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Abstract

Lifelong persistence of Epstein-Barr virus (EBV) in infected hosts is mainly owed to the virus’ pronounced abilities to evade
immune responses of its human host. Active immune evasion mechanisms reduce the immunogenicity of infected cells and
are known to be of major importance during lytic infection. The EBV genes BCRF1 and BNLF2a encode the viral homologue
of IL-10 (vIL-10) and an inhibitor of the transporter associated with antigen processing (TAP), respectively. Both are known
immunoevasins in EBV’s lytic phase. Here we describe that BCRF1 and BNLF2a are functionally expressed instantly upon
infection of primary B cells. Using EBV mutants deficient in BCRF1 and BNLF2a, we show that both factors contribute to
evading EBV-specific immune responses during the earliest phase of infection. vIL-10 impairs NK cell mediated killing of
infected B cells, interferes with CD4+ T-cell activity, and modulates cytokine responses, while BNLF2a reduces antigen
presentation and recognition of newly infected cells by EBV-specific CD8+ T cells. Together, both factors significantly
diminish the immunogenicity of EBV-infected cells during the initial, pre-latent phase of infection and may improve the
establishment of a latent EBV infection in vivo.
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Introduction

Epstein-Barr virus (EBV) is a ubiquitous human herpes virus

with strong tropism for human B cells. EBV persists in an infected

host for life by establishing a latent infection in B cells that

represent an immunologically silent reservoir. Eventual reactiva-

tion of these cells into the lytic cycle leads to the production of

progeny viruses that spread to other cells and hosts. The lytic

phase goes along with the expression of high amounts of viral

antigen, including the highly immunogenic immediate early

proteins BZLF1, BRLF1 and BMRF1 [1]. To protect lytically

activated cells from immune recognition, EBV takes several

measures to perturb anti-viral immune responses of the host ([2]

for review). EBV also expresses a set of immunogenic latent and

lytic proteins immediately following the infection of target cells

[3,4], suggesting that also newly infected cells are prone to

immune recognition. Hypothetically, the virus copes with this

immunological challenge by active immune evasion in newly

infected cells, which would be in close analogy to cells in the

productive lytic phase.

EBV codes for a number of proteins that subvert the host’s

immune surveillance ([5] for review): a homologue of human IL-

10 with anti-inflammatory properties (vIL10) [6–8], encoded by

the EBV gene BCRF1 [9], the DNAse/exonuclease BGLF5 that

shuts off host protein synthesis [10] and contributes to Toll-like

receptor 9 downregulation in productively infected cells [11], the

G-protein-coupled receptor BILF1 that degrades MHC class I

molecules [12], and BNLF2a, a protein unique to lymphocrypto-

viruses that inhibits the transporter associated with antigen

processing (TAP) [13]. These proteins have so far been classified

as lytic proteins and, correspondingly, were functionally investi-

gated in lytic subsets of EBV-infected cell lines in vitro.

Several viruses including EBV, primate cytomegaloviruses

(CMVs), Orf poxvirus, and equine herpes virus type 2 (EHV-2)

encode homologues of human IL-10 [9,14,15], strongly suggesting

that IL-10 is advantageous for these viruses. Accordingly, different

immunomodulatory activities in infected and bystander cells have

been described for viral IL-10 homologues including inhibition of

DC maturation [16] and inhibition of Th1 cytokine expression

[17]. Recently, it has been reported that vIL-10 of CMV has a

profound impact on innate and adaptive immune responses in an

in vivo model [18] EBV’s IL-10 homologue has been described to

be critical for B-cell growth transformation [6], to block gamma

interferon release [19], to reduce MHC-I levels on B cells [8] and

to functionally inhibit T cells [20] and monocytes [7]. vIL-10

encoded by BCRF1 is expressed early upon infection [19], but its

precise role and immunomodulatory capacities especially during

the initial phase of EBV infection remain elusive.

BNLF2a, in contrast, is unique to the family of lymphocrypto-

viruses, but many other viruses pursue analogous strategies of TAP

inhibition ([21] for review). BNLF2a prevents binding of both

ATP and peptide to TAP and thereby prevents peptide loading to
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MHC class I molecules [22]. Ectopic expression of BNLF2a leads

to reduced surface levels of MHC class I molecules [13] that are

unstable without properly loaded peptides [23]. BNLF2a is

expressed early in the productive lytic phase and reduces the

recognition of B cells by T lymphocytes specific for viral

immediate early and early lytic proteins [24].

In this study, we extend our knowledge about BNLF2a and vIL-

10/BCRF1. We show that both proteins contribute to the immune

evasion of EBV in newly infected primary B cells. Both proteins

are expressed immediately following infection. With EBV mutants

deficient in BCRF1 and BNLF2a, we demonstrate that BNLF2a

impairs the recognition of virally infected B cells by EBV-specific

CD8+ T lymphocytes during the very first days of infection.

Additionally, we identified vIL-10 to protect EBV-infected B cells

from NK cell-mediated elimination. Furthermore, vIL10 released

from newly infected B cells prevents the secretion of anti-viral

cytokines, thereby abrogating anti-viral CD4+ effector T cell

functions. In summary, BNLF2a and vIL-10/BCRF1 act in a

complementary manner to prevent immune recognition and

elimination of newly EBV-infected B cells.

Results

Construction of BCRF1- and BNLF2a-deficient maxi-EBV
genomes

Maxi-EBV genomes deficient in BCRF1 and/or BNLF2a were

constructed by targeted mutation of the maxi-EBV plasmid p2089

[25]. Maxi-EBV mutagenesis was performed by homologous

recombination in accordance to previous work [26]. BCRF1

deletion mutants were generated by replacing the entire gene by a

prokaryotic kanamycin resistance expression cassette. The BNLF2a

locus of EBV is complex (Figure S1A). BNLF2a shares its transcript

with BNLF2b and is situated in the first intron of the TP gene

encoding the latent membrane protein (LMP) 2A. Moreover, this

genomic locus is part of the 39 untranslated region of BNLF1

encoding LMP1. To abrogate BNLF2a expression, the first

translational start codon of BNLF2a was mutated to a stop codon

preventing BNLF2a translation. The exchange of only four

nucleotides reduced the risk of interfering with the expression or

regulation of adjacent genes. In total, we constructed three EBV

mutants: two single mutants that were null for BCRF1 (DBCRF1)

or BNLF2a (DBNLF2a) and one double mutant that combined

both functional deletions (double k.o.). Technical details, cloning

strategies, and restriction enzyme digests confirming BAC integrity

are provided in Material & Methods and Figure S1.

We established single cell clones from HEK293 cells stably

transfected with the mutant viruses described above by selecting

for hygromycin resistance. Clonal cells lines were tested for virus

production upon transfection of an expression plasmid encoding

the lytic transactivator BZLF1 [27]. The titers of infectious virus in

the supernatants of these clones were calculated as described in

Material & Methods. The genotypes of selected clones were

confirmed by Southern blot hybridization (Figure 1A) and infected

B cells were routinely tested by PCR to confirm infection with the

respective virus mutant (Figure 1B).

BCRF1 and BNLF2a are expressed by day one of infection
EBV expresses a set of lytic genes during the initial, pre-latent

phase of B-cell infection [3,4] and EBV virions contain a variety of

viral RNAs [28], which prompted us to address the expression

kinetics of the immunomodulatory proteins vIL-10/BCRF1 and

BNLF2a during pre-latent infection. For this, we infected primary

peripheral B cells with 2089 wild-type EBV or with the DBNLF2a,

DBCRF1 or double k.o. mutant viruses. We then prepared cDNA

from infected cells at different time points post infection (p.i.) and

assessed the expression of the BCRF1 gene as well as levels of the

bicistronic transcript encoding BNLF2a and BNLF2b by quanti-

tative RT-PCR (qPCR). Figure 2A shows that both transcripts

were detectably present as early as one day p.i. The comparison to

glucuronidase beta (GUSB) transcripts, a validated housekeeping

gene in LCLs [29], revealed that BNLF2a/b expression levels

increased initially, followed by a plateau, whereas BCRF1

transcript levels declined during the first days p.i. before reaching

a stable level. Performing flow cytometry, we could demonstrate

the rapid expression of BNLF2a protein in cells infected with 2089

wild-type EBV and DBCRF1 mutant EBV, but not in cells

infected with DBNLF2a or double k.o. mutant viruses (Figure 2B)

confirming the genetic ablation of BNLF2a. No specific vIL-10-

antibody was available to confirm BCRF1 deficiency.

BNLF2a reduces the recognition of infected cells by EBV-
specific CD8+ T cell clones

BNLF2a interferes with antigen presentation on MHC class I

molecules by inhibiting the transporter associated with antigen

processing (TAP) [13,22]. EBV-specific CD8+ T-cell clones

constitute sensitive tools to measure antigen presentation of

EBV-infected B cells in vitro. In order to analyze BNLF2a effects

during the earliest phase of infection, we infected primary

peripheral B cells with 2089 wild-type EBV or with the mutant

viruses DBCRF1, DBNLF2a, or double k.o. and used them as

targets for clonal CD8+ T cells. One of these T-cell clones detects

the HLA-B8-restricted epitope RAKFKQLL (RAK) derived from

BZLF1 protein [30], the master regulator of the lytic cycle [31].

Co-cultures at defined effector/target ratios were prepared at

different days after B-cell infection and incubated overnight.

ELISA assays on gamma interferon (IFN-c) levels in the

supernatant were indicative of T-cell activation.

The experiments revealed that RAK-specific T cells recognized

B cells infected with either DBNLF2a or the double k.o. mutant

virus significantly better than B cells infected with either 2089

wild-type or DBCRF1 mutant EBVs (Figure 3A). Of note, the

difference in recognition became evident already on day 1 p.i. At

this time point, only B cells infected with DBNLF2a or double k.o.

mutant viruses detectably activated the RAK-specific T cell clone,

Author Summary

Despite strong cellular and humoral immune responses,
herpesviruses persist in their hosts for a lifetime. Epstein-
Barr virus (EBV) is a herpesvirus that infects human B cells.
This results in a latent infection where only a minimal set
of viral proteins is expressed and infected cells cannot be
eradicated by immune cells. When the virus reactivates in
order to produce progeny, many viral proteins are
expressed that are potential targets of immunity, but the
virus coexpresses viral ‘‘immunoevasins’’ that blunt im-
mune responses. Similarly, in the very first phase of B cell
infection by EBV, called the pre-latent phase, a rather wide
spectrum of antigens is expressed. However, it has been
unknown whether viral immunoevasion occurs in this
phase. Here we show that two viral immunoevasins are
active in the pre-latent phase and prevent immune
recognition by a variety of mechanisms: they reduce the
presentation of EBV antigens to CD8+ killer T cells, prevent
an attack by natural killer cells, and reduce the function of
CD4+ helper T cells. Thus, it seems to be important for the
virus to shield itself from attack by immune cells during
the pre-latent stage.

EBV Immunoevasins Protect Newly Infected Cells
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whereas cells infected with 2089 EBV or the DBCRF1 mutant

virus did not. The level of recognition of infected B cells peaked on

day 4 p.i. and then declined until it reached similar levels as in

control LCLs, indicating the establishment of latency. Similar

results were obtained with CD8+ T-cell clones specific for the

epitopes QAKWRLQTL (QAK) (Figure 3B) and IEDPPFNSL

(IED) (Figure 3C) derived from the latent proteins EBNA3a and

LMP2a, respectively, further emphasizing the immunoevasive

function of BNLF2a in freshly infected cells. In contrast, the

response of clonal CD8+ T cells specific for the CLG epitope of

LMP2 protein was independent of BNLF2a (Figure 3D). This

epitope is known to be loaded TAP-independently onto MHC I

molecules because its high hydrophobicity presumably allows for

passive diffusion through the ER membrane [32]. The delay in T-

cell recognition as compared to gene expression is presumably

attributable to the fact that EBV-infected B cells reach their full

antigen presenting potential not until a few days p.i. [33] or to

antigen immunodominance [34]. To ensure that our genetic

manipulation did not alter expression levels of the investigated

antigens, we performed quantitative PCR that revealed similar

expression levels in B cells infected with the different viruses

(Figure S2).

vIL-10 thwarts the release of antiviral cytokines and NK/
NKT cell mediated lysis

The previous experiments revealed that vIL-10 did not influence

the recognition of freshly infected B cells by EBV-specific CD8+ T

cell clones in vitro (Figure 3). Nevertheless, its conservation in

different EBV isolates [35] and the strong immunomodulatory

capacity of its cellular homologue [36] both suggest a prominent

role for BCRF1/vIL-10 in EBV infection. IL-10 is known to

sustainably promote Th2 cytokine responses [36], which prompted

us to assess the influence of vIL-10 on the secretion of various Th1/

Th2 cytokines by PBMCs in response to an EBV infection. We

prepared PBMCs from a donor with EBV immunity, determined

the B cell content and infected them with 2089 EBV, DBCRF1,

DBNLF2a, or double k.o. mutant viruses with 0.1 GRU/B cell. We

cultured these EBV-infected PBMCs for twelve days and evaluated

the levels of Th1 and Th2 cytokines in the supernatants by multiplex

ELISAs. The cytokine composition in the supernatants differed

between PBMCs infected with the BCRF1-positive viruses (2089

EBV, DBNLF2a) and mutant viruses lacking BCRF1 (DBCRF1,

double k.o.). In detail, PBMCs infected with the DBCRF1 or double

k.o. mutant viruses produced significantly higher levels of the pro-

inflammatory cytokines IFN-c, IL-2, IL-6, and TNF-b and of anti-

inflammatory IL-10 (Figure 4A), whereas levels of IL-1, IL-5, IL-8,

and TNF-a were not affected (not shown). Interestingly, we

observed the highest levels of the hIL-10 in the supernatants of

PBMCs that were infected with either of the BCRF1-lacking mutant

viruses DBCRF1 or double k.o. This observation points to the

regulation of hIL-10 by vIL-10 or to increased IL-10 release in the

course of a secondary cytokine response evoked by the high levels of

pro-inflammatory cytokines.

Besides activated T cells, NK cells can specifically lyse virus-

infected cells. Regarding EBV, NK cells preferentially eliminate

infected cells in lytic phase [37]. To address the question whether

NK/NKT cell-mediated lysis differed between B cells infected

with 2089 wild-type or mutant EBVs in the pre-latent phase, we

infected purified peripheral B cells and added autologous purified

CD56+ NK/NKT cells on day 3 p.i. We then assessed specific B-

cell lysis after 3 hours of co-incubation and observed a significantly

stronger lysis of B cells infected with the DBCRF1 or double k.o.

mutant viruses as compared to B cells infected with 2089 EBV or

the DBNLF2a mutant virus (Figure 4B left panel).

In a parallel experiment, we included CD4+ T cells that

represent an important source for many cytokines. We hypothe-

sized that CD4+ T cells could provide a supporting microenvi-

ronment for NK/NKT cells. Indeed, we found that the presence

of CD4+ T increased NK/NKT-mediated lysis of infected B cells.

This adjuvant effect was most pronounced when B cells were

Figure 1. Generation of mutant viruses. (A) Southern blot hybridizations were performed with digested genomic DNA of 293HEK-derived virus
producer cells using radioactive probes complementary to genomic regions adjacent to the modified loci. The different band intensities are due to
slightly different amounts of DNA loaded onto the gels. (B) Lymphoblastoid cell lines (LCLs) were generated by infecting primary B cells with
recombinant viruses. The viral genotype in these LCLs was assessed by PCR. BCRF1 deletion was confirmed by absence of signal, the BNLF2a
genotype was determined with primer pairs that specifically detect wild-type BNLF2a sequences or the mutated 4 nucleotides of DBNLF2a.
doi:10.1371/journal.ppat.1002704.g001
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infected with either DBCRF1 or double k.o. mutant viruses

(Figure 4B mid panel). The difference became most evident at

lower effector/helper/target ratios (Figure 4C). In contrast, CD4+
T cells did not significantly increase NK/NKT-mediated lysis of B

cells with 2089 wild-type or DBNLF2a mutant EBV (Figure 4B,

middle panel). CD4+ T cells alone did not reveal any cytolytic

activity above background (Figure 4B, right panel).

The cytolytic activity of NK cells is regulated by MHC class I

levels and by accessory molecules such as ligands of the activating

natural killer group 2 member D (NKG2DL), comprising MICA,

Figure 2. The immunoevasins vIL-10 and BCRF1 are expressed during the initial phase of infection. (A) Peripheral B cells were infected
with 2089 wild-type EBV or mutant viruses and total RNA was isolated at the indicated time points. The transcript levels of BCRF1 and BNLF2a/b were
assessed by quantitative RT-PCR and are shown in relation to transcripts levels of the housekeeping gene glucuronidase beta (gusb). Note that BNLF2a
and BNLF2b are encoded on the same bicistronic transcript and cannot be distinguished by PCR. Transcripts of BNLF2a/b are present in DBNLF2a-
and double k.o.-infected B cells, but BNLF2a translation is abrogated (see also Figure 2B and Figure S1). Relative transcript levels in mutant virus-
infected cells were normalized to those of 2089 EBV-infected B cells and values are shown as multiplicity of expression in the lower panel. (B) B cells
infected with 2089 EBV or DBCRF1 mutant virus express BNLF2a protein, whereas no BNLF2a protein could be detected in cells infected with
DBNLF2a- and double k.o mutant viruses. B cells were infected with the indicated viruses and analyzed for presence of BNLF2a protein expression by
intracellular flow cytometry at day 3 p.i. Histograms show gated GFP+, i.e. infected cells. MFI = mean fluorescence intensity.
doi:10.1371/journal.ppat.1002704.g002
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MICB, and UL16-binding proteins (ULBP) 1–6. Since IL-10 was

described to modulate MHC surface levels [8] and expression of

NKG2D ligands [38], we investigated the expression of these

molecules in more detail. Flow cytometry revealed that newly

infected B cells displayed different levels of MHC class I at their

surfaces varying in a temporal fashion throughout the first days of

infection (Figure S3A). However, this pattern of MHC I surface

levels was not affected by the use of 2089 EBV or mutant virus.

MHC I/BNLF2a double staining of GFP-positive, i.e. infected B

cells 3 days p.i. particularly correlated that endogenous expression

levels of BNLF2a did not alter the surface levels of MHC class I

molecules of cells infected with different viruses (Figure S3B and C).

Hence, improved NK killing of B cells infected with either DBCRF1

or double k.o. mutant EBVs was not attributable to different MHC

class I levels. Next, we analyzed the expression levels of members of

the family of NKG2D ligands by qPCR. With the exception of

ULBP4 and 6, all ligands were clearly expressed. Importantly,

expression kinetics were independent of the virus mutant used for

infection (Figure S4). As NK and CD4+ T cells express the IL-10R

([39] and Figure S5) our data suggested a direct effect of vIL-10 on

these effector cells. This hypothesis was further substantiated by

rescue experiments: the addition of exogenous viral and human IL-

10 at physiological concentrations (1 ng/ml) partially reverted NK-

mediated killing of infected B cells, and exogenous vIL-10

completely reverted CD4+ T cell assistance (Figure S6). K562 cells

do not express MHC I molecules and are therefore efficiently killed

by NK/NKT cells. Intriguingly, the same concentration of IL-10

that inhibited killing of newly EBV-infected B cells did not affect

NK/NKT-mediated killing of K562 cells (Figure S7). Taken

together, our results indicate that vIL-10 directly impairs NK/

NKT-mediated lysis of newly EBV-infected B cells and inhibits

CD4+ T cell support of NK-mediated killing.

Deletion of both BNLF2a and BCRF1 improves long-term
immune control of infected B cells in vitro

Regression assays are a means to quantify EBV-specific memory

T-cell responses in vitro. In such assays, experimentally infected

PBMCs from EBV-positive donors show regression of B-cell

Figure 3. vIL-10 impairs recognition of newly infected B cells by clonal EBV-specific CD8+ T cells in a TAP dependent manner. Co-
cultures with constant ratios of clonal EBV-specific CD8+ T cells and HLA-matched B cells infected with 2089 EBV, DBNLF2a, DBCRF1, or double k.o.
virus were prepared at the indicated day post infection and incubated for 18 hours. IFNc concentrations in the culture supernatant were assessed by
ELISA. Values were normalized to the recognition of a 2089 EBV infected, established LCL to correct for variable activities of the T cell clone on the
respective day. These reference samples contained IFN-c levels of 227–343 pg/ml (RAK), 1261–1577 pg/ml (QAK), 684–891 pg/ml (IED) and 1034–
1157 pg/ml (CLG). Error bars indicate the standard deviation of three replicates, the significance of difference was calculated by two way ANOVA
analysis, ** p,0.01 *** p,0.001. Recognition assays were performed with clonal EBV-specific CD8+ T cells specific for (A) the RAK epitope of BZLF1
protein, (B) the QAK epitope of EBNA3a protein, (C) the TAP-dependent IED epitope of LMP2 and (D) the TAP-independent CLG epitope of LMP2.
doi:10.1371/journal.ppat.1002704.g003
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outgrowth in vitro, reflecting the reactivation of an EBV-specific

memory T-cell response [40]. The strength of regression depends

on the number of EBV-specific immune effectors, which mirror

the extent of the donor’s EBV immunity as well as the ability of

infected cells to escape immune elimination. Identical EBV-

mediated transformation of primary B cells is a prerequisite when

comparing different viruses in regression assays. Therefore, we

initially determined the dose-dependent transformation of B cells

by wild-type and mutant EBVs in limiting dilution assays. Purified

peripheral B cells were infected with serial dilutions of the different

virus stocks and the number of outgrowing lymphoblastoid cells

was scored six weeks p.i. As shown in Figure 5A, we did not

observe any differences in the rates of B-cell transformation. In a

next series of experiments, we infected serial dilutions of PBMC

preparations from EBV-seropositive donors with 2089 wild-type

EBV or the DBCRF1, DBNLF2a, or double k.o. mutant viruses

and seeded the cells in 96-well cluster plates. Six weeks after

infection we analyzed cell viability in an MTT assay. B cells

infected with DBCRF1, DBNLF2a, or wild-type EBV were killed

equally but B cells infected with the double k.o. mutant EBV were

eradicated much more efficiently (Figure 5B). Thus, deletion of

vIL-10 and BNLF2a synergistically affected the outgrowth of

infected B cells in the presence of EBV-specific immune effectors

in vitro. This finding strongly suggests that pre-latent vIL-10- and

BNLF2a-mediated immune evasion contributes to the success of

EBV infection also in its native host.

In line with results published by others [41–43], subsequent

analyses with CD4-depleted PBMCs indicated that CD4+ T cells

are essential for regression of EBV-infected B cells in vitro

(Figure 5C). In this setting, immune control of B cells infected with

2089 wild-type or DBNLF2a mutant EBVs was completely

abrogated, while regression of B cells infected with either DBCRF1

or double k.o. mutant virus was partially maintained. These results

suggested that helper CD4+ T cells contribute to regression,

probably by providing stimulatory cytokines such as IL-2 to CD8+
effector T cells [41], and vIL-10 directly interferes with reactivation

Figure 4. vIL-10 skews the inflammatory cytokine response of PBMCs to an EBV infection, protects EBV infected cells from NK/NKT-
mediated lysis and subverts CD4+ T cell support. (A) PBMCs of an EBV-seropositive donor were infected with 2089 EBV, DBCRF1, DBNLF2a, or
double k.o. virus and cultured for 9 days. The Th1/Th2 cytokine response of these cultures was assessed by multiplex-ELISA and values were
normalized to levels of 2089 EBV infected samples. Error bars indicate the standard deviation of three replicates. (B) Peripheral B cells were infected
with 2089 EBV, DBCRF1, DBNLF2a, or double k.o. virus and labeled with calcein 3 days p.i. Autologous CD56+ cells and CD4+ cells were isolated from
PBMCs, added to the labeled B cells at the indicated ratios and incubated for three hours. (C) Same experiment as shown in B with modified effector/
helper/target ratios. Calcein fluorescence intensity of the supernatant was indicative of B cell lysis. Treatment of B cells with 1% Triton-X-100 led to
complete lysis with maximum calcein release and samples were related to this value. Error bars indicate standard deviations of three replicates. The
significance of difference was calculated by a two-way ANOVA, *: p,0.05, **: p,0.01, ***: p,0.001. The shown data are representative for three
independent experiments.
doi:10.1371/journal.ppat.1002704.g004
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of EBV-specific memory CD8+ T-cells. Consistent with published

data [41], the contribution of CD56+ NK/NKT cells to the

regression of EBV-infected PBMCs was less pronounced, but

immune control of cells infected with 2089 wild-type or DBNLF2a

mutant EBVs was slightly reduced in comparison to non-depleted

PBMCs, which is again in line with a potential inhibitory effect of

vIL-10 on CD4+ or CD8+ T cells (Figure 5D).

Discussion

EBV persists for life in its host despite the presence of strong

anti-viral immune responses. The asymptomatic co-existence

depends on an immunological equilibrium of anti-viral activities

of the host and viral counter-mechanisms. Thus, reduced viral

protein expression during latency as well as active immune evasion

is essential for EBV. Recently, a number of viral strategies of active

immune evasion during the lytic phase have been identified for

EBV ([5] for review). Especially immediate-early and early lytic

proteins are among the most immunodominant EBV antigens [44]

rendering their expression a particular immunological challenge

for the virus. Recent reports described that immediate-early and

early lytic genes are also expressed in newly infected cells following

infection [3,4] putting these cells at risk for rapid elimination by

immune effectors. Current data from our lab revealed that EBV

virions deliver viral mRNAs, including those encoding the

immunoevasins vIL-10 and BNLF2a, into target cells where they

are instantly translated [28]. Along this line, our findings

demonstrate that specific CD8+ T cells can recognize EBV

infection of B cells as soon as one day p.i. Our observation that the

RAK epitope of BZLF1 is presented instantaneously after infection

fits the data of others on early BZLF1 expression in newly infected

cells [3,4]. The immediacy of its expression may contribute to the

observed immunodominance of BZLF1 among CD8+ target

antigens of EBV [34]. This immunodominance may be shaped by

cross-competition between CD8+ T cells for antigen-presenting

cells, a process that favors T-cell responses against the earliest

antigens presented during the process of infection [45].

EBV expresses the immune modulators vIL-10 and BNLF2a as

early as six hours p.i. and actively perturbs the host’s immune

response to newly infected cells. These findings further indicate

Figure 5. Deletion of BNLF2a and BCRF1 leads to improved long-term immune control of infected B cells. (A) 2089 EBV, DBCRF1,
DBNLF2a, and double k.o. viruses have identical transformation capacities. B cells were isolated from PBMCs and infected in 96-well plates with serial
dilutions of the indicated virus stocks. 48 replicates of each dilution were analyzed six weeks later and the number of wells with proliferating cells was
determined in an MTT assay. (B) The regression of double k.o.-infected B cells is more efficient as compared to regression of cells infected with either
2089 EBV or the DBCRF1 and DBNLF2a single mutant viruses. PBMCs of an EBV-seropositive donor were infected with the indicated viruses and
cultured for six weeks. The proportion of wells with proliferating cells is plotted against the log2 of the initial amount of plated cells/well. Logarithmic
Gaussian distributions are fitted to the data sets (R2.0.95). (C) The incidence of regression of EBV-infected B cells was much weaker in CD4-depleted
PBMCs. However, proliferation of B cells infected with either DBCRF1 or double k.o. mutant viruses was inhibited more than cells infected with either
2089 EBV or DBNLF2a mutant virus. (D) CD56+ NK/NKT cells contribute little to the regression of EBV-infected B cells, but B cells infected with DBCRF1
or double k.o. mutant EBVs were eliminated more efficiently.
doi:10.1371/journal.ppat.1002704.g005
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that the pre-latent phase of EBV is critical for the outcome and

success of viral infection. Of note, our T-cell experiments confirm

that BNLF2a blunts activation of EBV-specific CD8+ T cells as

early as one day p.i. As BNLF2a was reported to interfere with

MHC peptide loading, destabilized MHC results in reduced

surface levels that might render the infected cells vulnerable

towards NK cells. However, B cells infected with 2089 wild-type

EBV or DBNLF2a mutant virus were equally lysed by NK/NKT

cells (Figure 3B) and displayed similar MHC class I surface levels

(Figure S3). Hence, expression of BNLF2a seems to be tightly

balanced in that it impairs loading of new antigenic peptides

without reducing MHC-I surface levels during the pre-latent phase

of infection.

Expression of vIL-10 did not impair recognition of EBV-

infected cells by clonal, EBV-specific CD8+ T cells (Figure 2).

Cultured T-cell clones are pre-activated and the endogenous

expression level of vIL-10 might be insufficient to repress these

effectors. However, we detected direct effects of vIL-10 on ex vivo-

isolated NK/NKT cells as well as CD4+ T cells. NK cells lyse

EBV-infected B cells preferentially when they enter the productive

lytic cycle [34]. We demonstrate here that NK cells also lyse newly

infected B cells but vIL-10 interferes with this effector function

(Figure 4). The presence of CD4+ T cells further supported NK-

mediated target lysis, especially when vIL-10 was not expressed.

This phenomenon is probably attributable to two different

observations: (i) infections with BCRF1-deficient viruses led to

higher levels of Th1 cytokines (Figure 4A) suggesting that

increased Th1 cytokine secretion by CD4+ T cells boosted NK

cell activity, and (ii) rescue experiments indicated a direct

inhibitory effect of vIL-10, as well as hIL-10, on NK and CD4+
T cell activity (Figure 4B).

Our observation that BNLF2a and vIL-10 reduce the recogni-

tion of pre-latently infected B cells in the absence of MHC class I

downregulation is in apparent contrast to earlier results pointing to

downregulation of MHC class I by BNLF2a [13] or by vIL-10 [8].

It appears that BNLF2a can strongly decrease total MHC class I

levels when ectopically expressed at high levels [13], weakly so

when endogenously expressed in lytically EBV-infected cells [24],

and not to a detectable extent when transiently expressed in the

pre-latent phase (our present data). In lytically EBV-infected

lymphoblastoid cells, the presentation of relevant EBV epitopes,

including the BZLF1 RAK epitope, was reduced by BNLF2a

much more strongly than were total MHC class I levels [24].

Thus, our observations that overall MHC class I levels are

maintained in pre-latently infected cells, while T cell recognition is

reduced, can be well reconciled.

Different considerations apply to the effects of vIL-10 on MHC

class I levels. In our earlier study [8], we showed that exogenous

soluble vIL-10 or human IL-10, as well as supernatants from the

EBV-producing simian B cell line B95-8, reduced total MHC class

I levels on primary human B cells after 2 days’ incubation. EBV-

containing B95-8 supernatant contains significant amounts of IL-

10 (own observations). The conditions carried out with B95-8

supernatants might therefore mirror biological situations in

secondary lymphoid organs in the amplification phase of infectious

mononucleosis [46,47]. Whether such high IL-10 concentrations

are still beneficial for the onset of infection or rather trigger NK

cell activity is however questionable. In contrast, the conditions in

our present study (12 h incubation of primary B cells in infectious

supernatant and subsequent exchange of media) potentially

correspond to the conditions during acquisition of EBV from

another virus carrier or spread of the virus for infection

maintenance in the context of functional immune control. Our

data demonstrate that pre-latent expression levels of endogenous

viral IL-10 and BNLF2a together are balanced to avoid the

reduction of MHC I surface levels in the pre-latent phase. Non-

maximal expression necessarily results in more subtle effects, but

complementarity of vIL-10 and BNLF2a might compensate for

that. Hence, together both factors succeed to blunt cellular

immune responses: while pre-latently expressed vIL-10 appears to

act mainly on NK and T helper cells in a paracrine fashion,

BNLF2a specifically blocks antigen presentation on MHC class I

in infected cells.

The overall effects of the two immunoevasins BNLF2a and vIL-

10 on establishment of EBV infection in a complex immunological

environment were studied in regression assays. In this experimen-

tal setting, we observed a phenotype with the double k.o. mutant

virus, only, revealing a synergistic effect between the two

immunoevasins (Figure 5A). As viral functions within the first

days of infection are decisive for the outcome of regression assays

[48], our result further emphasizes the importance of BNLF2a and

vIL-10. The experiments shown in Figure 5 also stress the role of

CD4+ T cells in anti-viral immune responses, presumably by

providing help to CD8+ cells [41]. Depletion of CD56+ NK cells

had a minor effect, only, in accordance with previous observations

[41]. This result and the observation that single DBNLF2a and

DBCRF1 mutant viruses were as well controlled as wild-type EBV

points at a degree of redundancy in immunological mechanisms of

EBV control that can only be overcome by the combined action of

viral immunoevasins with different mechanisms of action.

Collectively, we demonstrate in this study that the immunoe-

vasins vIL-10 and BNLF2a of EBV have important functions in B

cells in the pre-latent phase immediately following infection.

Together, these proteins interfere both with innate and adaptive

immune responses and thus contribute to efficient immune evasion

of newly infected B cells. These findings highlight that the pre-

latent phase of EBV infection is decisive for successful establish-

ment and persistence of the virus in its host.

Materials and Methods

Ethics statement
The study was approved by the Ethics Committee of the

Ludwig-Maximilians-Universität. Study participants or their legal

guardians provided written informed consent.

Construction of DBCRF1 and DBNLF2a mutant viruses
The mutant viruses generated for this work are based on the

previously described 2089 EBV [25]. The strategies to replace

BCRF1 and to block BNLF2a translation are depicted in Figure S1.

The maxi-EBV genomes were modified following an improved

protocol for BAC recombineering in the E.coli strain SW105 [26].

The BCRF1 gene was replaced by a prokaryotic expression cassette

for neomycin phosphotransferase II, conferring kanamycin resis-

tance, flanked by homologous sequences (200 bp) to the neigh-

boring region of the gene. The DNA fragment was cloned,

linearized and electroporated into recombination competent

SW105 bacteria carrying the 2089 EBV genome. Transformants

were selected for kanamycin resistance (50 mg/ml). The first codon

(Met1) of BNLF2a was replaced by a stop codon and concomitant

insertion of an analytic SpeI site. First, a prokaryotic expression

cassette for the galK gene flanked by 50 bp of homologous

sequence to the nucleotides up- and downstream of the BNLF2a

Met-1 codon was generated by PCR. The product was inserted

into the 2089 EBV BAC by homologous recombination and

SW105 clones were selected for competence in galactose

metabolism. Then, a DNA fragment of 132 bp was synthesized

comprising the four mutated nucleotides flanked by 64 bp of
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sequences homologous to the neighboring regions of the previously

inserted galK cassette. Successfully modified clones were counter-

selected for competence in galactose metabolism by growth on

minimal plates with 2-deoxy-galactose (DOG) and glycerol as

carbon sources. The genome of the double k.o. mutant virus

(deficient for BCRF1 and BNLF2a) was generated by conversion of

the BNLF2a-Met1 to a STOP codon in the DBCRF1 EBV

genome. BAC integrity and the presence of the knockout-specific

restriction sites were confirmed by sequencing regions of approx.

5,000 bp around the mutation sites. Primer sequences used for

cloning are given in Table S1.

Generation of virus producer clones and quantification of
virus stocks

Recombinant EBV BAC-DNAs were prepared from bacteria,

purified on a CsCl gradient and transfected into 293HEK cells

using polyethylenimine (Sigma-Aldrich, Munich, Germany). Cells

were selected for hygromycin resistance (80 mg/ml, Life Technol-

ogies, Darmstadt, Germany) and single clones were tested for GFP

fluorescence. Virus production was induced by co-transfection of

the expression plasmids p509, encoding BZLF1 [27], and p2670,

encoding BALF4 [49]. Supernatants were harvested three days

later and cells and debris were removed by centrifugation and

filtration through PVDF membranes (0.8 mm pore size). Titers of

virus stocks (referred to as ‘green Raji units’, GRU) were

calculated as described [50] by infecting Raji B cells and

measuring the number of GFP+ cells by flow cytometry three

days later. Calculated titers were confirmed by infecting Raji cells

with equal amounts of GRU from the different virus stocks

resulting in equal percentages of GFP+ cells three days p.i. in all

samples (Figure S8). Genomic DNA from producer clones was

extracted, digested with restriction enzymes and analyzed by

Southern blot as described [25]. Blots were hybridized against

PCR-amplified DNA fragments derived from EBV’s origin of

replication, oriP, from the BNLF2b locus representing sequences

adjacent to the BCRF1 and BNLF2a genes, respectively. Primer

sequences are provided in Supplementary Table S2.

Isolation and infection of B cells
Primary B cells were either isolated from PBMCs of voluntary

blood donors or buffy coats with the B cell isolation kit II (Miltenyi)

yielding B cell populations of $95% purity. B cells were infected

with EBV mutants at a multiplicity of infection (MOI) of 0.1

GRU/B cell and infected B cells were analyzed for their EBV

genotype by PCR amplification of BCRF1, the BNLF2a wild-type

sequence or the BNLF2a k.o. (Met1STOP) sequence. The

infection with recombinant EBV was confirmed with a PCR

spanning GFP and a part of the 2089 EBV backbone. Primer

sequences are provided online in Supplementary Table S2.

T cell recognition assays
The recognition of EBV-infected B cells by EBV-specific CD8+

T cell clones was analyzed by IFN-c ELISA assays. CD8+ specific

T cell clones were established from PBMCs as previously

described [51]. EBV-specificity of clonal CD8+ cells was verified

by flow cytometry after staining with the respective TCR specific

multimer (Proimmune, Oxford, UK) and a CD8-specific antibody

(BectonDickinson, Heidelberg, Germany). For recognition assays,

triplicates of 10,000 specific CD8+ T cells and 20,000 HLA-

matched infected B cells were co-incubated for 18 hours on 96

well cluster plates in a total volume of 200 ml. IFN-c levels in the

supernatants were measured by ELISA (Mabtech, Nacka Strand,

Sweden). Sample values were normalized to the IFN-c level

obtained from T cells co-incubated with an established EBV+
lymphoblastoid cell line (LCL). The normalization corrected for

putative changes in the performance of the T cells during the time

course and inaccuracies in T cell counting.

Multiplex ELISA
Cytokines in the supernatants of EBV-infected PBMCs were

measured with the Th1/Th2 11-plex FlowCytomix Kit (Bend-

erMed Systems, Wien, Austria) according to the manufacturer’s

instructions.

Flow cytometry
Cells were washed in PBS, counted and stained with

fluorophore-coupled antibodies against human CD3, CD210

(IL10R), CD56, CD4 and MHC class I (anti-human HLA A, B,

C clone W6/32) (Biolegend, Netherlands). For intracellular flow

cytometry, cells were fixed and permeabilized using the Cytofix/

Cytoperm Kit (BD, Germany) and blocked with FCS and

TruStain FcX (Biolegend) prior to staining with BNLF2a-specific

antibody MVH-8E2 (a kind gift from A. Rickinson, Birmingham)

or isotype control. Cells were counterstained with APC-coupled

anti-rat IgG F(ab9)2 fragments (Jackson, Newmarket, UK).

Killing assays
B cells isolated from PBMCs were infected with EBV mutant

viruses, cultured for three days and then labeled with calcein

(Calcein AM, Life Technologies) as described previously [52].

Autologous CD56+ cells and CD4+ cells were isolated by MACS

sorting (Miltenyi, Bergisch-Gladbach, Germany), analyzed by flow

cytometry and used for further experiments in case of $95%

purity. Infected B cells were then co-incubated with CD56+ and/

or CD4+ cells in 96-well V-bottomed microtest plates at the

indicated effector : target ratios with 1 unit representing 1,000 cells

in a total volume of 200 ml. Three hours later, fluorescence in the

supernatant was measured with a Wallac Victor plate reader

(Perkin-Elmer, Waltham MA, USA). Spontaneous calcein release

of labeled cells without effectors was subtracted from sample

values. Specific lysis represents the ratio of sample values to total

lysis values. Total lysis was obtained by adding 1% Triton-X-100

to target cells.

Limiting dilutions and regression assays
The transformation capacities of the recombinant viruses were

assessed by limiting dilution assays as described [53]. In brief,

serial dilutions of EBV mutant viruses were added to 48 replicates

of 16105 B cells prepared from adenoids in 96-well flat bottom

plates and incubated for six weeks with weekly supply of fresh

culture medium. Living cells were assessed by MTT assays [54].

Regression assays were performed as described elsewhere [48].

Complete PBMCs or PBMCs depleted of CD56+ or CD4+ cells

by MACS sorting were infected overnight with EBV at a MOI of

0.1 GRU/B cell. Cells were supplied with fresh culture medium

and seeded in 24 replicates on 96-well flat bottom microtest plates

in serial dilutions, ranging from 100,000 to 100 cells/well. The

number of wells with proliferating cells was assessed by MTT

assays after six weeks of culture.

Expression analysis
B cells from adenoids were infected with EBV mutant viruses at

a MOI of 0.1 GRU. Cells were harvested for total RNA

preparation at different time points using the RNeasy MiniKit

(Qiagen, Hilden, Germany). Residual genomic DNA was removed

by DNAse digestion and RNA was reversely transcribed with the
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SuperMix Kit (Life Technologies). Quantitative PCR was

performed on a LightCycler 480 (Roche, Basel, Switzerland),

using the SybrGreen LC480 Mix. Primer sequences are provided

online in supplementary Table S3.

Supporting Information

Figure S1 Genetic manipulation of the 2089 EBV
genome. (A) The 2089 EBV BAC was genetically modified by

homologous recombination (see Materials and Methods for

details). The BCRF1 gene was replaced by a prokaryotic

expression cassette for kanamycin resistance. The translation of

BNLF2a was prevented by traceless mutagenesis of the Methio-

nine1-codon to a stop-codon and introduction of a SpeI site for

analytic purpose. (B) 1 mg of BAC DNAs were digested with the

indicated restriction enzymes and separated on an agarose gel.

Mutation-specific alterations are indicated for BCRF1 (arrows)

and BNLF2a (arrowhead).

(PDF)

Figure S2 Expression levels of BZLF1, EBNA3a and
LMP2AB are not affected by BNLF2a or BCRF1. Primary B

cells were infected with the mutant viruses, total RNA was isolated

at different time points post infection and quantitative RT-PCR

was performed. Expression levels are shown in relation to

transcript levels of the housekeeping gene glucuronidase beta

(GUSB). Multiplicities of expression were calculated by normal-

izing to values from the 2089 EBV-infected samples. Expression of

the immediate early gene BZLF1 and the latent genes EBNA3a

and LMP2AB did not differ significantly between mutant virus-

infected samples and 2089 EBV-infected samples.

(PDF)

Figure S3 Infection of B cells with mutant EBVs does
not affect MHC class I surface levels. (A) B cells were

infected with 2089 EBV or mutant viruses. 26105 cells of each

sample were stained for MHC class I surface expression at the

indicated day post infection and analyzed by flow cytometry.

MHC I-PerCP mean fluorescence intensities (MFI) were deter-

mined for GFP+, i.e. infected, cells. A sample of not infected B

cells (not inf.) was analyzed immediately after B cell preparation.

(B) 16106 B cells were analyzed for MHC I surface levels and

BNLF2a expression prior to infection and 3 days post infection

with the indicated viruses. n.a., not assessed. (C) Same data as in B,

shown as density plots.

(PDF)

Figure S4 Infection of B cells with mutant EBVs did not
affect NKG2D-ligand expression levels. B cells were

infected with 2089 EBV or mutant viruses. Total RNA was

isolated at the different time points and the transcript levels of the

indicated genes were assessed by quantitative RT-PCR. Expres-

sion levels are shown in relation to transcript levels of the

housekeeping gene glucuronidase beta (GUSB). Multiplicities of

expression were calculated by normalizing to values from the 2089

EBV-infected samples.

(PDF)

Figure S5 NK cells, NKT cells and CD4+ T cells express
the IL-10 receptor. 16106 PBMCs were stained with CD3-

FITC, CD56-PE.Cy5, and IL10R-PE or an irrelevant isotype-PE

antibody. Cells were gated for lymphocytes and analyzed for IL-

10R expression as indicated.

(PDF)

Figure S6 Exogenous IL-10 rescues the phenotype of
BCRF1-deficient EBV mutant viruses. Killing assays were

performed and evaluated as described in Figure 4B. IL-10 was

added prior to the addition of target cells to a final concentration

of 1 ng/ml. Effector/target ratios were 10:1 (left panel) and

effector/helper/target ratios were 2:1:1 (right panel).

(PDF)

Figure S7 Effects of IL-10 on NK-mediated killing of
K562 cells. Killing assays using K562 cells as targets were

performed and evaluated as described in Figure 4B, IL-10 was

added to the indicated final concentrations.

(PDF)

Figure S8 Titration of virus supernatants on Raji cells.
Raji cells were infected with equal volumes of different virus

supernatants. The amount of GFP+ Raji cells was assessed by flow

cytometry (left panel) and served to calculate the content of ‘green

Raji units’ (GRU) per ml of the virus stock. In a second

experiment, Raji cells were infected with equal GRUs of the virus

stocks and GFP+ cells were assessed on day 3 p.i. (right panel). In

case of more than 10% difference in GFP+ cells between the

infected samples, titers were corrected and the experiment was

repeated.

(PDF)

Figure S9 Relative and absolute expression of EBV
genes. B cells were isolated from peripheral blood and infected

with 2089 EBV. RNA was isolated at indicated timepoints,

reversely transcribed and expression levels of indicated genes were

determined by qPCR. Panels show expression levels related to the

housekeeping gene GUSB and corrected for PCR efficiencies

(upper rows) or the second derivative maximum of the

fluorescence graph depicted as crossing point (Cp) (lower rows).

Values for established cell lines represent expression in 2089 EBV-

infected B cells two months after infection ( = LCL) and long-term

cultures of the Akata cell line, respectively. Cells were stimulated

with anti-human IgA/M/G at 20 mg/ml for 36 hours, LCLs were

treated additionally with butyrate (300 mM) and TPA (20 ng/ml).

Shown are expression levels of (A) selected antigens, (B) selected

immunoevasins and (C) the housekeeping gene GUSB. (D)

Numeric Cp values for GUSB transcripts are shown for the

indicated time points and samples. Mean values were calculated

from three replicates. not inf., not infected; not ind., not induced;

n.d., not detected; dpi, days post infection; SD, standard deviation.

(PDF)

Table S1

Found at: doi:Primers for DBNLF2a cloning. This table lists the

primers that were used for the generation of the DBNLF2a mutant

EBV. (PDF)

Table S2 PCR primers. This table lists the primers that were

used for PCR.

(PDF)

Table S3 qPCR primers. This table lists the primers that were

used for real-time qPCR.

(PDF)
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