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Natural killer (NK) cells form immune synapses to ascertain the state
of health of cells they encounter. If a target cell triggers NK cell
cytotoxicity, lytic granules containing proteins including perforin
and granzyme B, are secreted into the synaptic cleft inducing target
cell death. Secretion of these proteins also occurs from activated
cytotoxic T lymphocytes (CTLs) where they have recently been
reported to complex with thrombospondin-1 (TSP-1) in specialized
structures termed supramolecular attack particles (SMAPs). Here,
using an imaging method to define the position of each NK cell
after removal, secretions from individual cells were assessed. NK
cell synaptic secretion, triggered by ligation of NKp30 or NKG2D,
included vesicles and SMAPs which contained TSP-1, perforin, and
granzyme B. Individual NK cells secreted SMAPs, CD63+ vesicles, or
both. A similar number of SMAPs were secreted per cell for both NK
cells and CTLs, but NK cell SMAPs were larger. These data establish
an unexpected diversity in NK cell synaptic secretions.
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Natural killer (NK) cells are vital components of our immune
response against virus-infected or cancerous cells. NK cells

form an immune synapse (IS) with cells they contact and respond
according to a balance of stimulatory and inhibitory signals (1).
Secretion of granzymes and perforin across the synapse facilitates
NK cell cytolysis (2, 3). Within NK cells, perforin and granzymes
are packaged inside lytic granules with serglycin, which neutralizes
their cytolytic activity (4, 5). How perforin and granzyme are
packaged during secretion is poorly understood. Recently, Balint
et al. identified SMAPs released from CTLs (6). SMAPs are
composed of membraneless complexes of perforin, granzyme B,
and TSP-1. Knockdown of TSP-1 reduced CTL-induced killing,
implicating an integral role in cytotoxicity. Other molecules are
also secreted at synapses within vesicles (7). Here, we present a
method, termed shadow imaging, to observe single-cell secretions.
We find that SMAPs are also secreted from human NK cells and
that these are larger than those from CTLs. Moreover, we report
diversity in synaptic secretions by human NK cells, with CD63+
vesicles also contributing to the milieu.

Materials and Methods
Cell Isolation and Culture. Peripheral blood was acquired from the National
Health Service blood service (Ethics license: 05/Q0401/108). Peripheral blood
mononuclear cells were purified by density gradient centrifugation (Ficoll-Paque
Plus; GE Healthcare) with NK cells and CD8+ T cells isolated using negative se-
lection microbeads (Miltenyi Biotec). NK cells were cultured (37 °C/5% CO2) with
200 U/mL rhIL-2 (Roche), but used when resting 6 d later. CTLs were used
immediately after isolation.

Preparation of Coated Slides and Bilayers. Eight chamber glass slides (1.5 Lab-
Tek II; Nunc) were coated with 0.01% poly-L-lysine (PLL) and dried at 60 °C
for 1 h. Slides were coated with His-ICAM-1 (2.5 μg/mL; produced in house)
alone or with His-MICA (2.5 μg/mL; Sino Biological), B7-H6-Fc (2.5 μg/mL; R&D
Systems), αNKG2A (5 μg/mL; R&D Systems), or αNKp30 (10 μg/mL; P30-15;
Biolegend or 210845; R&D Systems) in phosphate-buffered saline (PBS)
overnight (4 °C). Bilayers were prepared as previously described (8) and
functionalized with His-ICAM-1 (2.5 μg/mL) alone or with His-MICA

(2.5 μg/mL), biotinylated-αNKp30 (10 μg/mL; P30-15), or biotinylated-
αCD3 (5 μg/mL; OKT3; a gift from Andy Shepherd, GSK).

IFNγ Enzyme-Linked Immunosorbent Assay. NK cells (1 × 105) were incubated
on coated slides for 16 h (37 °C/5% CO2), supernatants aspirated, and cells
pelleted at 1,000 g for 10 min (4 °C). IFNγ concentration was measured by
enzyme-linked immunosorbent assay (DuoSet, R&D Systems) according to
manufacturer’s instructions.

Imaging NK Cell Secretions. NK cells (1 × 105) were incubated on coated slides
for 1 h (37 °C/5% CO2), then detached with nonenzymatic cell-dissociation
solution (Sigma-Aldrich) for 20 min (37 °C) and washed with PBS. Where in-
dicated, to inhibit exosome secretion, cells were preincubated with 100 nM
cambinol (Sigma-Aldrich) for 1 h (37 °C). Slides were blocked with 1% bovine
serum albumin (Sigma-Aldrich) and 1% human serum (ThermoFisher Scientific)
in PBS for 1 h at room temperature (RT) and stained for 1 h (RT) with mAbs:
αTSP-1-AF647 (10 μg/mL; A6.1), αSerglycin-AF647 (10 μg/mL; C-11), αGalectin-1-
AF647 (10 μg/mL; C-8) (all Santa Cruz Biotechnology), αCD63-AF647 (10 μg/mL;
H5C6; BioLegend), αGranzyme B-AF647 (10 μg/mL; GB11; BioLegend), or
αPerforin-AF488 (2.5 μg/mL; dG9; Biolegend). For coordinate-based colocali-
zation positive controls, slides were first stained with αPerforin-AF488 (2.5 μg/
mL; dG9; Biolegend) for 1 h at RT, washed with PBS, and then stained with a
goat anti-mouse IgG2b secondary antibody conjugated to AF647 (Thermo-
Fisher Scientific) for 1 h at RT. Wheat germ agglutinin (WGA) conjugated to
CF568 (2 μg/mL; Biotium) or AF647 (2 μg/mL; ThermoFisher Scientific) was used
to stain glycoproteins and DiD (1 μM; ThermoFisher Scientific) to mark mem-
brane phospholipids. Samples were washed with PBS and imaged with 488/
561/647 nm lasers on an Eclipse Ti inverted microscope (Nikon) using an Apo
total internal reflection (TIRF) 100× 1.49 numerical aperture (NA) oil objective,
or using 488/642 nm lasers on a SR GSD (ground state depletion) microscope
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(Leica Biosystems) using a 160× 1.43 NA oil objective. Images were analyzed
within ImageJ (9).

Shadow Imaging. NK cells were prepared as before, but prior to cell de-
tachment, slides werewashedwith PBS, stainedwith αICAM-1-AF488 (HCD54;
5 μg/mL; BioLegend) for 1 min, and washed with PBS. Cells were detached
and blocked as before then stained with αPerforin-AF647 (2.5 μg/mL; dG9;
Biolegend) for 1 h and washed with PBS (all at RT). Cells were imaged by TIRF
(Leica SR GSD microscope) using a 160× 1.43 NA oil objective.

Stochastic Optical Reconstruction Microscopy. Stochastic optical reconstruc-
tion microscopy (STORM) was performed in TIRF mode on a Leica SR GSD
microscope, on slides stained as above, using 488 nm or 642 nm lasers for
7,000 frames (11 ms/frame). STORM datasets were analyzed using Thun-
derSTORM (10) as previously described (11).

Statistical Analysis. Statistical analysis was performed using Prism (GraphPad
Software; v8.4.2) with specific analyses detailed in the figure legends. All data
presented as mean ± SD unless stated.

Results
Imaging Reveals Heterogeneous Secretions across the NK Cell Immune
Synapse. Initially, we imaged the synaptic secretions of NK cells
following stimulation of surface-expressed activating receptors.
NK cells were incubated on slides coated with PLL followed by
either ICAM-1, ICAM-1 + MICA (a ligand for the activating

receptor NKG2D), or ICAM-1 + αNKp30 (a stimulatory mAb).
NK cell activation on stimulatory surfaces was confirmed by sig-
nificant IFNγ release (Fig. 1A) and the formation of stable syn-
apses, indicated by assembly of a dense ring of F-actin at cell-slide
contact (Fig. 1B).
We have previously imaged perforin secretion from human

NK cells (12). Here, to investigate the diversity of individual NK
cell responses, we developed a method which we term shadow
imaging. By introducing a pulsed stain for ICAM-1, NK cells
could be detached while leaving a shadow where each had
interacted with the slide (Fig. 1C). Paired with staining for per-
forin, this demonstrated that a small fraction (15.8 ± 7.4%) of
NK cells secreted detectable amounts of perforin on slides
coated with ICAM-1 only. Activation significantly increased the
proportion of cells secreting perforin (MICA, 67.5 ± 10.9%;
αNKP30, 75.8 ± 8.6%) and the amount secreted per cell (MICA,
21.5-fold and αNKP30, 11.3-fold vs. ICAM-1 alone) (Fig. 1 D
and E). Secretion of IFNγ and perforin from NK cells incubated
on slides coated with B7-H6, the cognate ligand for NKp30, was
similar to that triggered by αNKp30 mAb (Fig. 1F). Further-
more, when both activating (MICA or αNKp30) and inhibitory
(αNKG2A) receptors were simultaneously engaged, IFNγ and
perforin secretions were reduced (Fig. 1F).
Alongside cytotoxic molecules, vesicles can be secreted across

the IS as observed for helper T cells (13). Staining secretions
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Fig. 1. NK secretions at the immune synapse are heterogeneous. (A–E) NK cells incubated on slides coated with ICAM-1, ICAM-1 + MICA, or ICAM-1 +
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perforin in secretions (n = 3). Cells from individual donors are color coded. Mean ± SD unless stated. * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, and **** =
P ≤ 0.0001.
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from αNKp30-activated NK cells for the exosomal marker CD63
alongside perforin (Fig. 1G), revealed that 61.4 ± 3.8% of cells
secreted both perforin and CD63, 30.5 ± 5.1% secreted only
perforin, and 8.3 ± 3.0% secreted only CD63 (Fig. 1H). The
exosomal inhibitor cambinol significantly reduced the amount of
CD63 detected without affecting the amount of perforin released
(Fig. 1I). Thus, perforin release occurs independently of exo-
some secretion. Secreted perforin did not associate with DiD, a
lipophilic membrane stain (Fig. 1 J and K) but strongly colo-
calized with WGA, marking glycoproteins (Fig. 1 J and L). This
is consistent with secreted perforin being organized in mem-
braneless SMAPs (6). Thus, there is unexpected diversity in
synaptic secretion by human NK cells, which includes protein
complexes and vesicles.

TSP-1 and Perforin Colocalize in NK Secretions Resembling CTL Secreted
SMAPs.Balint et al. recently demonstrated that perforin is secreted
from CTLs in complex with TSP-1 and granzyme B (6). Prior work
also established that serglycin and galectin-1 are important com-
ponents of lytic granules from which perforin is released (4, 14).
Here, NK cell secretions of perforin were observed alongside TSP-
1, serglycin, and galectin-1 (Fig. 2A). Some secretion of these
proteins occurred when NK cells contacted a slide containing only
ICAM-1, but this was increased by bona fide NK cell activation via
NKp30 (Fig. 2B). Perforin colocalized with all three other pro-
teins, especially TSP-1 (r = 0.62 ± 0.11; Fig. 2C).
The nanoscale distribution of TSP-1 and perforin was assessed

using the super-resolution microscopy method STORM (Fig. 2D).

This established that TSP-1 complexes had a diameter of ∼210 nm
and usually contained perforin (Fig. 2 E–G). Coordinate-based
colocalization showed TSP-1 and perforin were strongly associ-
ated with 30% of localized molecules having a colocalization
of ≥0.8 for activated NK cells (Fig. 2H). Granzyme B was also
directly associated with perforin (Fig. 2I).
We next compared secretions from NK cells and CTLs on

activating planar lipid bilayers (PLBs) (Fig. 2J) which offer a
more physiological surface than PLL. Each individual cell se-
creted a similar number of SMAPs (NK cells: 63 ± 25 [MICA]
per cell; CTLs: 55 ± 21 per cell [αCD3]; Fig. 2K). Intriguingly, we
found that NK cell-derived SMAPs were larger (NK cells: 201 ±
81 nm [MICA] and CTLs: 135 ± 91 nm [αCD3]; Fig. 2L). Al-
together, this establishes significant diversity in synaptic secre-
tions between individual cells as well as different types of cells.

Discussion
Shadow imaging enabled single-cell assessment of NK cell se-
cretions and is a method which is generalizable to other stimu-
lations and cell types. We observed heterogeneous secretions
from NK cells with individual cells secreting vesicles, cytotoxic
molecules, or both. The use of PLL-coated surfaces rather than
planar lipid bilayers permitted shadow imaging and, by its non-
specific electrostatic interactions, may capture a broader range
of synaptic secretions. Recent work identified SMAPs in CTL
secretions, which we observe here in NK cells. In both NK cells
and CTLs, SMAPs contain a cytolytic protein core, currently
known to comprise perforin and granzyme B, surrounded by a
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glycoprotein shell of TSP-1. In some SMAPs, the TSP-1 shell
appeared disrupted, but this may reflect the use of chelating
agents in the NK cell detachment solution. Soluble perforin and
granzymes are sufficient to induce cell death (15), but complexing
within SMAPs may offer a mechanism to increase localized per-
forin concentrations in target cell membranes, or to prevent toxic
proteins leaking out of the synaptic cleft (16). The discovery of
SMAPs establishes a new paradigm for how cytotoxic cells elicit
target cell killing, and elucidating the mechanism by which TSP-1
contributes to cytolytic function may have therapeutic potential.

Finally, diversity of synaptic secretions by NK cells is likely im-
portant in how subpopulations contribute to an immune response.

Data Availability. All data are included within the paper.
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