## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (2E)-2-Benzylidene-9-phenyl-3,4-dihydroacridin-1(2H)-one

#### T. Vinuchakkaravarthy,<sup>a</sup> M. Sankaran,<sup>b</sup> P. S. Mohan<sup>b</sup> and D. Velmurugan<sup>a</sup>\*

<sup>a</sup>Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai 600 025, India, and <sup>b</sup>Department of Chemistry, Bharathiar University, Coimbatore 641 046, India Correspondence e-mail: shirai2011@gmail.com

Received 3 January 2014; accepted 8 July 2014 Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.131; data-to-parameter ratio = 18.8.

In the title compound, C<sub>26</sub>H<sub>19</sub>NO, the plane of the aromatic heterocycle makes a dihedral angle of 75.22  $(4)^{\circ}$  with that of the attached phenyl ring. In the crystal, molecules are connected by C-H···O interactions, generating  $R_2^2(12)$ dimers. These dimers are further connected by  $C-H\cdots\pi$ interactions, linking the molecules into chains running along the *a*-axis direction.

#### **Related literature**

For background to acridines, see: Kumar et al. (2012). For the biological activity of acridine derivatives, see: Pigatto et al. (2011); Das et al. (2011); Kumar et al. (2012); Prommier et al. (2006) Denny et al. (1982); Baguley & Ferguson (1998). For the synthesis of acridines, see: Tomar et al. (2010). For related structures, see: Buckleton & Waters (1984); Chantrapromma et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).



#### Experimental

| Crystal data         |                   |
|----------------------|-------------------|
| $C_{26}H_{19}NO$     | a = 9.2222 (3) Å  |
| $M_r = 361.42$       | b = 10.7555 (4) Å |
| Monoclinic, $P2_1/c$ | c = 19.4962 (5) Å |
|                      |                   |

 $\beta = 95.503 \ (2)^{\circ}$ V = 1924.90 (11) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation

#### Data collection

| Bruker SMART APEXII CCD              |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 2008)               |
| $T_{\min} = 0.662, T_{\max} = 0.746$ |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 254 parameters  $wR(F^2) = 0.131$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ 4776 reflections

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                 | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$              | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------------------|--------------|-------------------------|---------------------------|--------------------------------------|
| $C10-H10B\cdots O1^{i}$ $C26-H26\cdots Cg1^{ii}$ | 0.97<br>0.93 | 2.58<br>2.71            | 3.2700 (18)<br>3.577 (18) | 128<br>156                           |
|                                                  |              |                         | _                         |                                      |

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TV and DV also thank the UGC (SAP-CAS) for the facilities to the department.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6954).

#### References

- Baguley, B. C. & Ferguson, L. R. (1998). Biochim. Biophys. Acta, 1400, 213-222
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buckleton, J. S. & Waters, T. N. (1984). Acta Cryst. C40, 1587-1589.
- Chantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Crvst. E66, 081-082.
- Das, S., Kundu, S. & Suresh, K. G. (2011). DNA Cell Biol. 30, 525-535.
- Denny, W. A., Cain B. F., Atwell, G. J., Hansch, C. & Panthananickal, A. (1982). J. Med. Chem. 25, 276-315.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kumar, R., Kaur, M. & Kumari, M. (2012). Acta Pol. Pharm. 69, 3-9.
- Pigatto, M. C., Lima, M. C. A., Galdino, S. L., Pitta, I. R., Vessecchi, R., Assis, M. D., Santos, J. S., Costa, T. C. T. D. & Lopes, P. N. (2011). Eur. J. Med. Chem. 1, 4245-4251.
- Prommier, Y. & Goldwasser, F., Chabner, B. A. & Longo, D. L. (2006). Editors. Cancer Chemother. Biother. pp. 451-475.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tomar, V., Bhattacharjee, G., Uddin, K., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745-751.



 $\mu = 0.08 \text{ mm}^{-1}$ 

 $0.20 \times 0.20 \times 0.20$  mm

18382 measured reflections

4776 independent reflections 3205 reflections with  $I > 2\sigma(I)$ 

T = 293 K

 $R_{\rm int} = 0.029$ 

# supporting information

Acta Cryst. (2014). E70, o870 [doi:10.1107/S1600536814015943]

# (2E)-2-Benzylidene-9-phenyl-3,4-dihydroacridin-1(2H)-one

## T. Vinuchakkaravarthy, M. Sankaran, P. S. Mohan and D. Velmurugan

## S1. Comment

Acridine is structurally related to anthracene with one of the central CH group replaced by nitrogen. Amsacrine which is an acridine derivative is clinically used for the treatment of cancer (Denny *et al.*, 1982; Baguley & Ferguson, 1998). The strong activity of acridine derivatives is due to their ability to intercalate into DNA base pairs and leading to cell cycle arrest and apoptosis (Prommier *et al.*, 2006).

The phenyl (C21—C26) and benzyl (C14—C20) rings deviate from the plane of the acridine system by 72.48 (6) ° and 49.24 (6) °, respectively. The crystal packing is stabilized by intermolecular C—H···O (C10—H10B···O1) interactions generating a  $R^2_2(12)$  ring motif (Bernstein *et al.*, 1995). These dimers are further connected by C—H··· $\pi$  (C26—H26···*Cg*1) interactions generating chains running along the *a*-axis.

#### S2. Experimental

A 1:2 molar mixture of 9-phenyl-3,4-dihydroacridin-1(2*H*)-one was treated with aromatic aldehydes in the presence of NaOH and allowed to stir at room temperature for 5–7 h. After completion of the reaction as inferred by the TLC, the mixture was poured into 200 g of crushed ice and neutralized with dil HCl. The precipitate thus formed after adding into crushed ice was filtered off and the residue subjected to column chromatography using petroleum ether: ethyl acetate mixture (3:1) v/v as eluent and compound obtained as a pale yellow solid.

#### **S3. Refinement**

All H atoms were located in a difference map. Nevertheless, they were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .



## Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.



## Figure 2

The cystal packing of the title compound showing the intermolecular C—H···O and C—H··· $\pi$  interactions chain running along *a*axis, where *Cg*1 is the centroid of ring atoms C1—C6. Symmetry codes: (i) *X*,1/2-Y,1/2+*Z*; (ii) 1-*X*,-1/2+Y,1/2-*Z*; (iii) *X*,3/2-Y,1/2+*Z* and (iv) 1-*X*,1/2+Y,1/2-*Z*.

## (2E)-2-Benzylidene-9-phenyl-3,4-dihydroacridin-1(2H)-one

| Crystal data                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>26</sub> H <sub>19</sub> NO<br>$M_r = 361.42$<br>Monoclinic, $P2_1/c$<br>Hall symbol: -P 2ybc<br>a = 9.2222 (3) Å<br>b = 10.7555 (4) Å<br>c = 19.4962 (5) Å<br>$\beta = 95.503$ (2)°<br>V = 1924.90 (11) Å <sup>3</sup><br>Z = 4<br>F(000) = 760 | $D_x = 1.247 \text{ Mg m}^{-3}$<br>$D_m = 1.25 \text{ Mg m}^{-3}$<br>$D_m$ measured by not measured<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 4776 reflections<br>$\theta = 2.1-28.3^{\circ}$<br>$\mu = 0.08 \text{ mm}^{-1}$<br>T = 293  K<br>Block, white<br>$0.20 \times 0.20 \times 0.20 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |
| Bruker SMART APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator                                                                                                                                         | $\omega$ and $\varphi$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2008)<br>$T_{\min} = 0.662, T_{\max} = 0.746$                                                                                                                                                                                                    |

| 18382 measured reflections             | $\theta_{\rm max} = 28.3^{\circ},  \theta_{\rm min} = 2.1^{\circ}$ |
|----------------------------------------|--------------------------------------------------------------------|
| 4776 independent reflections           | $h = -12 \rightarrow 10$                                           |
| 3205 reflections with $I > 2\sigma(I)$ | $k = -13 \rightarrow 14$                                           |
| $R_{\rm int} = 0.029$                  | $l = -25 \rightarrow 25$                                           |
|                                        |                                                                    |

#### Refinement Refinement on $F^2$ Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.044$ H-atom parameters constrained $wR(F^2) = 0.131$ $w = 1/[\sigma^2(F_0^2) + (0.0587P)^2 + 0.3326P]$ S = 1.00where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.013$ 4776 reflections $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$ 254 parameters $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.0041 (8) map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| C1   | 0.47972 (17) | 0.49247 (14) | 0.17309 (8)  | 0.0542 (4)                  |  |
| H1   | 0.4841       | 0.4062       | 0.1757       | 0.065*                      |  |
| C2   | 0.5587 (2)   | 0.56214 (17) | 0.22142 (9)  | 0.0711 (5)                  |  |
| H2   | 0.6162       | 0.5233       | 0.2569       | 0.085*                      |  |
| C3   | 0.5539 (2)   | 0.69204 (17) | 0.21798 (10) | 0.0811 (6)                  |  |
| H3   | 0.6089       | 0.7388       | 0.2511       | 0.097*                      |  |
| C4   | 0.4701 (2)   | 0.75058 (15) | 0.16689 (9)  | 0.0677 (5)                  |  |
| H4   | 0.4674       | 0.8370       | 0.1655       | 0.081*                      |  |
| C5   | 0.38702 (16) | 0.68116 (12) | 0.11582 (7)  | 0.0457 (3)                  |  |
| C6   | 0.39092 (15) | 0.54970 (12) | 0.11883 (7)  | 0.0416 (3)                  |  |
| C7   | 0.30846 (14) | 0.48187 (11) | 0.06585 (6)  | 0.0376 (3)                  |  |
| C8   | 0.23412 (14) | 0.54820 (11) | 0.01290 (6)  | 0.0381 (3)                  |  |
| C9   | 0.23927 (14) | 0.68112 (11) | 0.01406 (7)  | 0.0399 (3)                  |  |
| C10  | 0.15959 (17) | 0.75179 (12) | -0.04403 (7) | 0.0484 (3)                  |  |
| H10A | 0.1996       | 0.8350       | -0.0456      | 0.058*                      |  |
| H10B | 0.0577       | 0.7590       | -0.0361      | 0.058*                      |  |
| C11  | 0.17193 (18) | 0.68716 (12) | -0.11266 (7) | 0.0502 (4)                  |  |
| H11A | 0.1159       | 0.7328       | -0.1490      | 0.060*                      |  |
| H11B | 0.2730       | 0.6870       | -0.1227      | 0.060*                      |  |
|      |              |              |              |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C12 | 0.11714 (15)  | 0.55543 (12) | -0.11151 (7) | 0.0434 (3) |
|-----|---------------|--------------|--------------|------------|
| C13 | 0.14319 (15)  | 0.48612 (11) | -0.04483 (6) | 0.0399 (3) |
| C14 | 0.04150 (17)  | 0.49483 (12) | -0.16301 (7) | 0.0475 (3) |
| H14 | 0.0134        | 0.4146       | -0.1523      | 0.057*     |
| C15 | -0.00427 (18) | 0.53472 (12) | -0.23384 (7) | 0.0488 (3) |
| C16 | 0.0762 (2)    | 0.61459 (14) | -0.27197 (8) | 0.0565 (4) |
| H16 | 0.1647        | 0.6460       | -0.2525      | 0.068*     |
| C17 | 0.0255 (2)    | 0.64745 (16) | -0.33848 (8) | 0.0688 (5) |
| H17 | 0.0809        | 0.6998       | -0.3635      | 0.083*     |
| C18 | -0.1053 (3)   | 0.60374 (18) | -0.36787 (9) | 0.0773 (6) |
| H18 | -0.1398       | 0.6280       | -0.4122      | 0.093*     |
| C19 | -0.1857 (2)   | 0.52368 (18) | -0.33150 (9) | 0.0739 (5) |
| H19 | -0.2745       | 0.4935       | -0.3515      | 0.089*     |
| C20 | -0.1349 (2)   | 0.48783 (15) | -0.26524 (8) | 0.0601 (4) |
| H20 | -0.1886       | 0.4319       | -0.2415      | 0.072*     |
| C21 | 0.31014 (14)  | 0.34287 (11) | 0.06809 (6)  | 0.0398 (3) |
| C22 | 0.23121 (16)  | 0.27801 (12) | 0.11307 (7)  | 0.0486 (3) |
| H22 | 0.1776        | 0.3208       | 0.1435       | 0.058*     |
| C23 | 0.23196 (19)  | 0.14904 (14) | 0.11288 (9)  | 0.0607 (4) |
| H23 | 0.1770        | 0.1056       | 0.1425       | 0.073*     |
| C24 | 0.3134 (2)    | 0.08513 (14) | 0.06919 (10) | 0.0710 (5) |
| H24 | 0.3138        | -0.0013      | 0.0691       | 0.085*     |
| C25 | 0.3942 (2)    | 0.14968 (16) | 0.02578 (10) | 0.0766 (5) |
| H25 | 0.4509        | 0.1068       | -0.0033      | 0.092*     |
| C26 | 0.39204 (19)  | 0.27804 (14) | 0.02481 (9)  | 0.0604 (4) |
| H26 | 0.4463        | 0.3209       | -0.0053      | 0.072*     |
| N1  | 0.31024 (13)  | 0.74545 (10) | 0.06376 (6)  | 0.0459 (3) |
| O1  | 0.09155 (12)  | 0.38323 (8)  | -0.03732 (5) | 0.0517 (3) |
|     |               |              |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| C1  | 0.0594 (9)  | 0.0455 (8)  | 0.0552 (8)  | 0.0054 (7)  | -0.0065 (7)  | -0.0014 (6) |
| C2  | 0.0810 (12) | 0.0635 (10) | 0.0627 (10) | 0.0080 (9)  | -0.0252 (9)  | -0.0038 (8) |
| C3  | 0.1013 (15) | 0.0616 (11) | 0.0722 (11) | 0.0025 (10) | -0.0351 (11) | -0.0180 (9) |
| C4  | 0.0883 (13) | 0.0435 (8)  | 0.0671 (10) | 0.0003 (8)  | -0.0153 (9)  | -0.0135 (7) |
| C5  | 0.0519 (8)  | 0.0371 (7)  | 0.0476 (7)  | 0.0009 (6)  | 0.0017 (6)   | -0.0063 (6) |
| C6  | 0.0442 (7)  | 0.0374 (7)  | 0.0431 (7)  | 0.0019 (6)  | 0.0029 (6)   | -0.0019 (5) |
| C7  | 0.0401 (7)  | 0.0310 (6)  | 0.0421 (6)  | 0.0006 (5)  | 0.0059 (5)   | 0.0004 (5)  |
| C8  | 0.0424 (7)  | 0.0301 (6)  | 0.0419 (7)  | -0.0008(5)  | 0.0045 (5)   | 0.0012 (5)  |
| C9  | 0.0441 (7)  | 0.0298 (6)  | 0.0460 (7)  | -0.0005 (5) | 0.0054 (6)   | 0.0008 (5)  |
| C10 | 0.0619 (9)  | 0.0281 (6)  | 0.0537 (8)  | -0.0006 (6) | -0.0023 (7)  | 0.0052 (6)  |
| C11 | 0.0655 (9)  | 0.0372 (7)  | 0.0470 (7)  | -0.0054 (6) | 0.0013 (7)   | 0.0077 (6)  |
| C12 | 0.0527 (8)  | 0.0340 (6)  | 0.0434 (7)  | 0.0007 (6)  | 0.0039 (6)   | 0.0030 (5)  |
| C13 | 0.0467 (7)  | 0.0299 (6)  | 0.0428 (7)  | -0.0002 (5) | 0.0028 (6)   | 0.0022 (5)  |
| C14 | 0.0638 (9)  | 0.0346 (7)  | 0.0437 (7)  | 0.0006 (6)  | 0.0037 (6)   | 0.0023 (5)  |
| C15 | 0.0669 (9)  | 0.0376 (7)  | 0.0415 (7)  | 0.0072 (7)  | 0.0042 (7)   | -0.0024 (6) |
| C16 | 0.0744 (11) | 0.0466 (8)  | 0.0493 (8)  | 0.0060 (7)  | 0.0093 (7)   | 0.0015 (7)  |
|     |             |             |             |             |              |             |

# supporting information

| C17 | 0.1057 (15) | 0.0537 (9)  | 0.0488 (9)  | 0.0118 (10) | 0.0160 (10)  | 0.0080 (7)  |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| C18 | 0.1155 (17) | 0.0686 (12) | 0.0457 (9)  | 0.0241 (11) | -0.0039 (10) | 0.0050 (8)  |
| C19 | 0.0860 (13) | 0.0770 (12) | 0.0544 (10) | 0.0099 (10) | -0.0154 (9)  | -0.0101 (9) |
| C20 | 0.0771 (11) | 0.0542 (9)  | 0.0477 (8)  | -0.0002 (8) | 0.0000 (8)   | -0.0060 (7) |
| C21 | 0.0437 (7)  | 0.0315 (6)  | 0.0429 (7)  | 0.0038 (5)  | -0.0031 (6)  | 0.0013 (5)  |
| C22 | 0.0569 (9)  | 0.0395 (7)  | 0.0485 (8)  | 0.0022 (6)  | 0.0000 (6)   | 0.0072 (6)  |
| C23 | 0.0715 (11) | 0.0423 (8)  | 0.0648 (10) | -0.0094 (7) | -0.0124 (8)  | 0.0168 (7)  |
| C24 | 0.0966 (14) | 0.0291 (7)  | 0.0817 (12) | 0.0063 (8)  | -0.0204 (11) | 0.0012 (8)  |
| C25 | 0.1012 (15) | 0.0443 (9)  | 0.0846 (13) | 0.0234 (9)  | 0.0111 (11)  | -0.0074 (9) |
| C26 | 0.0708 (10) | 0.0422 (8)  | 0.0705 (10) | 0.0103 (7)  | 0.0191 (8)   | 0.0008 (7)  |
| N1  | 0.0549 (7)  | 0.0322 (5)  | 0.0499 (6)  | 0.0004 (5)  | 0.0015 (5)   | -0.0035 (5) |
| 01  | 0.0673 (7)  | 0.0343 (5)  | 0.0514 (6)  | -0.0106 (4) | -0.0052 (5)  | 0.0058 (4)  |
|     |             |             |             |             |              |             |

Geometric parameters (Å, °)

| C1—C2    | 1.359 (2)   | C13—O1      | 1.2191 (15) |
|----------|-------------|-------------|-------------|
| C1—C6    | 1.4151 (19) | C14—C15     | 1.4689 (18) |
| C1—H1    | 0.9300      | C14—H14     | 0.9300      |
| C2—C3    | 1.399 (2)   | C15—C20     | 1.393 (2)   |
| C2—H2    | 0.9300      | C15—C16     | 1.395 (2)   |
| C3—C4    | 1.356 (2)   | C16—C17     | 1.381 (2)   |
| С3—Н3    | 0.9300      | C16—H16     | 0.9300      |
| C4—C5    | 1.411 (2)   | C17—C18     | 1.369 (3)   |
| C4—H4    | 0.9300      | C17—H17     | 0.9300      |
| C5—N1    | 1.3682 (17) | C18—C19     | 1.377 (3)   |
| C5—C6    | 1.4154 (18) | C18—H18     | 0.9300      |
| C6—C7    | 1.4236 (17) | C19—C20     | 1.386 (2)   |
| С7—С8    | 1.3818 (17) | C19—H19     | 0.9300      |
| C7—C21   | 1.4957 (17) | C20—H20     | 0.9300      |
| C8—C9    | 1.4304 (17) | C21—C26     | 1.3750 (19) |
| C8—C13   | 1.4949 (17) | C21—C22     | 1.3813 (19) |
| C9—N1    | 1.3132 (16) | C22—C23     | 1.387 (2)   |
| C9—C10   | 1.4970 (18) | C22—H22     | 0.9300      |
| C10—C11  | 1.522 (2)   | C23—C24     | 1.373 (3)   |
| C10—H10A | 0.9700      | C23—H23     | 0.9300      |
| C10—H10B | 0.9700      | C24—C25     | 1.369 (3)   |
| C11—C12  | 1.5051 (18) | C24—H24     | 0.9300      |
| C11—H11A | 0.9700      | C25—C26     | 1.381 (2)   |
| C11—H11B | 0.9700      | C25—H25     | 0.9300      |
| C12—C14  | 1.3361 (18) | C26—H26     | 0.9300      |
| C12—C13  | 1.4978 (17) |             |             |
| C2—C1—C6 | 120.76 (14) | O1—C13—C12  | 121.60 (12) |
| C2       | 119.6       | C8—C13—C12  | 117.57 (11) |
| С6—С1—Н1 | 119.6       | C12—C14—C15 | 130.26 (13) |
| C1—C2—C3 | 120.33 (15) | C12—C14—H14 | 114.9       |
| C1—C2—H2 | 119.8       | C15—C14—H14 | 114.9       |
| С3—С2—Н2 | 119.8       | C20-C15-C16 | 118.07 (14) |

| 64 63 63                                             | 120.80 (15)               | C20 C15 C14                         | 117.70(14)          |
|------------------------------------------------------|---------------------------|-------------------------------------|---------------------|
| C4—C3—C2                                             | 120.80 (15)               | C20—C15—C14                         | 117.78(14)          |
| С4—С3—Н3                                             | 119.6                     | C16—C15—C14                         | 124.14 (14)         |
| С2—С3—Н3                                             | 119.6                     | C17—C16—C15                         | 120.55 (17)         |
| C3—C4—C5                                             | 120.37 (15)               | C17—C16—H16                         | 119.7               |
| C3—C4—H4                                             | 119.8                     | C15—C16—H16                         | 119.7               |
| C5—C4—H4                                             | 119.8                     | C18—C17—C16                         | 120.70 (18)         |
| N1—C5—C4                                             | 117.62 (13)               | C18—C17—H17                         | 119.7               |
| N1-C5-C6                                             | 123.01 (12)               | C16—C17—H17                         | 119.7               |
| C4-C5-C6                                             | 119 32 (13)               | C17 - C18 - C19                     | 119 74 (16)         |
| C1 - C6 - C5                                         | 118 43 (12)               | C17 - C18 - H18                     | 120.1               |
| C1 $C6$ $C7$                                         | 123 37 (12)               | $C_{10}$ $C_{18}$ $H_{18}$          | 120.1               |
| $C_{1}^{-} = C_{0}^{-} = C_{1}^{-}$                  | 125.57(12)<br>118.18(12)  | $C_{19}$ $C_{10}$ $C_{20}$          | 120.1<br>120.23(18) |
| $C_{3} = C_{0} = C_{1}$                              | 110.10(12)                | $C_{10} = C_{10} = C_{20}$          | 120.25 (16)         |
| $C_{8} = C_{7} = C_{8}$                              | 118.02(11)                | C18—C19—H19                         | 119.9               |
|                                                      | 122.74 (11)               | C20—C19—H19                         | 119.9               |
| C6—C7—C21                                            | 119.20 (11)               | C19—C20—C15                         | 120.66 (17)         |
| C7—C8—C9                                             | 119.39 (11)               | С19—С20—Н20                         | 119.7               |
| C7—C8—C13                                            | 122.29 (11)               | С15—С20—Н20                         | 119.7               |
| C9—C8—C13                                            | 118.27 (11)               | C26—C21—C22                         | 119.17 (13)         |
| N1—C9—C8                                             | 123.48 (12)               | C26—C21—C7                          | 119.59 (12)         |
| N1-C9-C10                                            | 117.68 (11)               | C22—C21—C7                          | 121.24 (12)         |
| C8—C9—C10                                            | 118.84 (11)               | C21—C22—C23                         | 120.02 (14)         |
| C9—C10—C11                                           | 111.14 (11)               | C21—C22—H22                         | 120.0               |
| C9—C10—H10A                                          | 109.4                     | C23—C22—H22                         | 120.0               |
| C11—C10—H10A                                         | 109.4                     | C24—C23—C22                         | 120.35 (16)         |
| C9-C10-H10B                                          | 109.4                     | C24—C23—H23                         | 119.8               |
| C11_C10_H10B                                         | 109.4                     | $C_{22} = C_{23} = H_{23}$          | 119.8               |
| HIOA CIO HIOB                                        | 109.4                     | $C_{22} = C_{23} = C_{23}$          | 119.0               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 111 20 (11)               | $C_{25} = C_{24} = C_{25}$          | 119.46 (15)         |
| $C_{12} = C_{11} = C_{10}$                           | 111.50 (11)               | $C_{23} = C_{24} = H_{24}$          | 120.5               |
|                                                      | 109.4                     | $C_{23} - C_{24} - H_{24}$          | 120.5               |
|                                                      | 109.4                     | C24—C25—C26                         | 120.52 (17)         |
| C12—C11—H11B                                         | 109.4                     | C24—C25—H25                         | 119.7               |
| C10—C11—H11B                                         | 109.4                     | C26—C25—H25                         | 119.7               |
| H11A—C11—H11B                                        | 108.0                     | C21—C26—C25                         | 120.43 (16)         |
| C14—C12—C13                                          | 115.98 (12)               | C21—C26—H26                         | 119.8               |
| C14—C12—C11                                          | 126.86 (12)               | С25—С26—Н26                         | 119.8               |
| C13—C12—C11                                          | 117.09 (11)               | C9—N1—C5                            | 117.84 (11)         |
| O1—C13—C8                                            | 120.83 (11)               |                                     |                     |
|                                                      |                           |                                     |                     |
| C6-C1-C2-C3                                          | -0.3 (3)                  | C14—C12—C13—O1                      | -3.7(2)             |
| C1—C2—C3—C4                                          | 0.4 (3)                   | C11—C12—C13—O1                      | 173.38 (13)         |
| C2-C3-C4-C5                                          | -0.5(3)                   | C14—C12—C13—C8                      | 176.83 (12)         |
| $C_{3}-C_{4}-C_{5}-N_{1}$                            | -17688(17)                | $C_{11} - C_{12} - C_{13} - C_{8}$  | -6.04(18)           |
| $C_3 - C_4 - C_5 - C_6$                              | 0.6(3)                    | $C_{13}$ $C_{12}$ $C_{14}$ $C_{15}$ | 179 30 (14)         |
| $C_2 - C_1 - C_2 - C_5$                              | 0.4(2)                    | $C_{11}$ $C_{12}$ $C_{14}$ $C_{15}$ | 2 5 (3)             |
| $C_2 = C_1 = C_0 = C_3$                              | 178 48 (15)               | $C_{12} = C_{14} = C_{15} = C_{10}$ | -148.00(16)         |
| $U_2 - U_1 - U_0 - U_1$                              | 1/0.40(13)<br>17(.92(12)) | $C_{12} = C_{14} = C_{15} = C_{20}$ | -148.09(10)         |
|                                                      | 1/0.85(15)                | C12 - C14 - C15 - C16               | 55.2 (2)            |
| U4-U5-U6-U1                                          | -0.5(2)                   |                                     | 1.1 (2)             |
| N1—C5—C6—C7                                          | -1.4 (2)                  | C14—C15—C16—C17                     | 179.87 (14)         |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -175.42 (13)<br>2.67 (18)<br>2.24 (19)<br>-179.67 (12)<br>-1.66 (18)<br>-179.24 (12)<br>-179.36 (11)<br>3.06 (19)<br>-0.88 (19)<br>176.92 (12)<br>179.33 (12)<br>-2.87 (18)<br>141.67 (13)<br>-38.53 (17)<br>56.53 (17)<br>142.07 (15)<br>-34.70 (18)<br>24.48 (19)<br>-153.24 (13)<br>-156.08 (12) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -1.6 (3)<br>0.3 (3)<br>1.8 (3)<br>-2.5 (2)<br>178.72 (14)<br>74.02 (18)<br>-103.53 (15)<br>-106.21 (15)<br>76.24 (16)<br>-1.8 (2)<br>178.44 (13)<br>1.4 (2)<br>0.0 (3)<br>-1.2 (3)<br>0.7 (2)<br>-179.55 (15)<br>0.8 (3)<br>2.25 (19)<br>-177.96 (12)<br>176.28 (13) |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C7-C8-C13-C12                                        | -156.08 (12)                                                                                                                                                                                                                                                                                        | C4—C5—N1—C9                                          | 176.28 (13)                                                                                                                                                                                                                                                          |
| C9-C8-C13-C12                                        | 26.19 (17)                                                                                                                                                                                                                                                                                          | C6—C5—N1—C9                                          | -1.1 (2)                                                                                                                                                                                                                                                             |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H  | H···A | D···A       | <i>D</i> —H··· <i>A</i> |
|--------------------------------------|------|-------|-------------|-------------------------|
| C10—H10 <i>B</i> ····O1 <sup>i</sup> | 0.97 | 2.58  | 3.2700 (18) | 128                     |
| C26—H26…Cg1 <sup>ii</sup>            | 0.93 | 2.71  | 3.577 (18)  | 156                     |

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z.