs. Sit MI.

2.4.1. Triple Eye Blink

We utilize TEB (online 97 trials test, a detection rate of 94.7%; online 40.5 min test, FPR of 0.025
times/min; n = 1) to activate and terminate the decoder. Notably, a blinking artifact easily influenced
two prefrontal channels among the adopted electrode locations in this study. For both FP1 and FP2
electrodes, a 2–15 Hz range of IIR bandpass filter was integrated to clear the signals related to the
non-eyelid movement. Subsequently, a biorthogonal wavelet function was adopted to enlarge the
eye-blink pulse efficiently. Finally, we could count the wave peak, which exceeded a predefined
threshold in separating single or double ordinary occasional eye-blinks. A window size of TEB
detection was 1.6 s with a window shift of 0.4 s [31].

2.4.2. MI Buffer and Visual Feedback

We adopted command stack buffers to minimize potential risks to safety based on a single false
detection of the movement intention, as shown in Figure 4. There were three buffers of Sit-to-Stand,
Stand-to-Gait and Stand-to-Sit in each size of 10, which is necessary for subjects to engage MI tasks
with the exoskeleton movement. First, in the ‘Decoder On (GvN)’ state, the robot stands-up only
when the repetitive correct Gait MI command fully filled the Sit-to-Stand buffer, while the Do-nothing
command emptied the stacked buffer. Second, in the ‘Decoder On (GvS)’ state, while the Gait MI
command filled the Stand-to-Gait buffer, the Stand-to-Sit buffer emptied at the same time, vice versa.
The fill/empty ratio of the buffer was set as 1:3 in order to provide reliable state transitions by balancing
between the correct and false classification [32].
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2.5. System Evaluation

2.5.1. Controller Performance

The online BCI controller was compared with a ready-made smartwatch controller through
a predefined 10 m gait scenario to evaluate the developed exoskeleton BCI controller feasibility
(Figure 5). All subjects executed stand-up, start 5 m gait and stop, resume 5 m gait and stop
again, and finally sit-down. The wearable smartwatch (Galaxy gear series 1, SAMSUNG, Suwon,
Korea) and the application were provided to control the exoskeleton (Figure 6). Three control
commands (‘stand-up/gait-stop’, ‘gait’, and ‘sit-down’) were transmitted through a Bluetooth wireless
communication to the exoskeleton control computer. We compared the required time to complete the
gait scenario between the BCI controller and the smartwatch controller.
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Figure 5. The illustration of the online exoskeleton operation plan. All subjects drove exoskeleton
with the scenario of stand-up, gait, pause, resume gait, stop, and sit-down. The subjects completed
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compare the performance of the developed BCI controller and the smartwatch controller.
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2.5.2. Classification Accuracy

To evaluate the performance of two binary decoders in offline, we measured classification accuracy
of 100 repetitions with the prepared MI data composed with 7:3 of train-test ratio. Initially, randomly
chosen trials constituted 10 test questions, and 10 train guesses were sampled by the Bootstrap
restoration method except for the test trials. The total result was averaged and reported with a
standard deviation.

For the online decoder, we recorded the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) of the two classifiers while subjects were executing the gait scenario.
The classifier_GvS showed all four occasions hence the accuracy of the decoder could be calculated.
On the other hand, the classifier_GvN operated only a single time during the entire gait scenario.
Consequently, we chose to use TPR as an online accuracy measurement of the classifier_GvN.

TPR = nTP/(nTP + nFN) (3)

FPR = nFP/(nTN + nFP) (4)

ACC = (nTP + nTN)/(nTP + nTN + nFP + nFN) (5)

where n stands for the numbers of each of the four parameters: TP, TN, FP, and FN. The entire
performance of the online decoder was determined as a lower number of the accuracy of two classifiers.

2.5.3. Information Transfer Rate

An information transfer rate (ITR) in communication per unit time was calculated as follows:

Id = log2 N + p log2 p + (1− p) log2
1− p
N − 1

(6)

ITR = fd × Id (7)

where Id denotes the bit rate (bit/trial) and N denotes the number of tasks (in this case, N = 3). p denotes
decoding accuracy, and fd denotes the decision rate (trial/min) [33]. In the offline session, we assumed
the theoretical decision rate as the 90 trial repetitions divided by a total accumulated time of engaging
MI for each subject (average of 4.60 trial/min). In the online session, we set the decision rate as an
accumulated time of the MI during the entire gait scenario (average of 5.97 trial/min).

3. Results

3.1. Feature Selection

The MI repetition data was processed to reveal discriminant MI features (Figure 7). Through a
Fisher’s ratio topography, we could estimate electrodes with a high signal-to-noise ratio. Based on
those representative electrodes, we examined a trial-averaged event-related spectral perturbation
(ERSP) spectrogram (Figure 8) [34]. The spectrogram reveals that the ERD appeared while subjects are
engaging in both Gait MI and Sit MI, whereas less or no ERD was observed during Do-nothing task.

3.2. System Evaluation

3.2.1. Control Performance

Table 2 indicates the time taken to accomplish the 10 m gait scenario of 10 subjects. The hybrid
BCI controller showed 144.8 ± 15.12% of average performance in terms of operation time compared
to the smartwatch controller. Supplementary Video S1 is provided to compare the consuming time
between the smartwatch controller and the hybrid BCI controller.
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Figure 7. A topography of normalized Fisher ratio between Gait MI(Gait) vs. Do-nothing (Dnth) and
Gait MI vs. Sit MI(Sit). Repeated trials of signal power in each frequency band were averaged to
calculate the fisher ratio. The most dominant frequency band and electrode channels were visually
illustrated and highlighted in yellow color. Three out of ten subjects’ topography were representatively
showed to demonstrate a distinct desynchronization area.
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Figure 8. The event-related spectral perturbation (ERSP) of trial averaged power spectrogram plot;
(A) Gait MI, (B) Sit MI, and (C) Do-nothing from top to bottom. The blue vertical line (time 0) represents
cue onset, and the red line depicts offset. Subjects engage MIs at time 1 to 9 s and Do-nothing at 1 to 5 s.

3.2.2. Classification Accuracy

As mentioned in Section 2.5.2, the accuracy of the 10 decoders for each subject were inspected
through 100 train-test repetitions. The classifier_GvN showed 88.4 ± 7.48% accuracy, while the
classifier_GvS showed 80.3 ± 6.79% accuracy (Table 3).
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Table 2. Comparison of operating time between the development hybrid BCI controller and the
smartwatch controller.

Subject BCI Controller (s) Smartwatch Controller (s) Time Ratio (%)

S1 170.0 118.6 143.3
S2 125.4 93.7 133.8
S3 145.4 103.2 140.9
S4 159.6 97.1 164.4
S5 144.3 94.2 153.2
S6 157.1 123.7 127.0
S7 153.2 121.9 125.7
S8 138.1 89.5 154.3
S9 180.7 106.6 169.5

S10 158.2 116.6 135.7

mean ± std. 153.2 ± 15.84 106.5 ± 12.84 144.8 ± 15.12

Table 3. Offline and online classification accuracy (%).

Subject
Offline Online

GvN GvS GvN GvS

S1 83.3 75.7 94.2 85.9
S2 84.9 77.4 81.3 77.6
S3 80.0 78.4 85.5 85.3
S4 94.0 83.9 81.0 89.2
S5 95.1 74.3 100 86.4
S6 78.0 71.9 88.0 89.5
S7 93.4 79.4 91.7 83.2
S8 98.1 94.4 94.5 88.7
S9 95.1 87.6 78.2 85.9

S10 81.6 77.4 72.2 72.5

Mean ± std. 88.4 ± 7.48 80.3 ± 6.79 86.7 ± 8.61 84.4 ± 5.43

The online decoder accuracy was estimated by a log record following the execution of the real-time
10 m gait scenario (Figure 9). During the operation, each subject engaged MI for at least four times;
(1) to stand-up, do Gait MI for the classifier_GvN, (2) to start gait, do Gait MI for the classifier_GvS,
after the TEB (3) to gait again, after gait pause, do same as (2), (4) finally to sit-down, do Sit MI for the
classifier_GvS. If the subject failed to fill the corresponding buffer, they made subsequent attempts
until they succeeded. The online accuracy was around 85% for both classifiers (Table 3).
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Figure 9. A representative example of the fill/empty log plot of MI buffers (A) and MI class discrimination
plot (B) shares the timeline (subject no. 2). Three kinds of buffers (stand, gait, and sit, size of 10)
were illustrated in light-gray, mid-gray, and dark-gray box. Stair shaped line depicts the fill/empty
of each corresponding buffer. The false classification was marked as an arrow beneath the timeline.
The deviation from true classification (solid red line) was shown in a square plot below.
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3.2.3. Information Transfer Rate

Table 4 shows the ITR for all subjects. By estimating the ITR, we could evaluate the efficiencies
of the developed BCI controllers. The offline and online ITR was 3.21 bit/min and 3.13 bit/min on
average, respectively.

Table 4. Offline and online information transfer rate (ITR) (bits/min).

Subject Offline Online

S1 1.86 2.99
S2 3.51 2.59
S3 2.71 3.05
S4 3.80 3.31
S5 2.39 3.54
S6 2.24 2.23
S7 2.31 3.64
S8 6.37 3.16
S9 4.80 3.96

S10 2.07 2.80

mean ± std. 3.21 ± 1.442 3.13 ± 0.514

4. Discussion

In this study, we developed an MI-based hybrid BCI controller for the lower-limb exoskeleton
operation. The subjects could control the exoskeleton to stand-up, gait start/stop, and sit-down without
any steer or button press using the real-time TEB switch and EEG decoder. Ten healthy subjects
participated in the offline and online sessions, and the average classification accuracy was more than
80% for both sessions. All subjects completed a 10-m walking scenario with the lower-limb exoskeleton
using the MI-based hybrid BCI controller and spent 145% of the control time compared with the
conventional smartwatch controller.

4.1. Characteristics of the EEG Decoder

As shown in Figure 7, the Gait MI vs. Do-nothing topographic plot appeared relatively consistent
through the subjects around a motor and somatosensory area than the Gait MI vs. Sit MI. Following the
study of the most prominent electrode channel, we illustrated the MI-related power desynchronization
from low Mu (8–12 Hz) to around high Beta (13–30 Hz) frequency band by trial-averaged time-frequency
wavelet analysis (Figure 8). The baseline was mean amplitude through the entire epoch time. Within 1
s after the MI cue disappeared, the ERD was revealed in the 10–15 Hz band while few subjects showed
EEG signals in the upper bandwidth (21–25 Hz band or higher for S6). According to the research
of Cebolla et al., significant ERSP appeared between Mu and low Beta frequency (8 ~ 17 Hz) in FCz
channel, induced by the context based MI [35]. Our result also revealed the correlation between MI
and spatial-spectral cortical activity on the mu and beta rhythm in the primary motor cortex, consistent
with the previous studies [36–38]. Additionally, the result demonstrated that the adopted FBCSP
algorithm [30] was suitable for incorporating the difference between the Gait MI vs. Do-nothing and
the Gait MI vs. Sit MI in terms of both subject-specific spectral and spatial domain.

According to Figure 9A, there were continuous misclassifications. Additionally, subjects
experienced a delayed movement of buffer during the MI tasks. The repeated false classification
attributed mainly to the EEG processing window set as 2 s length with a 0.5-s window shift.
Consequently, if there were a dominant false feature inside the window, it required at least four
steps to renew the signal processing window. Moreover, the decoder cannot respond to the subjects’
immediate intention change, consequently allowing a long buffer reaction time. In further research,
this problem could be mitigated by shortening the window or reducing the effect of artifacts and noise.
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4.2. Performance of the BCI Controller

In our study, 10 subjects demonstrated 1.45 of the average time ratio compared with the smartwatch
controller. The result suggested that the developed controller could accommodate further improvement.
Compared with the existing manual controller, previously developed BCI controllers showed an
average time ratio of 2.03 for lower-limb exoskeleton [7], 1.27–1.35 for remote-controlled mobile
robots [39,40]. According to the aforementioned studies which presented less performance, considering
the subjects were in an ambulatory environment instead of sitting still to control the exoskeleton.

Utilizing the FBCSP algorithm, we could discriminate gait-related SMR with more than 80%
accuracy both offline and online. Meanwhile, the classifier_GvN presented an average of 8%-point
higher offline accuracy (t(18) = 2.6, p = 0.018) and 2%-point higher online accuracy (t(18) = 0.7, p = 0.495)
than the classifier_GvS (Table 2). Thus, the EEG feature difference between the Gait MI and the
Do-nothing appeared to be more discriminative than the two MIs. Based on interviews of the subjects,
we could assess that non-repeating single action imagery such as Sit MI may be less effective in
causing the EEG signal variations than the Gait MI, which is relatively familiar and straightforward.
This variation might be the reason that the Gait MI vs. Sit MI classification results were not as high as
that of Gait MI and Do-nothing despite the instructions and guidelines (Table 1). Further experiments
should consider these concerns about the MI protocol.

4.3. Limitations and Future Direction

Notably, we acknowledged the existence of numerous alternative novel algorithms for decoding
neural features of the EEG signal [41–45]. Among them, deep learning and EEG channel optimization
methods are the most relevant methods for this study. Convolutional Neural Network and its applied
algorithms are the prominent and spotlighted algorithm for MI signal toward an image domain analysis
through the ERSP or short-time Fourier transform (STFT) [43]. Additionally, the EEG MI signals
present prevailing spatial feature via a multi-electrodes channel. Consequently, it is recommended to
adopt the channel selection method to enhance the performance of the decoder [44]. Further research
can proceed from the above-mentioned updating algorithms concerning practical BCI application.
While competing with the classification accuracies, in this study, for the first time, we tried to focus
on demonstrating the feasibility of the real-time operation of the lower-limb exoskeleton with the
gait-related MI accompanied by a conventional yet well-settled FBCSP algorithm. Our approach and
findings can form a basis for further developing an online BCI controller for aiding gait disabilities.

Due to the natural and endogenous characteristics of the MI-actuated exoskeleton, it is the
most corresponding BCI application to a fundamental property in terms of it’s goal-direct and
voluntary nature [3]. Therefore, it is significant that the BCI controlled lower-limb exoskeleton could be
advantageous in rehabilitation circumstances [19,46–48]. Patients with lower-limb disabilities following
a stroke or SCI devote their efforts to regaining the utility of their limbs. The traditional rehabilitation
paradigm has been bottom-up, i.e., physical therapists or treadmill move patients’ limb repeatedly to
trigger neuroplasticity in the brain. Contrarily, a self-paced assistive exoskeleton controller directly
decodes the brain signal and bypasses the path to the damaged limb [49]. Accompanied by this
top-down and the classic bottom-up rehabilitation route, a closed-loop feedback interface brings the
promising result for the disabilities to regain ambulation ability at will [50,51]. Other researches have
also demonstrated the effect of MI-based rehabilitation on balancing or ambulatory skills [19,52]. While
this study presents the feasibility of the real-time intuitive MI-based hybrid BCI controller with a
wearable exoskeleton on healthy subjects, testing the system with the patients is our intended future
study. Further research will recruit more subjects including a SCI gait impairment for practical real-life
BCI applications, accompanied by an advanced display device such as portable augmented reality
(AR) glasses with an MI assistive environment [53]. We expect that the gait rehabilitation with a
BCI-controlled exoskeleton can significantly improve the degree of motor recovery.



Sensors 2020, 20, 7309 13 of 15

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/24/7309/s1,
Video S1.

Author Contributions: Conceptualization and methodology, J.C., K.T.K. and H.K.; resources, J.C.; investigation,
J.C. and K.T.K.; software, J.C. and J.H.J.; formal analysis, J.C.; data curation, J.C.; validation, J.C. and J.H.J.;
visualization, J.C.; writing-original draft, J.C.; writing-review & editing, K.T.K., S.J.L. and H.K.; supervision, S.J.L.
and H.K.; project administration, L.K., S.J.L. and H.K.; funding acquisition, L.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean Government (Development of Non-Invasive Integrated
BCI SW Platform to Control Home Appliances and External Devices by User’s Thought via AR/VR Interface)
under Grant 2017-0-00432.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 2001, 89,
1123–1134. [CrossRef]

2. Wolpaw, J.; Birbaumer, N.; Heetderks, W.J.; Mcfarland, D.; Peckham, P.; Schalk, G.; Donchin, E.; Quatrano, L.A.;
Robinson, C.; Vaughan, T. Brain-Computer interface technology: A review of the first international meeting.
IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [CrossRef] [PubMed]

3. He, Y.; Eguren, D.; Azorín, J.M.; Grossman, R.G.; Luu, T.P.; Contreras-Vidal, J.L. Brain-machine interfaces for
controlling lower-limb powered robotic systems. J. Neural Eng. 2018, 15, 21004. [CrossRef] [PubMed]

4. Tariq, M.; Trivailo, P.M.; Simic, M. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots.
Front. Hum. Neurosci. 2018, 12, 312. [CrossRef]

5. Vaughan, T.M.; McFarland, D.J.; Schalk, G.; Sarnacki, W.A.; Krusienski, D.J.; Sellers, E.W.; Wolpaw, J.R.
The wadsworth BCI research and development program: At home with BCI. IEEE Trans. Neural Syst. Rehabil.
Eng. 2006, 14, 229–233. [CrossRef]

6. Jeong, J.-H.; Kwak, N.-S.; Lee, M.; Lee, S. Decoding of walking Intention under Lower limb exoskeleton
Environment using MRCP Feature. In Proceedings of the GBCIC, Graz, Austria, 18–22 September 2017.

7. Kwak, N.-S.; Müller, K.-R.; Lee, S.-W. A lower limb exoskeleton control system based on steady state visual
evoked potentials. J. Neural Eng. 2015, 12, 56009. [CrossRef]

8. Pfurtscheller, G.; Lopes da Silva, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic
principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 1999, 110, 1842–1857. [CrossRef]

9. Miranda, R.A.; Casebeer, W.D.; Hein, A.M.; Judy, J.W.; Krotkov, E.P.; Laabs, T.L.; Manzo, J.E.; Pankratz, K.G.;
Pratt, G.A.; Sanchez, J.C.; et al. DARPA-funded efforts in the development of novel brain-computer interface
technologies. J. Neurosci. Methods 2015, 244, 52–67. [CrossRef]

10. Vidal, J.J. Toward Direct Brain-Computer Communication. Annu. Rev. Biophys. Bioeng. 1973, 2, 157–180.
[CrossRef]

11. Cheron, G.; Duvinage, M.; De Saedeleer, C.; Castermans, T.; Bengoetxea, A.; Petieau, M.; Seetharaman, K.;
Hoellinger, T.; Dan, B.; Dutoit, T.; et al. From spinal central pattern generators to cortical network: Integrated
BCI for walking rehabilitation. Neural Plast. 2012, 2012. [CrossRef]

12. Wang, S.; Wang, L.; Meijneke, C.; Van Asseldonk, E.; Hoellinger, T.; Cheron, G.; Ivanenko, Y.; La Scaleia, V.;
Sylos-Labini, F.; Molinari, M.; et al. Design and Control of the MINDWALKER Exoskeleton. IEEE Trans.
Neural Syst. Rehabil. Eng. 2015, 23, 277–286. [CrossRef] [PubMed]

13. Gordleeva, S.; Lukoyanov, M.V.; Mineev, S.; Khoruzhko, M.A.; Mironov, V.; Kaplan, A.; Kazantsev, V.
Exoskeleton Control System Based on Motor-Imaginary Brain–Computer Interface. Sovrem. Tehnol. Med.
2017, 9, 31. [CrossRef]

14. Lee, K.; Liu, D.; Perroud, L.; Chavarriaga, R.; del Millán, J.R. Endogenous Control of Powered Lower-Limb
Exoskeleton. In Proceedings of the Wearable Robotics: Challenges and Trends, Segovia, Spain, 18–21 October
2016; González-Vargas, J., Ibáñez, J., Contreras-Vidal, J.L., van der Kooij, H., Pons, J.L., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 115–119.

15. Wang, C.; Wu, X.; Wang, Z.; Ma, Y. Implementation of a Brain-Computer Interface on a Lower-Limb
Exoskeleton. IEEE Access 2018, 6, 38524–38534. [CrossRef]

http://www.mdpi.com/1424-8220/20/24/7309/s1
http://dx.doi.org/10.1109/5.939829
http://dx.doi.org/10.1109/TRE.2000.847807
http://www.ncbi.nlm.nih.gov/pubmed/10896178
http://dx.doi.org/10.1088/1741-2552/aaa8c0
http://www.ncbi.nlm.nih.gov/pubmed/29345632
http://dx.doi.org/10.3389/fnhum.2018.00312
http://dx.doi.org/10.1109/TNSRE.2006.875577
http://dx.doi.org/10.1088/1741-2560/12/5/056009
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1016/j.jneumeth.2014.07.019
http://dx.doi.org/10.1146/annurev.bb.02.060173.001105
http://dx.doi.org/10.1155/2012/375148
http://dx.doi.org/10.1109/TNSRE.2014.2365697
http://www.ncbi.nlm.nih.gov/pubmed/25373109
http://dx.doi.org/10.17691/stm2017.9.3.04
http://dx.doi.org/10.1109/ACCESS.2018.2853628


Sensors 2020, 20, 7309 14 of 15

16. Yu, G.; Wang, J.; Chen, W.; Zhang, J. EEG-based brain-controlled lower extremity exoskeleton rehabilitation
robot. In Proceedings of the 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS)
and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo, China, 19–21 November
2017; pp. 763–767.

17. Do, A.H.; Wang, P.T.; King, C.E.; Chun, S.N.; Nenadic, Z. Brain-computer interface controlled robotic gait
orthosis. J. Neuroeng. Rehabil. 2013, 10, 111. [CrossRef]

18. López-Larraz, E.; Trincado-Alonso, F.; Rajasekaran, V.; Pérez-Nombela, S.; del-Ama, A.J.; Aranda, J.;
Minguez, J.; Gil-Agudo, A.; Montesano, L. Control of an Ambulatory Exoskeleton with a Brain–Machine
Interface for Spinal Cord Injury Gait Rehabilitation. Front. Neurosci. 2016, 10, 359. [CrossRef]

19. Donati, A.R.C.; Shokur, S.; Morya, E.; Campos, D.S.F.; Moioli, R.C.; Gitti, C.M.; Augusto, P.B.; Tripodi, S.;
Pires, C.G.; Pereira, G.A.; et al. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol
Induces Partial Neurological Recovery in Paraplegic Patients. Sci. Rep. 2016, 6, 30383. [CrossRef]

20. Talukdar, U.; Hazarika, S.M.; Gan, J.Q. Motor imagery and mental fatigue: Inter-relationship and EEG based
estimation. J. Comput. Neurosci. 2019, 46, 55–76. [CrossRef]

21. Townsend, G.; Graimann, B.; Pfurtscheller, G. Continuous EEG classification during motor imagery-simulation
of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 258–265. [CrossRef]

22. Han, C.-H.; Müller, K.-R.; Hwang, H.-J. Brain-Switches for Asynchronous Brain–Computer Interfaces: A
Systematic Review. Electronics 2020, 9, 422. [CrossRef]

23. Han, C.-H.; Kim, E.; Im, C.-H. Development of a Brain-Computer Interface Toggle Switch with Low
False-Positive Rate Using Respiration-Modulated Photoplethysmography. Sensors 2020, 20, 348. [CrossRef]

24. Yu, Y.; Liu, Y.; Yin, E.; Jiang, J.; Zhou, Z.; Hu, D. An Asynchronous Hybrid Spelling Approach Based on
EEG–EOG Signals for Chinese Character Input. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1292–1302.
[CrossRef] [PubMed]

25. Ortiz, M.; Ferrero, L.; Iáñez, E.; Azorín, J.M.; Contreras-Vidal, J.L. Sensory Integration in Human Movement:
A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb
Exoskeleton. Front. Bioeng. Biotechnol. 2020, 8. [CrossRef] [PubMed]

26. Pfurtscheller, G.; Solis-Escalante, T.; Ortner, R.; Linortner, P.; Müller-Putz, G.R. Self-paced operation of an
SSVEP-Based orthosis with and without an imagery-based “brain switch:” A feasibility study towards a
hybrid BCI. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2010, 18, 409–414.
[CrossRef] [PubMed]

27. Pfurtscheller, G.; Allison, B.Z.; Bauernfeind, G.; Brunner, C.; Solis Escalante, T.; Scherer, R.; Zander, T.O.;
Mueller-Putz, G.; Neuper, C.; Birbaumer, N. The hybrid BCI. Front. Neurosci. 2010, 4, 3. [CrossRef]

28. Kim, Y.; Song, C.; Park, J. Development of actuation system for wearable robots using spiral spring.
In Proceedings of the 2012 12th International Conference on Control, Automation and Systems, Jeju Island,
Korea, 17–21 October 2012; pp. 1863–1868.

29. Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined
hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [CrossRef]

30. Ang, K.K.; Chin, Z.Y.; Wang, C.; Guan, C.; Zhang, H. Filter Bank Common Spatial Pattern Algorithm on BCI
Competition IV Datasets 2a and 2b. Front. Neurosci. 2012, 6, 39. [CrossRef]

31. Salinas, R.; Schachter, E.; Miranda, M. Recognition and Real-Time Detection of Blinking Eyes on
Electroencephalographic Signals Using Wavelet Transform. In Proceedings of the Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, Buenos Aires, Argentina, 3–6 September
2012; Alvarez, L., Mejail, M., Gomez, L., Jacobo, J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg,
Germany, 2012; pp. 682–690.

32. Choi, J.; Kim, K.; Lee, J.; Lee, S.J.; Kim, H. Robust Semi-synchronous BCI Controller for Brain-Actuated
Exoskeleton System. In Proceedings of the 2020 8th International Winter Conference on Brain-Computer
Interface (BCI), High1 Resort, Korea, 18–20 February 2020; pp. 1–3.

33. Mcfarland, D.; Sarnacki, W.; Wolpaw, J. Brain-computer interface (BCI) operation: Optimizing information
transfer rates. Biol. Psychol. 2003, 63, 237–251. [CrossRef]

34. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including
independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]

http://dx.doi.org/10.1186/1743-0003-10-111
http://dx.doi.org/10.3389/fnins.2016.00359
http://dx.doi.org/10.1038/srep30383
http://dx.doi.org/10.1007/s10827-018-0701-0
http://dx.doi.org/10.1109/TNSRE.2004.827220
http://dx.doi.org/10.3390/electronics9030422
http://dx.doi.org/10.3390/s20020348
http://dx.doi.org/10.1109/TNSRE.2019.2914916
http://www.ncbi.nlm.nih.gov/pubmed/31071045
http://dx.doi.org/10.3389/fbioe.2020.00735
http://www.ncbi.nlm.nih.gov/pubmed/33014987
http://dx.doi.org/10.1109/TNSRE.2010.2040837
http://www.ncbi.nlm.nih.gov/pubmed/20144923
http://dx.doi.org/10.3389/fnpro.2010.00003
http://dx.doi.org/10.1109/86.895946
http://dx.doi.org/10.3389/fnins.2012.00039
http://dx.doi.org/10.1016/S0301-0511(03)00073-5
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009


Sensors 2020, 20, 7309 15 of 15

35. Cebolla, A.M.; Petieau, M.; Cevallos, C.; Leroy, A.; Dan, B.; Cheron, G. Long-lasting cortical reorganization
as the result of motor imagery of throwing a ball in a virtual tennis court. Front. Psychol. 2015, 6, 1869.
[CrossRef]

36. Sabate, M.; Llanos, C.; Enriquez, E.; Díaz, M. Mu rhythm, visual processing and motor control.
Clin. Neurophysiol. 2011, 123, 550–557. [CrossRef]

37. Stinear, C.M.; Byblow, W.D.; Steyvers, M.; Levin, O.; Swinnen, S.P. Kinesthetic, but not visual, motor imagery
modulates corticomotor excitability. Exp. Brain Res. 2006, 168, 157–164. [CrossRef] [PubMed]

38. Tariq, M.; Trivailo, P.M.; Simic, M. Mu-Beta event-related (de)synchronization and EEG classification of
left-right foot dorsiflexion kinaesthetic motor imagery for BCI. PLoS ONE 2020, 15, e0230184. [CrossRef]
[PubMed]

39. Millan, J.R.; Renkens, F.; Mourino, J.; Gerstner, W. Noninvasive brain-actuated control of a mobile robot by
human EEG. IEEE Trans. Biomed. Eng. 2004, 51, 1026–1033. [CrossRef] [PubMed]

40. Chae, Y.; Jeong, J.; Jo, S. Toward Brain-Actuated Humanoid Robots: Asynchronous Direct Control Using an
EEG-Based BCI. IEEE Trans. Robot. 2012, 28, 1131–1144. [CrossRef]

41. Tang, Z.; Li, C.; Sun, S. Single-trial EEG classification of motor imagery using deep convolutional neural
networks. Optik 2017, 130, 11–18. [CrossRef]

42. Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based
electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 51001. [CrossRef]

43. Ha, K.-W.; Jeong, J.-W. Motor Imagery EEG Classification Using Capsule Networks. Sensors 2019, 19, 2854.
[CrossRef]

44. Jin, J.; Xiao, R.; Daly, I.; Miao, Y.; Wang, X.; Cichocki, A. Internal Feature Selection Method of CSP Based on
L1-Norm and Dempster-Shafer Theory. IEEE Trans. Neural Networks Learn. Syst. 2020, 1–12. [CrossRef]

45. Jin, J.; Liu, C.; Daly, I.; Miao, Y.; Li, S.; Wang, X.; Cichocki, A. Bispectrum-Based Channel Selection for Motor
Imagery Based Brain-Computer Interfacing. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2153–2163.
[CrossRef]

46. Lebedev, M.A.; Nicolelis, M.A.L. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and
Neurorehabilitation. Physiol. Rev. 2017, 97, 767–837. [CrossRef]

47. Bockbrader, M.A.; Francisco, G.; Lee, R.; Olson, J.; Solinsky, R.; Boninger, M.L. Brain Computer Interfaces in
Rehabilitation Medicine. PM R 2018, 10, S233–S243. [CrossRef] [PubMed]

48. Lazarou, I.; Nikolopoulos, S.; Petrantonakis, P.C.; Kompatsiaris, I.; Tsolaki, M. EEG-Based Brain–Computer
Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of
the 21st Century. Front. Hum. Neurosci. 2018, 12, 14. [CrossRef] [PubMed]

49. Pfurtscheller, G.; Neuper, C.; Muller, G.R.; Obermaier, B.; Krausz, G.; Schlogl, A.; Scherer, R.; Graimann, B.;
Keinrath, C.; Skliris, D.; et al. Graz-BCI: State of the art and clinical applications. IEEE Trans. Neural Syst.
Rehabil. Eng. 2003, 11, 177. [CrossRef] [PubMed]

50. Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M.L.;
Rana, M.; Oblak, E.; et al. Closed-loop brain training: The science of neurofeedback. Nat. Rev. Neurosci. 2017,
18, 86–100. [CrossRef] [PubMed]

51. Morone, G.; Spitoni, G.F.; De Bartolo, D.; Ghanbari Ghooshchy, S.; Di Iulio, F.; Paolucci, S.; Zoccolotti, P.;
Iosa, M. Rehabilitative devices for a top-down approach. Expert Rev. Med. Devices 2019, 16, 187–195.
[CrossRef] [PubMed]

52. Cho, H.-Y.; Kim, J.-S.; Lee, G.-C. Effects of motor imagery training on balance and gait abilities in post-stroke
patients: A randomized controlled trial. Clin. Rehabil. 2012, 27. [CrossRef] [PubMed]

53. Cevallos, C.; Zarka, D.; Hoellinger, T.; Leroy, A.; Dan, B.; Cheron, G. Oscillations in the human brain during
walking execution, imagination and observation. Neuropsychologia 2015, 79, 223–232. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3389/fpsyg.2015.01869
http://dx.doi.org/10.1016/j.clinph.2011.07.034
http://dx.doi.org/10.1007/s00221-005-0078-y
http://www.ncbi.nlm.nih.gov/pubmed/16078024
http://dx.doi.org/10.1371/journal.pone.0230184
http://www.ncbi.nlm.nih.gov/pubmed/32182270
http://dx.doi.org/10.1109/TBME.2004.827086
http://www.ncbi.nlm.nih.gov/pubmed/15188874
http://dx.doi.org/10.1109/TRO.2012.2201310
http://dx.doi.org/10.1016/j.ijleo.2016.10.117
http://dx.doi.org/10.1088/1741-2552/ab260c
http://dx.doi.org/10.3390/s19132854
http://dx.doi.org/10.1109/TNNLS.2020.3015505
http://dx.doi.org/10.1109/TNSRE.2020.3020975
http://dx.doi.org/10.1152/physrev.00027.2016
http://dx.doi.org/10.1016/j.pmrj.2018.05.028
http://www.ncbi.nlm.nih.gov/pubmed/30269808
http://dx.doi.org/10.3389/fnhum.2018.00014
http://www.ncbi.nlm.nih.gov/pubmed/29472849
http://dx.doi.org/10.1109/TNSRE.2003.814454
http://www.ncbi.nlm.nih.gov/pubmed/12899267
http://dx.doi.org/10.1038/nrn.2016.164
http://www.ncbi.nlm.nih.gov/pubmed/28003656
http://dx.doi.org/10.1080/17434440.2019.1574567
http://www.ncbi.nlm.nih.gov/pubmed/30677307
http://dx.doi.org/10.1177/0269215512464702
http://www.ncbi.nlm.nih.gov/pubmed/23129815
http://dx.doi.org/10.1016/j.neuropsychologia.2015.06.039
http://www.ncbi.nlm.nih.gov/pubmed/26164473
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	System Overview 
	Data Acquisition 
	EEG System 
	MI Protocol 

	EEG Signal Processing 
	Feature Extraction 
	Feature Selection 
	Real-Time Decoder 

	BCI Controller 
	Triple Eye Blink 
	MI Buffer and Visual Feedback 

	System Evaluation 
	Controller Performance 
	Classification Accuracy 
	Information Transfer Rate 


	Results 
	Feature Selection 
	System Evaluation 
	Control Performance 
	Classification Accuracy 
	Information Transfer Rate 


	Discussion 
	Characteristics of the EEG Decoder 
	Performance of the BCI Controller 
	Limitations and Future Direction 

	References

